JPH0495788A - Judging method of life for stationary lead accumulator - Google Patents
Judging method of life for stationary lead accumulatorInfo
- Publication number
- JPH0495788A JPH0495788A JP2208823A JP20882390A JPH0495788A JP H0495788 A JPH0495788 A JP H0495788A JP 2208823 A JP2208823 A JP 2208823A JP 20882390 A JP20882390 A JP 20882390A JP H0495788 A JPH0495788 A JP H0495788A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- impedance
- value
- equivalent circuit
- life
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000003792 electrolyte Substances 0.000 claims abstract description 23
- 239000002253 acid Substances 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000011149 active material Substances 0.000 description 9
- 230000005484 gravity Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、据置用鉛蓄電池の寿命判定方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for determining the life of a stationary lead-acid battery.
[従来の技術]
据置用鉛蓄電池の寿命判定方法としては、従来から、電
池の放電容量を実測する方法や電解液比重を測定する方
法が用いられてきた。前者の放電容量を実測する方法で
は放電用負荷が大きくなって、測定にも時間と労力とを
必要とする点で実際的でないことから、後者の電解液比
重を測定する方法が最も一般的に行なわれてきた。[Prior Art] Conventionally, as a method for determining the life of a stationary lead-acid battery, a method of actually measuring the discharge capacity of the battery and a method of measuring the specific gravity of the electrolyte have been used. The former method of actually measuring the discharge capacity is impractical as it requires a large discharge load and requires time and effort to measure, so the latter method of measuring the specific gravity of the electrolyte is the most common method. It has been done.
[発明が解決しようとする課題]
ところが、陰極吸収式の据置用密閉形鉛蓄電池では、密
閉形であるために電解液比重の測定が困難であるという
問題がある。[Problems to be Solved by the Invention] However, the cathode absorption stationary sealed lead-acid battery has a problem in that it is difficult to measure the specific gravity of the electrolyte because it is a sealed type.
本発明の目的は、上記の問題に鑑み、放電容量の実測や
電解液比重の測定を行うことなく、据置用鉛蓄電池の寿
命を判定する方法を提案することにある。In view of the above problems, an object of the present invention is to propose a method for determining the life of a stationary lead-acid battery without actually measuring the discharge capacity or measuring the specific gravity of the electrolyte.
[課題を解決するための手段]
上記の課題を解決するために、本発明に係る据置用鉛蓄
電池の寿命判定方法は、寿命を判定すべき鉛蓄電池の内
部インピーダンスを所定の数種の異なる測定周波数で測
定して得た測定値を、極柱、ストラ′ツブ、格子体等の
インダクタンス成分L1電解液抵抗RS %電気二重層
容量Cd、電荷移動抵抗θ、及びワールブルグ・インピ
ーダンスW等の合成よりなるインピーダンス等価回路の
インピーダンスにあてはめて計算して、前記電解液抵抗
Rs、電気二重層容量Cd、電荷移動抵抗θ、及びワー
ルブルグ係数σの少なくとも1つの値を算出し、該算出
値をそれぞれの初期の値と比較することにより電池の寿
命を判定する。[Means for Solving the Problems] In order to solve the above problems, the method for determining the lifespan of a stationary lead-acid battery according to the present invention involves measuring the internal impedance of a lead-acid battery whose lifespan is to be determined using several different predetermined measurements. The measured value obtained by measuring the frequency is synthesized by inductance components such as pole columns, struts, lattices, etc. L1 electrolyte resistance RS % electric double layer capacitance Cd, charge transfer resistance θ, Warburg impedance W, etc. At least one value of the electrolyte resistance Rs, electric double layer capacitance Cd, charge transfer resistance θ, and Warburg coefficient σ is calculated by applying the calculation to the impedance of an impedance equivalent circuit, and the calculated value is applied to each initial value. The lifespan of the battery is determined by comparing it with the value of .
「作用コ
本発明の寿命判定方法を用いると、前記の等価回路構成
要素の算出値の経時変化から、有効反応活物質の量及び
表面積、並びに活物質に対する電解液の拡散状態等の詳
細な電池状態に関する情報を適切に推定できる。これに
より、電池の放電容量を実測することなく、また、据置
用密閉形鉛蓄電池のような電解液の比重測定が困難な電
池でも容易・適確に寿命が判定される。``Function: When the lifespan determination method of the present invention is used, detailed battery information such as the amount and surface area of the effective reactive active material, and the diffusion state of the electrolyte with respect to the active material can be determined from the changes over time in the calculated values of the equivalent circuit components. Information regarding the condition can be estimated appropriately.This allows you to easily and accurately estimate the battery life without actually measuring the discharge capacity of the battery, and even for batteries for which it is difficult to measure the specific gravity of the electrolyte, such as stationary sealed lead-acid batteries. It will be judged.
[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
据置用鉛蓄電池の内部インピーダンスは、第1図に示し
たようなインピーダンス等価回路のインピーダンスで表
わされる。同図のLは極柱、ストラップ、格子等のイン
ダクタンス成分、Rsは電解液の抵抗を主とする電解液
抵抗、Cdは活物質と電解液界面の電気二重層容量、θ
は活物質と電解液間の電荷の授受に伴う電荷移動抵抗、
Wは電解液の拡散に起因するワールブルグ・インピーダ
ンスで、これらが図示の関係にあって電池の内部インピ
ーダンス等価回路を形成する。The internal impedance of a stationary lead-acid battery is expressed by the impedance of an impedance equivalent circuit as shown in FIG. In the figure, L is the inductance component of pole columns, straps, grids, etc., Rs is the electrolyte resistance, which is mainly the resistance of the electrolyte, and Cd is the electric double layer capacitance at the interface between the active material and the electrolyte, θ
is the charge transfer resistance associated with the transfer of charge between the active material and the electrolyte,
W is the Warburg impedance caused by the diffusion of the electrolytic solution, and these have the relationship shown in the figure to form an equivalent circuit of internal impedance of the battery.
この等価回路の合成インピーダンス2は、ワールブルグ
・インピーダンスWのワールブルグ係数をσとすると、
角周波数ωの関数として次式で表2 (ω)
=Rs+jωL+
第2図は据置用鉛蓄電池の内部インピーダンス実測値と
、上記等価回路のインピーダンス軌跡(計算値)とを併
せ示したもので、一般にコール・コールプロットと呼ば
れるものである。The composite impedance 2 of this equivalent circuit is given by σ, the Warburg coefficient of the Warburg impedance W.
As a function of angular frequency ω, Table 2 (ω) =Rs+jωL+ Figure 2 shows the actual measured internal impedance of a stationary lead-acid battery and the impedance locus (calculated value) of the above equivalent circuit. This is called a Cole-Cole plot.
実測した電池は容量が200Abのもので、測定周波数
範囲はO,LH!〜I KH2である。同図に見られる
ように、周波数が1〜100H!程度では実測値と等価
回路の計算値とがよく一致し、等価回路の表現が妥当で
あることがわかる。The battery we actually measured had a capacity of 200Ab, and the measurement frequency range was O, LH! ~I KH2. As seen in the figure, the frequency is 1 to 100H! It can be seen that the measured values and the calculated values of the equivalent circuit match well in terms of degree, and that the representation of the equivalent circuit is appropriate.
等価回路を構成する前述の電解液抵抗Rs、電気二重層
容量Cd、電荷移動抵抗θ、及びワールブルグ係数σ等
の各要素は、電池が寿命に至る場合、次表に示す原因に
より変化するものと考えられる。Each of the aforementioned electrolyte resistance Rs, electric double layer capacity Cd, charge transfer resistance θ, and Warburg coefficient σ, which constitute the equivalent circuit, will change due to the causes shown in the following table when the battery reaches the end of its life. Conceivable.
従って、数種の異なる周波数による内部インピーダンス
の実測値を等価回路のインピーダンスにあてはめて、前
記各要素の値を計算・算出することにより電池の性能状
態が推定でき、算出値を初期値と比較することにより容
易・適確に電池の寿命判定を行うことができる。Therefore, by applying the actual measured values of internal impedance at several different frequencies to the impedance of the equivalent circuit and calculating the values of each of the above elements, the performance state of the battery can be estimated, and the calculated value is compared with the initial value. This makes it possible to easily and accurately determine the lifespan of the battery.
第3図は電池の内部インピーダンス測定手段の概要を示
したもので、1は被測定電池、3はインピーダンス特性
検出器、2は上記両者の間に介挿接続されたポテンショ
スタットである。ポテンショスタットは、ある電位を印
加した時の電流を測定するポテンショモードとある電流
を通電した時の電位を測定するガルバノスタット・モー
ドとを有する。本実施例では、ポテンショスタットをガ
ルバノスタット・モードで用い、周波数分析器3よりポ
テンショスタット2を介して電池1に一定振幅の数種の
異なる周波数の交流電流を流し、ポテンショスタット2
の電流モニタ出力と電圧モニタ出力(試料に通電された
電流と発生する電圧を出力する端子)を周波数特性分析
器3の入力に接続し、電流モニタ出力と電圧モニタ出力
の測定値から、周波数に応じた電池1の内部インピーダ
ンスを求める。FIG. 3 shows an outline of a battery internal impedance measuring means, in which 1 is a battery to be measured, 3 is an impedance characteristic detector, and 2 is a potentiostat inserted and connected between the two. A potentiostat has a potentiostat mode in which it measures a current when a certain potential is applied, and a galvanostat mode in which it measures a potential when a certain current is applied. In this embodiment, the potentiostat is used in the galvanostat mode, and alternating currents of several different frequencies with a constant amplitude are applied to the battery 1 from the frequency analyzer 3 via the potentiostat 2.
Connect the current monitor output and voltage monitor output (terminals that output the current passed through the sample and the generated voltage) to the input of the frequency characteristic analyzer 3, and calculate the frequency from the measured values of the current monitor output and voltage monitor output. Find the internal impedance of the battery 1 accordingly.
次に、具体例として200Ahの据置用密閉形鉛蓄電池
に対して高温での加速寿命試験を行い、1〜100Hz
の間の11種類の周波数で測定した内部インピーダンス
の各測定値を用いて算出した各要素の経時的な推移を第
4図〜第7図に示す。Next, as a specific example, we conducted an accelerated life test at high temperature on a 200Ah stationary sealed lead acid battery.
FIGS. 4 to 7 show the changes over time of each element calculated using the internal impedance values measured at 11 different frequencies between the two.
各要素の計算は、非線形最少二乗法の一種であるフルカ
ート法を用いる。具体的には、等価回路の各定数に適当
な初期値を与え、この定数で計算した各周波数における
インピーダンスと、測定値のインピーダンスの差が最小
になるように等価回路の各定数の値を変えてゆき、差が
一定値以下になった場合にこの値を解とする方法を用い
る。この計算方法及び計算式は当業者に公知であるため
、詳細は省略する。なおこの計算はコンピュータを用い
て簡単に行うことができる。The calculation of each element uses the Full Cart method, which is a type of nonlinear least squares method. Specifically, each constant in the equivalent circuit is given an appropriate initial value, and the value of each constant in the equivalent circuit is changed so that the difference between the impedance at each frequency calculated using this constant and the impedance of the measured value is minimized. Then, when the difference becomes less than a certain value, a method is used in which this value is used as the solution. Since this calculation method and calculation formula are well known to those skilled in the art, details will be omitted. Note that this calculation can be easily performed using a computer.
第4図は電解液抵抗Rsの推移、第5図は電気二重層容
量Cdの推移、第6図は電荷移動抵抗θの推移、また第
7図はワールブルグ係数σの推移を示したもので;j:
?条。第8図は、併せて実測した放電容量の推移を示し
たものである。Figure 4 shows the change in electrolyte resistance Rs, Figure 5 shows the change in electric double layer capacitance Cd, Figure 6 shows the change in charge transfer resistance θ, and Figure 7 shows the change in Warburg coefficient σ. j:
? Article. FIG. 8 also shows the change in discharge capacity that was actually measured.
第4図に示されるように、電解液抵抗Rsは150日前
後より増大して電解液比重が低下していることが推定さ
れ、第5[に示されるように、電気二重層容量Cdは徐
々に減少して有効活物質の反応面積が減少していること
が推定される。また、第6図に示されるように、200
目前後より電荷移動抵抗θが推定され、第7図に示され
るように、ワールブルグ係数σが200日前後より増大
していることから活物質の硫酸鉛化により電解液の活物
質への拡散が悪化していることが推定される。As shown in Figure 4, it is estimated that the electrolyte resistance Rs increases from around 150 days and the electrolyte specific gravity decreases, and as shown in Figure 5, the electric double layer capacitance Cd gradually increases. It is estimated that the reaction area of the effective active material has decreased. In addition, as shown in FIG. 6, 200
The charge transfer resistance θ was estimated from around 200 days, and as shown in Figure 7, the Warburg coefficient σ increased from around 200 days, indicating that the diffusion of the electrolyte into the active material was caused by lead sulfate of the active material. It is estimated that the situation has worsened.
他方、第8図に見られるように放電容量の実測値も20
0日前後から容量が急激に低下して230日で寿命終期
となっている。以上のことから、前述の等価回路の各要
素のいずれか又は全部の計算値をそれぞれの初期値と比
較することにより電池の寿命判定を行うことができる。On the other hand, as shown in Figure 8, the actual measured value of discharge capacity is also 20
The capacity rapidly decreased from around 0 days, and reached the end of its life at 230 days. From the above, the battery life can be determined by comparing the calculated values of any or all of the elements of the above-mentioned equivalent circuit with their respective initial values.
[発明の効果]
以上述べたように、本発明によれば、鉛蓄電池の内部イ
ンピーダンスを種々の異なる周波数で実測し、該実測値
に基づいてインピーダンス等価回路の各要素の値を計算
し、算出値を初期値と比較することにより電池の寿命を
判定するので、電池の放電容量を実測することなく、ま
た据置用密閉形鉛蓄電池のような電解液の比重測定が困
難な電池でも容易且つ適確に寿命判定を行うことができ
る。更に、上記等価回路各要素の算出値の変化より、有
効反応活物質の量及び表面積、並びに活物質に対する電
解液の拡散状態等の詳細な電池状態に関する所要の情報
を適切に推定し得る利点がある。[Effects of the Invention] As described above, according to the present invention, the internal impedance of a lead-acid battery is actually measured at various different frequencies, and the values of each element of the impedance equivalent circuit are calculated based on the measured values. Since the battery life is determined by comparing the value with the initial value, there is no need to actually measure the discharge capacity of the battery, and it is easy and suitable for batteries where it is difficult to measure the specific gravity of the electrolyte, such as stationary sealed lead-acid batteries. Lifespan can be accurately determined. Furthermore, from the changes in the calculated values of each element of the equivalent circuit, it is possible to appropriately estimate necessary information regarding detailed battery conditions such as the amount and surface area of the effective reactive active material, and the diffusion state of the electrolyte with respect to the active material. be.
第1図は据置用鉛蓄電池のインピーダンス等価回路を示
す回路図、第2図は据置用鉛蓄電池のインピーダンス実
測値と等価回路インピーダンスのベクトル軌跡を示す特
性曲線図、第3図は鉛蓄電池の内部インピーダンス測定
手段の概要を示す説明図である。第4図は電解液抵抗の
経時変化を示す、第5図は電気二重層容量の経時変化を
示す、第6図は電荷移動抵抗の経時変化を示す、第7図
はワールブルグ係数の経時変化を示す、また第8図は電
池放電容量の経時変化を示す各特性曲線図である。
L・・・インダクタンス成分、Rs・・・電解液抵抗、
Cd・・・電気二重層容量、θ・・・電荷移動抵抗くW
・・・ワールブルグeインピーダンス。
第
図
第
図
第
図
第
図
日
数
第
図
ン
第
図
日
数
第
図
第
図Figure 1 is a circuit diagram showing the impedance equivalent circuit of a stationary lead-acid battery, Figure 2 is a characteristic curve diagram showing the measured impedance value of a stationary lead-acid battery and the vector trajectory of the equivalent circuit impedance, and Figure 3 is the inside of the lead-acid battery. FIG. 2 is an explanatory diagram showing an overview of impedance measuring means. Figure 4 shows the change in electrolyte resistance over time, Figure 5 shows the change in electric double layer capacity over time, Figure 6 shows the change in charge transfer resistance over time, and Figure 7 shows the change in Warburg coefficient over time. FIG. 8 is a diagram of each characteristic curve showing the change in battery discharge capacity over time. L...inductance component, Rs...electrolyte resistance,
Cd...electric double layer capacity, θ...charge transfer resistance W
...Warburg e-impedance. Figure Figure Figure Figure Number of Days Figure Figure Number of Days Figure Figure
Claims (1)
の異なる測定周波数で測定して得た測定値を、 極柱、ストラップ、格子体等のインダクタンス成分(L
)、電解液抵抗(Rs)、電気二重層容量(Cd)、電
荷移動抵抗(θ)、及びワールブルグ・インピーダンス
(W)等の合成よりなるインピーダンス等価回路のイン
ピーダンスにあてはめて計算して、前記電解液抵抗(R
s)、電気二重層容量(Cd)、電荷移動抵抗(θ)、
及びワールブルグ係数(σ)の少なくとも1つの値を算
出し、該算出値をそれぞれの初期の値と比較することに
より電池の寿命を判定することを特徴とする据置用鉛蓄
電池の寿命判定方法。[Claims] The internal impedance of the lead-acid battery whose life is to be determined is measured at several different measurement frequencies, and the measured values are calculated using the inductance components (L
), electrolyte resistance (Rs), electric double layer capacitance (Cd), charge transfer resistance (θ), Warburg impedance (W), etc. Liquid resistance (R
s), electric double layer capacity (Cd), charge transfer resistance (θ),
A method for determining the lifespan of a stationary lead-acid battery, characterized in that the lifespan of the battery is determined by calculating at least one value of and Warburg coefficient (σ) and comparing the calculated value with each initial value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2208823A JP2536257B2 (en) | 1990-08-07 | 1990-08-07 | Determining the life of stationary lead-acid batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2208823A JP2536257B2 (en) | 1990-08-07 | 1990-08-07 | Determining the life of stationary lead-acid batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0495788A true JPH0495788A (en) | 1992-03-27 |
JP2536257B2 JP2536257B2 (en) | 1996-09-18 |
Family
ID=16562707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2208823A Expired - Fee Related JP2536257B2 (en) | 1990-08-07 | 1990-08-07 | Determining the life of stationary lead-acid batteries |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2536257B2 (en) |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1129343A1 (en) * | 1998-09-11 | 2001-09-05 | CHAMPLIN, Keith S | Method and apparatus for determining battery properties from complex impedance/admittance |
EP1150131A1 (en) * | 2000-04-29 | 2001-10-31 | VB Autobatterie GmbH | Method for determining the state of the charge and the capacity of an electric storage battery |
JP2005083798A (en) * | 2003-09-05 | 2005-03-31 | Shin Kobe Electric Mach Co Ltd | Method of detecting battery condition |
JP2007333494A (en) * | 2006-06-14 | 2007-12-27 | Shikoku Electric Power Co Inc | Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof |
JP2009510390A (en) * | 2005-07-05 | 2009-03-12 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | How to recognize the preset value of a storage battery |
JP2009210478A (en) * | 2008-03-05 | 2009-09-17 | Nissan Motor Co Ltd | Estimation method for chargeable/dischargeable power of battery |
JP2011133443A (en) * | 2009-12-25 | 2011-07-07 | Toshiba Corp | Diagnostic device, battery pack, and method of manufacturing battery value index |
JP2013500487A (en) * | 2009-07-28 | 2013-01-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | How to characterize a battery |
JP2013088156A (en) * | 2011-10-14 | 2013-05-13 | Furukawa Electric Co Ltd:The | Secondary battery state detector and secondary battery state detection method |
US8513949B2 (en) | 2000-03-27 | 2013-08-20 | Midtronics, Inc. | Electronic battery tester or charger with databus connection |
JP2014514582A (en) * | 2011-05-11 | 2014-06-19 | イメジース テクノロジーズ アーペーエス | Method for fault diagnosis on solar modules |
US8872516B2 (en) | 2000-03-27 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester mounted in a vehicle |
US8872517B2 (en) | 1996-07-29 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester with battery age input |
US8958998B2 (en) | 1997-11-03 | 2015-02-17 | Midtronics, Inc. | Electronic battery tester with network communication |
US8963550B2 (en) | 2004-08-20 | 2015-02-24 | Midtronics, Inc. | System for automatically gathering battery information |
JP2015081800A (en) * | 2013-10-21 | 2015-04-27 | カルソニックカンセイ株式会社 | Battery parameter estimation device and method |
US9018958B2 (en) | 2003-09-05 | 2015-04-28 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
US9052366B2 (en) | 2000-03-27 | 2015-06-09 | Midtronics, Inc. | Battery testers with secondary functionality |
US9201120B2 (en) | 2010-08-12 | 2015-12-01 | Midtronics, Inc. | Electronic battery tester for testing storage battery |
US9229062B2 (en) | 2010-05-27 | 2016-01-05 | Midtronics, Inc. | Electronic storage battery diagnostic system |
US9244100B2 (en) | 2013-03-15 | 2016-01-26 | Midtronics, Inc. | Current clamp with jaw closure detection |
US9255955B2 (en) | 2003-09-05 | 2016-02-09 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
US9274157B2 (en) | 2007-07-17 | 2016-03-01 | Midtronics, Inc. | Battery tester for electric vehicle |
US9312575B2 (en) | 2013-05-16 | 2016-04-12 | Midtronics, Inc. | Battery testing system and method |
US9335362B2 (en) | 2007-07-17 | 2016-05-10 | Midtronics, Inc. | Battery tester for electric vehicle |
US9419311B2 (en) | 2010-06-18 | 2016-08-16 | Midtronics, Inc. | Battery maintenance device with thermal buffer |
US9425487B2 (en) | 2010-03-03 | 2016-08-23 | Midtronics, Inc. | Monitor for front terminal batteries |
US9496720B2 (en) | 2004-08-20 | 2016-11-15 | Midtronics, Inc. | System for automatically gathering battery information |
US9588185B2 (en) | 2010-02-25 | 2017-03-07 | Keith S. Champlin | Method and apparatus for detecting cell deterioration in an electrochemical cell or battery |
WO2017056981A1 (en) * | 2015-09-28 | 2017-04-06 | Necエナジーデバイス株式会社 | Lithium ion secondary battery, method for producing same, and method for evaluating same |
US9851411B2 (en) | 2012-06-28 | 2017-12-26 | Keith S. Champlin | Suppressing HF cable oscillations during dynamic measurements of cells and batteries |
US9923289B2 (en) | 2014-01-16 | 2018-03-20 | Midtronics, Inc. | Battery clamp with endoskeleton design |
US9966676B2 (en) | 2015-09-28 | 2018-05-08 | Midtronics, Inc. | Kelvin connector adapter for storage battery |
US10046649B2 (en) | 2012-06-28 | 2018-08-14 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
US10222397B2 (en) | 2014-09-26 | 2019-03-05 | Midtronics, Inc. | Cable connector for electronic battery tester |
US10317468B2 (en) | 2015-01-26 | 2019-06-11 | Midtronics, Inc. | Alternator tester |
US10429449B2 (en) | 2011-11-10 | 2019-10-01 | Midtronics, Inc. | Battery pack tester |
US10473555B2 (en) | 2014-07-14 | 2019-11-12 | Midtronics, Inc. | Automotive maintenance system |
US10608353B2 (en) | 2016-06-28 | 2020-03-31 | Midtronics, Inc. | Battery clamp |
US10843574B2 (en) | 2013-12-12 | 2020-11-24 | Midtronics, Inc. | Calibration and programming of in-vehicle battery sensors |
US11054480B2 (en) | 2016-10-25 | 2021-07-06 | Midtronics, Inc. | Electrical load for electronic battery tester and electronic battery tester including such electrical load |
US11325479B2 (en) | 2012-06-28 | 2022-05-10 | Midtronics, Inc. | Hybrid and electric vehicle battery maintenance device |
US11474153B2 (en) | 2019-11-12 | 2022-10-18 | Midtronics, Inc. | Battery pack maintenance system |
US11486930B2 (en) | 2020-01-23 | 2022-11-01 | Midtronics, Inc. | Electronic battery tester with battery clamp storage holsters |
US11513160B2 (en) | 2018-11-29 | 2022-11-29 | Midtronics, Inc. | Vehicle battery maintenance device |
US11545839B2 (en) | 2019-11-05 | 2023-01-03 | Midtronics, Inc. | System for charging a series of connected batteries |
US11566972B2 (en) | 2019-07-31 | 2023-01-31 | Midtronics, Inc. | Tire tread gauge using visual indicator |
US11650259B2 (en) | 2010-06-03 | 2023-05-16 | Midtronics, Inc. | Battery pack maintenance for electric vehicle |
US11668779B2 (en) | 2019-11-11 | 2023-06-06 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
US11740294B2 (en) | 2010-06-03 | 2023-08-29 | Midtronics, Inc. | High use battery pack maintenance |
US11973202B2 (en) | 2019-12-31 | 2024-04-30 | Midtronics, Inc. | Intelligent module interface for battery maintenance device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6885688B2 (en) * | 2016-08-01 | 2021-06-16 | トヨタ自動車株式会社 | How to regenerate nickel metal hydride batteries |
-
1990
- 1990-08-07 JP JP2208823A patent/JP2536257B2/en not_active Expired - Fee Related
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8872517B2 (en) | 1996-07-29 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester with battery age input |
US8958998B2 (en) | 1997-11-03 | 2015-02-17 | Midtronics, Inc. | Electronic battery tester with network communication |
EP1129343A1 (en) * | 1998-09-11 | 2001-09-05 | CHAMPLIN, Keith S | Method and apparatus for determining battery properties from complex impedance/admittance |
EP1129343A4 (en) * | 1998-09-11 | 2005-02-02 | Keith S Champlin | Method and apparatus for determining battery properties from complex impedance/admittance |
US8872516B2 (en) | 2000-03-27 | 2014-10-28 | Midtronics, Inc. | Electronic battery tester mounted in a vehicle |
US8513949B2 (en) | 2000-03-27 | 2013-08-20 | Midtronics, Inc. | Electronic battery tester or charger with databus connection |
US9052366B2 (en) | 2000-03-27 | 2015-06-09 | Midtronics, Inc. | Battery testers with secondary functionality |
EP1150131A1 (en) * | 2000-04-29 | 2001-10-31 | VB Autobatterie GmbH | Method for determining the state of the charge and the capacity of an electric storage battery |
US6362598B2 (en) * | 2000-04-29 | 2002-03-26 | Vb Autobatterie Gmbh | Method for determining the state of charge and loading capacity of an electrical storage battery |
JP4572518B2 (en) * | 2003-09-05 | 2010-11-04 | 新神戸電機株式会社 | Battery status detection method |
US9255955B2 (en) | 2003-09-05 | 2016-02-09 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
US9018958B2 (en) | 2003-09-05 | 2015-04-28 | Midtronics, Inc. | Method and apparatus for measuring a parameter of a vehicle electrical system |
JP2005083798A (en) * | 2003-09-05 | 2005-03-31 | Shin Kobe Electric Mach Co Ltd | Method of detecting battery condition |
US9496720B2 (en) | 2004-08-20 | 2016-11-15 | Midtronics, Inc. | System for automatically gathering battery information |
US8963550B2 (en) | 2004-08-20 | 2015-02-24 | Midtronics, Inc. | System for automatically gathering battery information |
JP2009510390A (en) * | 2005-07-05 | 2009-03-12 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | How to recognize the preset value of a storage battery |
JP2007333494A (en) * | 2006-06-14 | 2007-12-27 | Shikoku Electric Power Co Inc | Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof |
US9335362B2 (en) | 2007-07-17 | 2016-05-10 | Midtronics, Inc. | Battery tester for electric vehicle |
US9274157B2 (en) | 2007-07-17 | 2016-03-01 | Midtronics, Inc. | Battery tester for electric vehicle |
JP2009210478A (en) * | 2008-03-05 | 2009-09-17 | Nissan Motor Co Ltd | Estimation method for chargeable/dischargeable power of battery |
JP2013500487A (en) * | 2009-07-28 | 2013-01-07 | コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ | How to characterize a battery |
US9239363B2 (en) | 2009-12-25 | 2016-01-19 | Toshiba Corporation | Battery diagnosis device and method |
CN102183730A (en) * | 2009-12-25 | 2011-09-14 | 株式会社东芝 | Battery diagnosis device and method |
JP2011133443A (en) * | 2009-12-25 | 2011-07-07 | Toshiba Corp | Diagnostic device, battery pack, and method of manufacturing battery value index |
EP2339361A3 (en) * | 2009-12-25 | 2015-02-11 | Kabushiki Kaisha Toshiba | Battery diagnosis device and method |
US9588185B2 (en) | 2010-02-25 | 2017-03-07 | Keith S. Champlin | Method and apparatus for detecting cell deterioration in an electrochemical cell or battery |
US9425487B2 (en) | 2010-03-03 | 2016-08-23 | Midtronics, Inc. | Monitor for front terminal batteries |
US9229062B2 (en) | 2010-05-27 | 2016-01-05 | Midtronics, Inc. | Electronic storage battery diagnostic system |
US11740294B2 (en) | 2010-06-03 | 2023-08-29 | Midtronics, Inc. | High use battery pack maintenance |
US11650259B2 (en) | 2010-06-03 | 2023-05-16 | Midtronics, Inc. | Battery pack maintenance for electric vehicle |
US9419311B2 (en) | 2010-06-18 | 2016-08-16 | Midtronics, Inc. | Battery maintenance device with thermal buffer |
US9201120B2 (en) | 2010-08-12 | 2015-12-01 | Midtronics, Inc. | Electronic battery tester for testing storage battery |
JP2014514582A (en) * | 2011-05-11 | 2014-06-19 | イメジース テクノロジーズ アーペーエス | Method for fault diagnosis on solar modules |
JP2013088156A (en) * | 2011-10-14 | 2013-05-13 | Furukawa Electric Co Ltd:The | Secondary battery state detector and secondary battery state detection method |
US10429449B2 (en) | 2011-11-10 | 2019-10-01 | Midtronics, Inc. | Battery pack tester |
US9851411B2 (en) | 2012-06-28 | 2017-12-26 | Keith S. Champlin | Suppressing HF cable oscillations during dynamic measurements of cells and batteries |
US11548404B2 (en) | 2012-06-28 | 2023-01-10 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
US11325479B2 (en) | 2012-06-28 | 2022-05-10 | Midtronics, Inc. | Hybrid and electric vehicle battery maintenance device |
US11926224B2 (en) | 2012-06-28 | 2024-03-12 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
US10046649B2 (en) | 2012-06-28 | 2018-08-14 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
US9244100B2 (en) | 2013-03-15 | 2016-01-26 | Midtronics, Inc. | Current clamp with jaw closure detection |
US9312575B2 (en) | 2013-05-16 | 2016-04-12 | Midtronics, Inc. | Battery testing system and method |
JP2015081800A (en) * | 2013-10-21 | 2015-04-27 | カルソニックカンセイ株式会社 | Battery parameter estimation device and method |
US10175303B2 (en) | 2013-10-21 | 2019-01-08 | Calsonic Kansei Corporation | Battery parameter estimation device and parameter estimation method |
WO2015059879A1 (en) * | 2013-10-21 | 2015-04-30 | カルソニックカンセイ株式会社 | Battery parameter estimation device and parameter estimation method |
US10843574B2 (en) | 2013-12-12 | 2020-11-24 | Midtronics, Inc. | Calibration and programming of in-vehicle battery sensors |
US9923289B2 (en) | 2014-01-16 | 2018-03-20 | Midtronics, Inc. | Battery clamp with endoskeleton design |
US10473555B2 (en) | 2014-07-14 | 2019-11-12 | Midtronics, Inc. | Automotive maintenance system |
US10222397B2 (en) | 2014-09-26 | 2019-03-05 | Midtronics, Inc. | Cable connector for electronic battery tester |
US10317468B2 (en) | 2015-01-26 | 2019-06-11 | Midtronics, Inc. | Alternator tester |
JPWO2017056981A1 (en) * | 2015-09-28 | 2018-07-19 | Necエナジーデバイス株式会社 | Lithium ion secondary battery, method for producing the same, and method for evaluating the same |
US9966676B2 (en) | 2015-09-28 | 2018-05-08 | Midtronics, Inc. | Kelvin connector adapter for storage battery |
WO2017056981A1 (en) * | 2015-09-28 | 2017-04-06 | Necエナジーデバイス株式会社 | Lithium ion secondary battery, method for producing same, and method for evaluating same |
US10608353B2 (en) | 2016-06-28 | 2020-03-31 | Midtronics, Inc. | Battery clamp |
US11054480B2 (en) | 2016-10-25 | 2021-07-06 | Midtronics, Inc. | Electrical load for electronic battery tester and electronic battery tester including such electrical load |
US11513160B2 (en) | 2018-11-29 | 2022-11-29 | Midtronics, Inc. | Vehicle battery maintenance device |
US11566972B2 (en) | 2019-07-31 | 2023-01-31 | Midtronics, Inc. | Tire tread gauge using visual indicator |
US11545839B2 (en) | 2019-11-05 | 2023-01-03 | Midtronics, Inc. | System for charging a series of connected batteries |
US11668779B2 (en) | 2019-11-11 | 2023-06-06 | Midtronics, Inc. | Hybrid and electric vehicle battery pack maintenance device |
US11474153B2 (en) | 2019-11-12 | 2022-10-18 | Midtronics, Inc. | Battery pack maintenance system |
US11973202B2 (en) | 2019-12-31 | 2024-04-30 | Midtronics, Inc. | Intelligent module interface for battery maintenance device |
US11486930B2 (en) | 2020-01-23 | 2022-11-01 | Midtronics, Inc. | Electronic battery tester with battery clamp storage holsters |
Also Published As
Publication number | Publication date |
---|---|
JP2536257B2 (en) | 1996-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0495788A (en) | Judging method of life for stationary lead accumulator | |
Oldenburger et al. | Investigation of the low frequency Warburg impedance of Li-ion cells by frequency domain measurements | |
US6313607B1 (en) | Method and apparatus for evaluating stored charge in an electrochemical cell or battery | |
US8487628B2 (en) | System for smart management of an electrochemical battery | |
Itagaki et al. | In-situ EIS to determine impedance spectra of lithium-ion rechargeable batteries during charge and discharge cycle | |
CN109633454B (en) | Method for realizing on-line estimation of equivalent temperature of lithium ion battery | |
US6556019B2 (en) | Electronic battery tester | |
JP6019368B2 (en) | Power storage device state estimation method | |
JP3162030B2 (en) | Battery capacity measuring method and battery capacity measuring device using voltage response signal of pulse current | |
US7197487B2 (en) | Apparatus and method for estimating battery state of charge | |
CN104462847B (en) | A kind of internal temperature of battery real-time predicting method | |
JP2008522152A (en) | Battery state and parameter estimation system and method | |
JP2002525793A (en) | Method and apparatus for determining battery characteristics from complex impedance / admittance | |
JP2011158444A (en) | Method and device for detecting remaining capacity of secondary battery | |
CN106842050A (en) | A kind of battery temperature Forecasting Methodology and device | |
CN102544551A (en) | Fuel cell evaluator and fuel cell evaluation method | |
Zhang et al. | On-line measurement of internal resistance of lithium ion battery for EV and its application research | |
Raijmakers et al. | A new method to compensate impedance artefacts for Li-ion batteries with integrated micro-reference electrodes | |
CN113242977A (en) | Estimating SOH and SOC of electrochemical element | |
JP3752879B2 (en) | Rechargeable battery remaining capacity estimation method | |
JP2000014019A (en) | Battery discharge value measurement device | |
JP2008522153A (en) | Joint battery condition and parameter estimation system and method | |
WO2013184132A1 (en) | Battery state of charge measurement system | |
JP2639219B2 (en) | Lead-acid battery life judgment method | |
CN106645953A (en) | Lithium battery internal resistance value estimation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080708 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090708 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |