[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0495788A - Judging method of life for stationary lead accumulator - Google Patents

Judging method of life for stationary lead accumulator

Info

Publication number
JPH0495788A
JPH0495788A JP2208823A JP20882390A JPH0495788A JP H0495788 A JPH0495788 A JP H0495788A JP 2208823 A JP2208823 A JP 2208823A JP 20882390 A JP20882390 A JP 20882390A JP H0495788 A JPH0495788 A JP H0495788A
Authority
JP
Japan
Prior art keywords
battery
impedance
value
equivalent circuit
life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2208823A
Other languages
Japanese (ja)
Other versions
JP2536257B2 (en
Inventor
Akihiko Kudo
彰彦 工藤
Kensuke Hironaka
健介 弘中
Koji Yamaguchi
浩司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2208823A priority Critical patent/JP2536257B2/en
Publication of JPH0495788A publication Critical patent/JPH0495788A/en
Application granted granted Critical
Publication of JP2536257B2 publication Critical patent/JP2536257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)

Abstract

PURPOSE:To easily and accurately detect the service life of a battery by a method wherein an internal impedance of the battery is measured with different frequencies, each value of elements of an impedance equivalent circuit is calcu lated based on the measured impedance, and the calculated value is compared with an initial value, thereby to estimate the life of the battery. CONSTITUTION:An internal impedance equivalent circuit of a battery is formed in such relation as shown in the drawing among an inductance component L of a pole column, a strap, a grid body etc., an electrolyte resistance Rs, a capacity of an electric double layers Cd, a load moving resistance theta, and a Warburg impedance W and the like. A synthesizing impedance of the equivalent circuit calculates at least one value of the electric double layer capacity Cd, load moving resistance theta, Warburg factor and the like, and compares the calculated value with the corresponding initial value. Accordingly, the data related to the state of the battery such as the quantity of the effective reactive substance, surface area or the like can be properly estimated. The service life of the battery can be easily and accurately detected without measuring the discharge capacity of the battery.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、据置用鉛蓄電池の寿命判定方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for determining the life of a stationary lead-acid battery.

[従来の技術] 据置用鉛蓄電池の寿命判定方法としては、従来から、電
池の放電容量を実測する方法や電解液比重を測定する方
法が用いられてきた。前者の放電容量を実測する方法で
は放電用負荷が大きくなって、測定にも時間と労力とを
必要とする点で実際的でないことから、後者の電解液比
重を測定する方法が最も一般的に行なわれてきた。
[Prior Art] Conventionally, as a method for determining the life of a stationary lead-acid battery, a method of actually measuring the discharge capacity of the battery and a method of measuring the specific gravity of the electrolyte have been used. The former method of actually measuring the discharge capacity is impractical as it requires a large discharge load and requires time and effort to measure, so the latter method of measuring the specific gravity of the electrolyte is the most common method. It has been done.

[発明が解決しようとする課題] ところが、陰極吸収式の据置用密閉形鉛蓄電池では、密
閉形であるために電解液比重の測定が困難であるという
問題がある。
[Problems to be Solved by the Invention] However, the cathode absorption stationary sealed lead-acid battery has a problem in that it is difficult to measure the specific gravity of the electrolyte because it is a sealed type.

本発明の目的は、上記の問題に鑑み、放電容量の実測や
電解液比重の測定を行うことなく、据置用鉛蓄電池の寿
命を判定する方法を提案することにある。
In view of the above problems, an object of the present invention is to propose a method for determining the life of a stationary lead-acid battery without actually measuring the discharge capacity or measuring the specific gravity of the electrolyte.

[課題を解決するための手段] 上記の課題を解決するために、本発明に係る据置用鉛蓄
電池の寿命判定方法は、寿命を判定すべき鉛蓄電池の内
部インピーダンスを所定の数種の異なる測定周波数で測
定して得た測定値を、極柱、ストラ′ツブ、格子体等の
インダクタンス成分L1電解液抵抗RS %電気二重層
容量Cd、電荷移動抵抗θ、及びワールブルグ・インピ
ーダンスW等の合成よりなるインピーダンス等価回路の
インピーダンスにあてはめて計算して、前記電解液抵抗
Rs、電気二重層容量Cd、電荷移動抵抗θ、及びワー
ルブルグ係数σの少なくとも1つの値を算出し、該算出
値をそれぞれの初期の値と比較することにより電池の寿
命を判定する。
[Means for Solving the Problems] In order to solve the above problems, the method for determining the lifespan of a stationary lead-acid battery according to the present invention involves measuring the internal impedance of a lead-acid battery whose lifespan is to be determined using several different predetermined measurements. The measured value obtained by measuring the frequency is synthesized by inductance components such as pole columns, struts, lattices, etc. L1 electrolyte resistance RS % electric double layer capacitance Cd, charge transfer resistance θ, Warburg impedance W, etc. At least one value of the electrolyte resistance Rs, electric double layer capacitance Cd, charge transfer resistance θ, and Warburg coefficient σ is calculated by applying the calculation to the impedance of an impedance equivalent circuit, and the calculated value is applied to each initial value. The lifespan of the battery is determined by comparing it with the value of .

「作用コ 本発明の寿命判定方法を用いると、前記の等価回路構成
要素の算出値の経時変化から、有効反応活物質の量及び
表面積、並びに活物質に対する電解液の拡散状態等の詳
細な電池状態に関する情報を適切に推定できる。これに
より、電池の放電容量を実測することなく、また、据置
用密閉形鉛蓄電池のような電解液の比重測定が困難な電
池でも容易・適確に寿命が判定される。
``Function: When the lifespan determination method of the present invention is used, detailed battery information such as the amount and surface area of the effective reactive active material, and the diffusion state of the electrolyte with respect to the active material can be determined from the changes over time in the calculated values of the equivalent circuit components. Information regarding the condition can be estimated appropriately.This allows you to easily and accurately estimate the battery life without actually measuring the discharge capacity of the battery, and even for batteries for which it is difficult to measure the specific gravity of the electrolyte, such as stationary sealed lead-acid batteries. It will be judged.

[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

据置用鉛蓄電池の内部インピーダンスは、第1図に示し
たようなインピーダンス等価回路のインピーダンスで表
わされる。同図のLは極柱、ストラップ、格子等のイン
ダクタンス成分、Rsは電解液の抵抗を主とする電解液
抵抗、Cdは活物質と電解液界面の電気二重層容量、θ
は活物質と電解液間の電荷の授受に伴う電荷移動抵抗、
Wは電解液の拡散に起因するワールブルグ・インピーダ
ンスで、これらが図示の関係にあって電池の内部インピ
ーダンス等価回路を形成する。
The internal impedance of a stationary lead-acid battery is expressed by the impedance of an impedance equivalent circuit as shown in FIG. In the figure, L is the inductance component of pole columns, straps, grids, etc., Rs is the electrolyte resistance, which is mainly the resistance of the electrolyte, and Cd is the electric double layer capacitance at the interface between the active material and the electrolyte, θ
is the charge transfer resistance associated with the transfer of charge between the active material and the electrolyte,
W is the Warburg impedance caused by the diffusion of the electrolytic solution, and these have the relationship shown in the figure to form an equivalent circuit of internal impedance of the battery.

この等価回路の合成インピーダンス2は、ワールブルグ
・インピーダンスWのワールブルグ係数をσとすると、
角周波数ωの関数として次式で表2 (ω) =Rs+jωL+ 第2図は据置用鉛蓄電池の内部インピーダンス実測値と
、上記等価回路のインピーダンス軌跡(計算値)とを併
せ示したもので、一般にコール・コールプロットと呼ば
れるものである。
The composite impedance 2 of this equivalent circuit is given by σ, the Warburg coefficient of the Warburg impedance W.
As a function of angular frequency ω, Table 2 (ω) =Rs+jωL+ Figure 2 shows the actual measured internal impedance of a stationary lead-acid battery and the impedance locus (calculated value) of the above equivalent circuit. This is called a Cole-Cole plot.

実測した電池は容量が200Abのもので、測定周波数
範囲はO,LH!〜I KH2である。同図に見られる
ように、周波数が1〜100H!程度では実測値と等価
回路の計算値とがよく一致し、等価回路の表現が妥当で
あることがわかる。
The battery we actually measured had a capacity of 200Ab, and the measurement frequency range was O, LH! ~I KH2. As seen in the figure, the frequency is 1 to 100H! It can be seen that the measured values and the calculated values of the equivalent circuit match well in terms of degree, and that the representation of the equivalent circuit is appropriate.

等価回路を構成する前述の電解液抵抗Rs、電気二重層
容量Cd、電荷移動抵抗θ、及びワールブルグ係数σ等
の各要素は、電池が寿命に至る場合、次表に示す原因に
より変化するものと考えられる。
Each of the aforementioned electrolyte resistance Rs, electric double layer capacity Cd, charge transfer resistance θ, and Warburg coefficient σ, which constitute the equivalent circuit, will change due to the causes shown in the following table when the battery reaches the end of its life. Conceivable.

従って、数種の異なる周波数による内部インピーダンス
の実測値を等価回路のインピーダンスにあてはめて、前
記各要素の値を計算・算出することにより電池の性能状
態が推定でき、算出値を初期値と比較することにより容
易・適確に電池の寿命判定を行うことができる。
Therefore, by applying the actual measured values of internal impedance at several different frequencies to the impedance of the equivalent circuit and calculating the values of each of the above elements, the performance state of the battery can be estimated, and the calculated value is compared with the initial value. This makes it possible to easily and accurately determine the lifespan of the battery.

第3図は電池の内部インピーダンス測定手段の概要を示
したもので、1は被測定電池、3はインピーダンス特性
検出器、2は上記両者の間に介挿接続されたポテンショ
スタットである。ポテンショスタットは、ある電位を印
加した時の電流を測定するポテンショモードとある電流
を通電した時の電位を測定するガルバノスタット・モー
ドとを有する。本実施例では、ポテンショスタットをガ
ルバノスタット・モードで用い、周波数分析器3よりポ
テンショスタット2を介して電池1に一定振幅の数種の
異なる周波数の交流電流を流し、ポテンショスタット2
の電流モニタ出力と電圧モニタ出力(試料に通電された
電流と発生する電圧を出力する端子)を周波数特性分析
器3の入力に接続し、電流モニタ出力と電圧モニタ出力
の測定値から、周波数に応じた電池1の内部インピーダ
ンスを求める。
FIG. 3 shows an outline of a battery internal impedance measuring means, in which 1 is a battery to be measured, 3 is an impedance characteristic detector, and 2 is a potentiostat inserted and connected between the two. A potentiostat has a potentiostat mode in which it measures a current when a certain potential is applied, and a galvanostat mode in which it measures a potential when a certain current is applied. In this embodiment, the potentiostat is used in the galvanostat mode, and alternating currents of several different frequencies with a constant amplitude are applied to the battery 1 from the frequency analyzer 3 via the potentiostat 2.
Connect the current monitor output and voltage monitor output (terminals that output the current passed through the sample and the generated voltage) to the input of the frequency characteristic analyzer 3, and calculate the frequency from the measured values of the current monitor output and voltage monitor output. Find the internal impedance of the battery 1 accordingly.

次に、具体例として200Ahの据置用密閉形鉛蓄電池
に対して高温での加速寿命試験を行い、1〜100Hz
の間の11種類の周波数で測定した内部インピーダンス
の各測定値を用いて算出した各要素の経時的な推移を第
4図〜第7図に示す。
Next, as a specific example, we conducted an accelerated life test at high temperature on a 200Ah stationary sealed lead acid battery.
FIGS. 4 to 7 show the changes over time of each element calculated using the internal impedance values measured at 11 different frequencies between the two.

各要素の計算は、非線形最少二乗法の一種であるフルカ
ート法を用いる。具体的には、等価回路の各定数に適当
な初期値を与え、この定数で計算した各周波数における
インピーダンスと、測定値のインピーダンスの差が最小
になるように等価回路の各定数の値を変えてゆき、差が
一定値以下になった場合にこの値を解とする方法を用い
る。この計算方法及び計算式は当業者に公知であるため
、詳細は省略する。なおこの計算はコンピュータを用い
て簡単に行うことができる。
The calculation of each element uses the Full Cart method, which is a type of nonlinear least squares method. Specifically, each constant in the equivalent circuit is given an appropriate initial value, and the value of each constant in the equivalent circuit is changed so that the difference between the impedance at each frequency calculated using this constant and the impedance of the measured value is minimized. Then, when the difference becomes less than a certain value, a method is used in which this value is used as the solution. Since this calculation method and calculation formula are well known to those skilled in the art, details will be omitted. Note that this calculation can be easily performed using a computer.

第4図は電解液抵抗Rsの推移、第5図は電気二重層容
量Cdの推移、第6図は電荷移動抵抗θの推移、また第
7図はワールブルグ係数σの推移を示したもので;j:
?条。第8図は、併せて実測した放電容量の推移を示し
たものである。
Figure 4 shows the change in electrolyte resistance Rs, Figure 5 shows the change in electric double layer capacitance Cd, Figure 6 shows the change in charge transfer resistance θ, and Figure 7 shows the change in Warburg coefficient σ. j:
? Article. FIG. 8 also shows the change in discharge capacity that was actually measured.

第4図に示されるように、電解液抵抗Rsは150日前
後より増大して電解液比重が低下していることが推定さ
れ、第5[に示されるように、電気二重層容量Cdは徐
々に減少して有効活物質の反応面積が減少していること
が推定される。また、第6図に示されるように、200
目前後より電荷移動抵抗θが推定され、第7図に示され
るように、ワールブルグ係数σが200日前後より増大
していることから活物質の硫酸鉛化により電解液の活物
質への拡散が悪化していることが推定される。
As shown in Figure 4, it is estimated that the electrolyte resistance Rs increases from around 150 days and the electrolyte specific gravity decreases, and as shown in Figure 5, the electric double layer capacitance Cd gradually increases. It is estimated that the reaction area of the effective active material has decreased. In addition, as shown in FIG. 6, 200
The charge transfer resistance θ was estimated from around 200 days, and as shown in Figure 7, the Warburg coefficient σ increased from around 200 days, indicating that the diffusion of the electrolyte into the active material was caused by lead sulfate of the active material. It is estimated that the situation has worsened.

他方、第8図に見られるように放電容量の実測値も20
0日前後から容量が急激に低下して230日で寿命終期
となっている。以上のことから、前述の等価回路の各要
素のいずれか又は全部の計算値をそれぞれの初期値と比
較することにより電池の寿命判定を行うことができる。
On the other hand, as shown in Figure 8, the actual measured value of discharge capacity is also 20
The capacity rapidly decreased from around 0 days, and reached the end of its life at 230 days. From the above, the battery life can be determined by comparing the calculated values of any or all of the elements of the above-mentioned equivalent circuit with their respective initial values.

[発明の効果] 以上述べたように、本発明によれば、鉛蓄電池の内部イ
ンピーダンスを種々の異なる周波数で実測し、該実測値
に基づいてインピーダンス等価回路の各要素の値を計算
し、算出値を初期値と比較することにより電池の寿命を
判定するので、電池の放電容量を実測することなく、ま
た据置用密閉形鉛蓄電池のような電解液の比重測定が困
難な電池でも容易且つ適確に寿命判定を行うことができ
る。更に、上記等価回路各要素の算出値の変化より、有
効反応活物質の量及び表面積、並びに活物質に対する電
解液の拡散状態等の詳細な電池状態に関する所要の情報
を適切に推定し得る利点がある。
[Effects of the Invention] As described above, according to the present invention, the internal impedance of a lead-acid battery is actually measured at various different frequencies, and the values of each element of the impedance equivalent circuit are calculated based on the measured values. Since the battery life is determined by comparing the value with the initial value, there is no need to actually measure the discharge capacity of the battery, and it is easy and suitable for batteries where it is difficult to measure the specific gravity of the electrolyte, such as stationary sealed lead-acid batteries. Lifespan can be accurately determined. Furthermore, from the changes in the calculated values of each element of the equivalent circuit, it is possible to appropriately estimate necessary information regarding detailed battery conditions such as the amount and surface area of the effective reactive active material, and the diffusion state of the electrolyte with respect to the active material. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は据置用鉛蓄電池のインピーダンス等価回路を示
す回路図、第2図は据置用鉛蓄電池のインピーダンス実
測値と等価回路インピーダンスのベクトル軌跡を示す特
性曲線図、第3図は鉛蓄電池の内部インピーダンス測定
手段の概要を示す説明図である。第4図は電解液抵抗の
経時変化を示す、第5図は電気二重層容量の経時変化を
示す、第6図は電荷移動抵抗の経時変化を示す、第7図
はワールブルグ係数の経時変化を示す、また第8図は電
池放電容量の経時変化を示す各特性曲線図である。 L・・・インダクタンス成分、Rs・・・電解液抵抗、
Cd・・・電気二重層容量、θ・・・電荷移動抵抗くW
・・・ワールブルグeインピーダンス。 第 図 第 図 第 図 第 図 日 数 第 図 ン 第 図 日 数 第 図 第 図
Figure 1 is a circuit diagram showing the impedance equivalent circuit of a stationary lead-acid battery, Figure 2 is a characteristic curve diagram showing the measured impedance value of a stationary lead-acid battery and the vector trajectory of the equivalent circuit impedance, and Figure 3 is the inside of the lead-acid battery. FIG. 2 is an explanatory diagram showing an overview of impedance measuring means. Figure 4 shows the change in electrolyte resistance over time, Figure 5 shows the change in electric double layer capacity over time, Figure 6 shows the change in charge transfer resistance over time, and Figure 7 shows the change in Warburg coefficient over time. FIG. 8 is a diagram of each characteristic curve showing the change in battery discharge capacity over time. L...inductance component, Rs...electrolyte resistance,
Cd...electric double layer capacity, θ...charge transfer resistance W
...Warburg e-impedance. Figure Figure Figure Figure Number of Days Figure Figure Number of Days Figure Figure

Claims (1)

【特許請求の範囲】 寿命を判定すべき鉛蓄電池の内部インピーダンスを数種
の異なる測定周波数で測定して得た測定値を、 極柱、ストラップ、格子体等のインダクタンス成分(L
)、電解液抵抗(Rs)、電気二重層容量(Cd)、電
荷移動抵抗(θ)、及びワールブルグ・インピーダンス
(W)等の合成よりなるインピーダンス等価回路のイン
ピーダンスにあてはめて計算して、前記電解液抵抗(R
s)、電気二重層容量(Cd)、電荷移動抵抗(θ)、
及びワールブルグ係数(σ)の少なくとも1つの値を算
出し、該算出値をそれぞれの初期の値と比較することに
より電池の寿命を判定することを特徴とする据置用鉛蓄
電池の寿命判定方法。
[Claims] The internal impedance of the lead-acid battery whose life is to be determined is measured at several different measurement frequencies, and the measured values are calculated using the inductance components (L
), electrolyte resistance (Rs), electric double layer capacitance (Cd), charge transfer resistance (θ), Warburg impedance (W), etc. Liquid resistance (R
s), electric double layer capacity (Cd), charge transfer resistance (θ),
A method for determining the lifespan of a stationary lead-acid battery, characterized in that the lifespan of the battery is determined by calculating at least one value of and Warburg coefficient (σ) and comparing the calculated value with each initial value.
JP2208823A 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries Expired - Fee Related JP2536257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208823A JP2536257B2 (en) 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208823A JP2536257B2 (en) 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries

Publications (2)

Publication Number Publication Date
JPH0495788A true JPH0495788A (en) 1992-03-27
JP2536257B2 JP2536257B2 (en) 1996-09-18

Family

ID=16562707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208823A Expired - Fee Related JP2536257B2 (en) 1990-08-07 1990-08-07 Determining the life of stationary lead-acid batteries

Country Status (1)

Country Link
JP (1) JP2536257B2 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1129343A1 (en) * 1998-09-11 2001-09-05 CHAMPLIN, Keith S Method and apparatus for determining battery properties from complex impedance/admittance
EP1150131A1 (en) * 2000-04-29 2001-10-31 VB Autobatterie GmbH Method for determining the state of the charge and the capacity of an electric storage battery
JP2005083798A (en) * 2003-09-05 2005-03-31 Shin Kobe Electric Mach Co Ltd Method of detecting battery condition
JP2007333494A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP2009510390A (en) * 2005-07-05 2009-03-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング How to recognize the preset value of a storage battery
JP2009210478A (en) * 2008-03-05 2009-09-17 Nissan Motor Co Ltd Estimation method for chargeable/dischargeable power of battery
JP2011133443A (en) * 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
JP2013500487A (en) * 2009-07-28 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ How to characterize a battery
JP2013088156A (en) * 2011-10-14 2013-05-13 Furukawa Electric Co Ltd:The Secondary battery state detector and secondary battery state detection method
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
JP2014514582A (en) * 2011-05-11 2014-06-19 イメジース テクノロジーズ アーペーエス Method for fault diagnosis on solar modules
US8872516B2 (en) 2000-03-27 2014-10-28 Midtronics, Inc. Electronic battery tester mounted in a vehicle
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
US8963550B2 (en) 2004-08-20 2015-02-24 Midtronics, Inc. System for automatically gathering battery information
JP2015081800A (en) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 Battery parameter estimation device and method
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9052366B2 (en) 2000-03-27 2015-06-09 Midtronics, Inc. Battery testers with secondary functionality
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
US9335362B2 (en) 2007-07-17 2016-05-10 Midtronics, Inc. Battery tester for electric vehicle
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9425487B2 (en) 2010-03-03 2016-08-23 Midtronics, Inc. Monitor for front terminal batteries
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
WO2017056981A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing same, and method for evaluating same
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
US10429449B2 (en) 2011-11-10 2019-10-01 Midtronics, Inc. Battery pack tester
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
US11650259B2 (en) 2010-06-03 2023-05-16 Midtronics, Inc. Battery pack maintenance for electric vehicle
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
US11973202B2 (en) 2019-12-31 2024-04-30 Midtronics, Inc. Intelligent module interface for battery maintenance device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6885688B2 (en) * 2016-08-01 2021-06-16 トヨタ自動車株式会社 How to regenerate nickel metal hydride batteries

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8872517B2 (en) 1996-07-29 2014-10-28 Midtronics, Inc. Electronic battery tester with battery age input
US8958998B2 (en) 1997-11-03 2015-02-17 Midtronics, Inc. Electronic battery tester with network communication
EP1129343A1 (en) * 1998-09-11 2001-09-05 CHAMPLIN, Keith S Method and apparatus for determining battery properties from complex impedance/admittance
EP1129343A4 (en) * 1998-09-11 2005-02-02 Keith S Champlin Method and apparatus for determining battery properties from complex impedance/admittance
US8872516B2 (en) 2000-03-27 2014-10-28 Midtronics, Inc. Electronic battery tester mounted in a vehicle
US8513949B2 (en) 2000-03-27 2013-08-20 Midtronics, Inc. Electronic battery tester or charger with databus connection
US9052366B2 (en) 2000-03-27 2015-06-09 Midtronics, Inc. Battery testers with secondary functionality
EP1150131A1 (en) * 2000-04-29 2001-10-31 VB Autobatterie GmbH Method for determining the state of the charge and the capacity of an electric storage battery
US6362598B2 (en) * 2000-04-29 2002-03-26 Vb Autobatterie Gmbh Method for determining the state of charge and loading capacity of an electrical storage battery
JP4572518B2 (en) * 2003-09-05 2010-11-04 新神戸電機株式会社 Battery status detection method
US9255955B2 (en) 2003-09-05 2016-02-09 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
US9018958B2 (en) 2003-09-05 2015-04-28 Midtronics, Inc. Method and apparatus for measuring a parameter of a vehicle electrical system
JP2005083798A (en) * 2003-09-05 2005-03-31 Shin Kobe Electric Mach Co Ltd Method of detecting battery condition
US9496720B2 (en) 2004-08-20 2016-11-15 Midtronics, Inc. System for automatically gathering battery information
US8963550B2 (en) 2004-08-20 2015-02-24 Midtronics, Inc. System for automatically gathering battery information
JP2009510390A (en) * 2005-07-05 2009-03-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング How to recognize the preset value of a storage battery
JP2007333494A (en) * 2006-06-14 2007-12-27 Shikoku Electric Power Co Inc Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
US9335362B2 (en) 2007-07-17 2016-05-10 Midtronics, Inc. Battery tester for electric vehicle
US9274157B2 (en) 2007-07-17 2016-03-01 Midtronics, Inc. Battery tester for electric vehicle
JP2009210478A (en) * 2008-03-05 2009-09-17 Nissan Motor Co Ltd Estimation method for chargeable/dischargeable power of battery
JP2013500487A (en) * 2009-07-28 2013-01-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ How to characterize a battery
US9239363B2 (en) 2009-12-25 2016-01-19 Toshiba Corporation Battery diagnosis device and method
CN102183730A (en) * 2009-12-25 2011-09-14 株式会社东芝 Battery diagnosis device and method
JP2011133443A (en) * 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
EP2339361A3 (en) * 2009-12-25 2015-02-11 Kabushiki Kaisha Toshiba Battery diagnosis device and method
US9588185B2 (en) 2010-02-25 2017-03-07 Keith S. Champlin Method and apparatus for detecting cell deterioration in an electrochemical cell or battery
US9425487B2 (en) 2010-03-03 2016-08-23 Midtronics, Inc. Monitor for front terminal batteries
US9229062B2 (en) 2010-05-27 2016-01-05 Midtronics, Inc. Electronic storage battery diagnostic system
US11740294B2 (en) 2010-06-03 2023-08-29 Midtronics, Inc. High use battery pack maintenance
US11650259B2 (en) 2010-06-03 2023-05-16 Midtronics, Inc. Battery pack maintenance for electric vehicle
US9419311B2 (en) 2010-06-18 2016-08-16 Midtronics, Inc. Battery maintenance device with thermal buffer
US9201120B2 (en) 2010-08-12 2015-12-01 Midtronics, Inc. Electronic battery tester for testing storage battery
JP2014514582A (en) * 2011-05-11 2014-06-19 イメジース テクノロジーズ アーペーエス Method for fault diagnosis on solar modules
JP2013088156A (en) * 2011-10-14 2013-05-13 Furukawa Electric Co Ltd:The Secondary battery state detector and secondary battery state detection method
US10429449B2 (en) 2011-11-10 2019-10-01 Midtronics, Inc. Battery pack tester
US9851411B2 (en) 2012-06-28 2017-12-26 Keith S. Champlin Suppressing HF cable oscillations during dynamic measurements of cells and batteries
US11548404B2 (en) 2012-06-28 2023-01-10 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11325479B2 (en) 2012-06-28 2022-05-10 Midtronics, Inc. Hybrid and electric vehicle battery maintenance device
US11926224B2 (en) 2012-06-28 2024-03-12 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US10046649B2 (en) 2012-06-28 2018-08-14 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US9244100B2 (en) 2013-03-15 2016-01-26 Midtronics, Inc. Current clamp with jaw closure detection
US9312575B2 (en) 2013-05-16 2016-04-12 Midtronics, Inc. Battery testing system and method
JP2015081800A (en) * 2013-10-21 2015-04-27 カルソニックカンセイ株式会社 Battery parameter estimation device and method
US10175303B2 (en) 2013-10-21 2019-01-08 Calsonic Kansei Corporation Battery parameter estimation device and parameter estimation method
WO2015059879A1 (en) * 2013-10-21 2015-04-30 カルソニックカンセイ株式会社 Battery parameter estimation device and parameter estimation method
US10843574B2 (en) 2013-12-12 2020-11-24 Midtronics, Inc. Calibration and programming of in-vehicle battery sensors
US9923289B2 (en) 2014-01-16 2018-03-20 Midtronics, Inc. Battery clamp with endoskeleton design
US10473555B2 (en) 2014-07-14 2019-11-12 Midtronics, Inc. Automotive maintenance system
US10222397B2 (en) 2014-09-26 2019-03-05 Midtronics, Inc. Cable connector for electronic battery tester
US10317468B2 (en) 2015-01-26 2019-06-11 Midtronics, Inc. Alternator tester
JPWO2017056981A1 (en) * 2015-09-28 2018-07-19 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing the same, and method for evaluating the same
US9966676B2 (en) 2015-09-28 2018-05-08 Midtronics, Inc. Kelvin connector adapter for storage battery
WO2017056981A1 (en) * 2015-09-28 2017-04-06 Necエナジーデバイス株式会社 Lithium ion secondary battery, method for producing same, and method for evaluating same
US10608353B2 (en) 2016-06-28 2020-03-31 Midtronics, Inc. Battery clamp
US11054480B2 (en) 2016-10-25 2021-07-06 Midtronics, Inc. Electrical load for electronic battery tester and electronic battery tester including such electrical load
US11513160B2 (en) 2018-11-29 2022-11-29 Midtronics, Inc. Vehicle battery maintenance device
US11566972B2 (en) 2019-07-31 2023-01-31 Midtronics, Inc. Tire tread gauge using visual indicator
US11545839B2 (en) 2019-11-05 2023-01-03 Midtronics, Inc. System for charging a series of connected batteries
US11668779B2 (en) 2019-11-11 2023-06-06 Midtronics, Inc. Hybrid and electric vehicle battery pack maintenance device
US11474153B2 (en) 2019-11-12 2022-10-18 Midtronics, Inc. Battery pack maintenance system
US11973202B2 (en) 2019-12-31 2024-04-30 Midtronics, Inc. Intelligent module interface for battery maintenance device
US11486930B2 (en) 2020-01-23 2022-11-01 Midtronics, Inc. Electronic battery tester with battery clamp storage holsters

Also Published As

Publication number Publication date
JP2536257B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
JPH0495788A (en) Judging method of life for stationary lead accumulator
Oldenburger et al. Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements
US6313607B1 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US8487628B2 (en) System for smart management of an electrochemical battery
Itagaki et al. In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle
CN109633454B (en) Method for realizing on-line estimation of equivalent temperature of lithium ion battery
US6556019B2 (en) Electronic battery tester
JP6019368B2 (en) Power storage device state estimation method
JP3162030B2 (en) Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current
US7197487B2 (en) Apparatus and method for estimating battery state of charge
CN104462847B (en) A kind of internal temperature of battery real-time predicting method
JP2008522152A (en) Battery state and parameter estimation system and method
JP2002525793A (en) Method and apparatus for determining battery characteristics from complex impedance / admittance
JP2011158444A (en) Method and device for detecting remaining capacity of secondary battery
CN106842050A (en) A kind of battery temperature Forecasting Methodology and device
CN102544551A (en) Fuel cell evaluator and fuel cell evaluation method
Zhang et al. On-line measurement of internal resistance of lithium ion battery for EV and its application research
Raijmakers et al. A new method to compensate impedance artefacts for Li-ion batteries with integrated micro-reference electrodes
CN113242977A (en) Estimating SOH and SOC of electrochemical element
JP3752879B2 (en) Rechargeable battery remaining capacity estimation method
JP2000014019A (en) Battery discharge value measurement device
JP2008522153A (en) Joint battery condition and parameter estimation system and method
WO2013184132A1 (en) Battery state of charge measurement system
JP2639219B2 (en) Lead-acid battery life judgment method
CN106645953A (en) Lithium battery internal resistance value estimation method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees