[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH049424B2 - - Google Patents

Info

Publication number
JPH049424B2
JPH049424B2 JP62195657A JP19565787A JPH049424B2 JP H049424 B2 JPH049424 B2 JP H049424B2 JP 62195657 A JP62195657 A JP 62195657A JP 19565787 A JP19565787 A JP 19565787A JP H049424 B2 JPH049424 B2 JP H049424B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
housing
gas
membrane bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62195657A
Other languages
Japanese (ja)
Other versions
JPS6440059A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19565787A priority Critical patent/JPS6440059A/en
Publication of JPS6440059A publication Critical patent/JPS6440059A/en
Publication of JPH049424B2 publication Critical patent/JPH049424B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、体外血液循環において、血液中の二
酸化炭素を除去し、酸素を添加するための中空糸
膜型人工肺に関する。 [従来の技術] 従来、人工肺は、大別して、気泡型と膜型に分
類される。 積層型、コイル型、中空糸型等の膜型人工肺
は、気泡型人工肺に比較して、溶血、蛋白質変
性、血液凝固等の血液損傷が少ない点で優れてお
り、近年かなり普及してきた。 さらに、膜型人工肺のうち多孔質ガス交換膜を
用いたものが高いガス交換能を有することから広
く用いられている。このような、多孔質ガス交換
膜を用いた膜型人工肺としては、例えば、特開昭
54−160098号公報,特開昭57−136456号公報など
がある。従来の膜型人工肺を第13図に示す。こ
の人工肺では、中空糸膜60の内部を血液が流
れ、中空糸膜60の外部とハウジング62の間を
ガスが流れる。ガスのチヤネリングを防ぐため
に、人工肺のハウジングの両端の中空糸膜束を接
着する隔壁部分では中空糸膜束の径を広げて中空
糸膜間の間〓を大きくし、中空糸膜束の長手方向
の中間部では、中空糸膜束の外径を小さくして中
空糸膜の全体にガスが行き渡るようになつてい
る。 [発明が解決しようとする問題点] しかし、第13図に示した人工肺では、中空糸
膜束中の中空糸膜の分散が十分でない場合、ある
いは人工肺を小型にするため内径の細いハウジン
グ内に中空糸膜束を収納し中空糸膜の充填率が高
い場合などガス流入口64より流入した酸素含有
ガスが全体の中空糸膜に接触せず、特に中空糸膜
束の中心部まで酸素含有ガスが流入しにくいため
酸素含有ガスが中空糸膜束の周縁部分を流れ中心
部の中空糸膜がガス交換に寄与しないという問題
点があつた。また、上記のような人工肺におい
て、中空糸膜束の内部まで酸素含有ガスが十分に
流通するようにするためには、ハウジング端部に
おける中空糸膜の充填率をかなり低くしなければ
ならず、このためには内径の大きなハウジングを
用いなければならず、人工肺全体が大型となり血
液のプライミングボリユームが多くなるという問
題点を有していた。 そこで、本件出願人は、大型のハウジングを用
いることなく、かつガス流入口より流入した酸素
含有ガスが、中空糸膜束の内部まで流入すること
ができ、ガス交換能の高い中空糸膜型人工肺とし
て、ハウジングと、該ハウジング内に挿入された
多数の多孔質中空糸膜からなる中空糸膜束と、該
中空糸膜束の両端部を前記ハウジングの両端部に
液密に固定する隔壁と、前記ハウジングの端部付
近に設けられ、前記中空糸膜の外面と前記ハウジ
ングの内面と隔壁とにより形成される空間に連通
するガス流入口およびガス流出口と、前記ハウジ
ングの端部に取り付けられた血液流入口と血液流
出口とを有する中空糸膜型人工肺において、少な
くとも前記ガス流入口付近の中空糸膜束内に、中
空糸膜束内部方向に延びるガス誘導部材を設けた
中空糸膜型人工肺を提案している。 上記人工肺により、大型のハウジングを用いる
ことなく、かつガス流入口より流入した酸素含有
ガスが、中空糸膜束の内部まで流入することがで
き、ガス交換能の高い中空糸膜型人工肺を得るこ
とができ、十分な効果を有するが、上記人工肺内
部には、ガス誘導部材が収納されているため、そ
のガス誘導部材の端部が隔壁に埋め込まれている
場合、隔壁部においてピンホールが発生し易く、
血液が漏出するおそれがあつた。 そこで、本発明は、大型のハウジングを用いる
ことなく、かつガス流入口より流入した酸素含有
ガスが、中空糸膜束の内部まで流入することがで
き、高いガス交換能を有するとともに、ガス誘導
部材が収納されてても、隔壁部においてピンホー
ルが発生がなく、血液が漏出するおそれのない中
空糸膜型人工肺を提供することにある。 [問題点を解決するための手段] 上記本発明の目的を達成するものは、ハウジン
グと、該ハウジング内に挿入された多数の多孔質
中空糸膜からなる中空糸膜束と、該中空糸膜束の
両端部を前記ハウジングの両端部に液密に固定す
る隔壁と、前記ハウジングの両端部付近にそれぞ
れ設けられ、前記中空糸膜の外面と前記ハウジン
グの内面と隔壁とにより形成される空間に連通す
るガス流入口およびガス流出口と、前記ハウジン
グの両端部にそれぞれ取り付けられた血液流入口
と血液流出口と、前記ガス流入口と連通し、かつ
前記中空糸膜束と前記ハウジングの内面とが接触
しない環状部分とを有し、さらに、少なくとも、
前記環状部分が設けられている部分の前記中空糸
膜束内に、該中空糸膜束の周縁部より内部方向に
延びるガス誘導部材を有し、さらに、該ガス誘導
部材の端部は、前記ガス流入口側の隔壁の外端面
に至らないように設けられている中空糸膜型人工
肺である。 さらに、前記ガス誘導部材の端部は、前記ガス
流入口側の隔壁の外端面に至らないように収納さ
れ、かつ該隔壁により保持されていることが好ま
しい。そして、前記中空糸膜は、内径100〜
1000μm、肉厚5〜80μmでかつ直径100Å〜5μm
の微細孔を有するものであることが好ましい。そ
して、前記ガス誘導部材は、例えば平面状のもの
である。また、前記ガス誘導部材は、例えば曲面
状のものである。さらに、前記ガス誘導部材は、
厚さが30〜400μmであることが好ましい。さら
に、前記ガス誘導部材は、網目構造物であること
が好ましい。さらに、前記ガス誘導部材は、網目
の大きさが20〜400メツシユであることが好まし
い。そして、前記ガス誘導部材は、例えば中空糸
膜束の周縁部内部より中空糸膜束のほぼ中心を通
り他の周縁部内部まで延びているものである。ま
た、前記ガス誘導部材は、複数設けられていても
よい。また、前記ガス誘導部材は、例えば中空糸
膜束周縁部内部より中空糸膜束の中心方向に延び
る複数のガス誘導部材よりなるものである。ま
た、前記複数のガス誘導部材は、例えばほぼ等間
隔に離間し、周縁部内部より中空糸膜束のほぼ中
心方向に延びるものである。さらに、上記中空糸
膜型人工肺は、前記中空糸膜束と前記ハウジング
の内面とが接触しない環状部分と連続し、かつ、
前記中空糸膜束の外周と前記ハウジングの内面と
が接触する環状部分を有していることが好まし
い。さらに、前記ガス誘導部材は、前記中空糸膜
束と前記ハウジングの内面とが接触しない環状部
分が設けられている部分の中空糸膜束部分を越
え、前記中空糸膜束の外周とハウジングの内面と
が接触する環状部分にまで至るように設けられて
おり、終端は、前記ハウジングの中間部分にまで
至らないように設けられていることが好ましい。 本発明の膜型人工肺を図面に示した実施例を用
いて説明する。 第1図は本発明の一実施例の中空糸膜型人工肺
の一部断面図であり、第2図は、第1図に示した
中空糸膜型人工肺におけるガス流入口13部分に
て切断した断面図である。 本発明の中空糸膜型人工肺1は、ハウジング6
と、ハウジング6内に挿入された多数の多孔質中
空糸膜からなる中空糸膜束4と、中空糸膜束4の
両端部をハウジング6の両端部に液密に固定する
隔壁10,11と、ハウジング6の両端部付近に
それぞれ設けられ、中空糸膜の外面とハウジング
6の内面と隔壁とにより形成される空間に連通す
るガス流入口13およびガス流出口14と、ハウ
ジング6の両端部にそれぞれ取り付けられた血液
流入口29と血液流出口28と、ガス流入口13
と連通し、かつ中空糸膜束4とハウジング6の内
面とが接触しない環状部分40とを有し、さら
に、少なくとも、環状部分40が設けられている
部分の中空糸膜束内に、中空糸膜束4の周縁部よ
り内部方向に延びるガス誘導部材3を有し、さら
に、ガス誘導部材3の端部は、ガス流入口13側
の隔壁10の外端面35に至らないように設けら
れている。 本発明の人工肺1に用いられる中空糸膜2は、
多孔質膜であり、中空糸膜壁に貫通する多数の微
細孔を有している。ガス交換膜としては、肉厚5
〜80μm、好ましくは10〜60μm、空孔率20〜80
%、好ましくは30〜60%、また微細の孔径は0.01
〜5μm、好ましくは0.01〜1μm程度、内径100〜
1000μm、好ましくは100〜300μmのものが好適
に使用される。 中空糸膜2の材質としては、ポリプロピレン、
ポリエチレン、ポリテトラフルオロエチレン、ポ
リスルホン、ポリアクリロニトリル、セルロース
アセテート等の疎水性高分子が使用でき、好まし
くは、疎水性高分子であり、特に好ましくは、ポ
リオレフイン系樹脂であり、より好ましくは、ポ
リプロピレンであり、延伸法または固液相分離法
などにより微細孔を形成させたポリプロピレンが
望ましい。 中空糸膜型人工肺1として、第1図にその一実
施態様である中空糸膜型人工肺の組み立て状態を
示してある。この中空糸膜型人工肺1は、筒状体
のハウジング6と、このハウジング6内全体に広
がつて中空糸膜2が10000〜70000本収納されてい
る。そして、この中空糸膜2は、その壁内に中空
糸膜の内部と外部を連通するガス流路を形成する
多数の微細孔を有しており、中空糸膜2の両端部
は、それぞれの開口が閉塞されない状態で隔壁1
0,11によりハウジング6の端部に液密に固着
されている。そして、この隔壁10,11によ
り、ハウジング6内部は、中空糸膜外壁とハウジ
ング6の内壁と隔壁10,11により形成される
酸素室12と、中空糸膜内部に形成される血液流
通用空間とに区画される。 そして、ハウジング6には、その一方の端部付
近には酸素を含むガスの流入口13が、他端付近
には、その流出口14が設けられている。さら
に、隔壁11の外側には、血液流入口29と環状
凸部25を有する流路形成部材19がネジリング
23により固定されており、また隔壁10の外側
には、血液流出口28と環状凸部24を有する流
路形成部材18がネジリング22により固定され
ている。そして、流路形成部材18,19の凸部
24,25は、隔壁10,11に当接しており、
この凸部24,25の外側周縁には、ネジリング
22,23のそれぞれに設けられた少なくとも2
つの孔30,31,32,33,の一方よりシー
ル剤が充填され、流路形成部材18,19を隔壁
10,11に液密に固着している。 上記説明において、ネジリングを用いたものに
て説明したが、これに限らず流路形成部材を直接
ハウジングに高周波、超音波などを用いて融着さ
せてもよく、また接着剤などを用いて接着しても
よい。さらに、上記シール剤の代わりに、シリコ
ーンゴムなどで形成したOリングを用いて、流路
形成部材を隔壁に液密状態にシールしてもよい。 そして、人工肺1のガス流入口13付近の中空
糸膜束4内に、中空糸膜束4の周縁付近より少な
くとも中空糸膜束4の内部方向に延びるガス誘導
部材3が、ガス誘導部材3の端部36が、ガス流
入口13側の隔壁10の外端面35に至らないよ
うに収納されている。第2図に示す実施例では、
ガス誘導部材3は、平面形状のものであり、ほぼ
等間隔離間した中空糸膜束4の周縁部より中空糸
膜束4の中心部付近まで延びる4枚のガス誘導部
材により形成されている。ガス誘導部材3の設置
状態の簡略図を第3図に示す。4枚のガス誘導部
材により形成されるガス誘導部材3は、中空糸膜
束4の中心部分にて、相互に接触しない部分を有
している。このようにすることにより、ガス誘導
部材部分だけをガスが流れ、ガス誘導部材から離
れた位置にある中空糸膜周辺にガスが拡散しなく
なることを防止でき好ましい。 また、ガス誘導部材は、4枚に限らず、1枚で
あつてもよく、さらには、2枚以上であつてよ
い。より好ましくは、3枚以上のものをほぼ等間
隔離間した中空糸膜束4の周縁部より中空糸膜束
4の中心部付近まで延びるように設けることであ
る。 また、ガス誘導部材の形状としては、平面形状
に限られず、曲面形状であつてもよい。 ガス誘導部材3としては、ポリオレフイン(例
えば、ポリエチレン、ポリプロピレン)、ポリエ
ステル、ポリ塩化ビニルなどの合成樹脂、鉄、ス
テンレスなどの金属、セラミツクなどにより形成
した板状のものであつてもよいが、好ましくはガ
スの流入抵抗が少ない網目構造を有するものであ
る。網目構造のものとして、例えばポリエステル
繊維、ポリアミド繊維、ポリプロピレン繊維など
の合成繊維を用いたメツシユまたは不織布、ステ
ンレスなどの金属線、炭素繊維、ガラス繊維、多
孔質セラミツクなどにより形成され、網目の大き
さが20〜400メツシユ、好ましくは20〜100メツシ
ユであり、厚さが30〜400μm、好ましくは150〜
300μm、中空糸膜束4の軸方向の長さが、中空
糸膜の有効長の10〜80%、好ましくは20〜40%で
ある。 そして、人工肺1は、第1図および第2図に示
すように、中空糸膜束4の外周がハウジング6と
接触しない環状部分40を有しており、ガス流入
口は、この環状部分40に連通している。さら
に、人工肺1は、この中空糸膜束4の外周がハウ
ジング6と接触しない環状部分40と連続し、か
つ、中空糸膜束4の外周とハウジングの内面とが
接触する環状部分を有している。 そして、ガス誘導部材3は、第1図および第2
図に示すように、中空糸膜束4とハウジング6の
内面とが接触しない環状部分40が取り囲む部分
の中空糸膜束内に、少なくとも存在するように設
けられている。このように、ガス誘導部材3を、
中空糸膜束4とハウジング6の内面とが接触しな
い環状部分が取り囲む部分の中空糸膜束内に設け
られているので、ガス流入口3より流入したガス
は、環状部分40内、言い換えれば環状空間内
に、流入し、環状部分40内全体に分散する。こ
のため、流入したガスは、中空糸膜束4とハウジ
ング6の内面とが接触しない環状部分40が取り
囲む部分の中空糸膜束の周縁部に、確実に接触す
る。さらに、ガス誘導部材3は、環状部分40が
取り囲む部分の中空糸膜束内に設けられているの
で、ガス誘導部材3にガスが容易に接触し、中空
糸膜束の内部に確実にガスを誘導する。第1図に
示す人工肺では、ガス誘導部材3は、ガス流入口
13付近にのみ設けられている。具体的には、第
1図に示すように、ガス誘導部材3は、一端が隔
壁10の内部に保持され、他端が、中空糸膜束4
とハウジング6の内面とが接触しない環状部分4
0を越え、中空糸膜束4の外周とハウジングの内
面とが接触する環状部分にまで至るように設けら
れており、他端は、ハウジング6の中間部分であ
る中空糸膜束4の拘束部に至らないように設けら
れている。上記のようにガス誘導部材を設けるこ
とが、ガス誘導部材3によるガスの短絡通路が形
成することを確実に防止できるので好ましいが、
ガス誘導部材3が、ハウジング6の中間部分であ
る中空糸膜束4の拘束部まで、延びるものとして
よい。さらに、ガス流出口14付近まで延びるも
のとしてよい。 そして、ガス誘導部材3は、第1図に示した実
施例のように、隔壁10内にガス誘導部材3の端
部36が、ガス流入口13側の隔壁10の外端面
35に至らないように収納されている。このよう
にすることにより、隔壁10の外端面35付近
に、ガス誘導部材3の端部36が存在せず、中空
糸膜のみとなるので、中空糸膜をガス誘導部材に
より疎外されることなく均一に分散することがで
き、よつて、中空糸膜をハウジングに固定する隔
壁の形成に使用されるポツテイング剤を中空糸膜
束の中空糸膜間に確実に流入することができ、隔
壁部分でのピンホールの発生を防止することがで
きる。 さらに、ガス誘導部材3は、第1図に示した実
施例のように、隔壁10内にガス誘導部材3の端
部36が、ガス流入口13側の隔壁10の外端面
35に至らないように、かつ隔壁10内部にその
端部36が埋め込まれ、保持されていることが好
ましい。ガス誘導部材3の端部36を隔壁10に
より保持させる方法としては、中空糸膜束内に、
ガス誘導部材3の端部が中空糸膜の端部より中空
糸膜の内部側となるように収納したものを、ハウ
ジング内に挿入し、中空糸膜束の端部にて中空糸
膜を分散させた後、ハウジング6の端部に中空糸
膜束4とともにガス誘導部材3の端部36をポツ
テイング剤(例えば、ポリウレタン)により固定
し、このポツテイング剤をガス誘導部材3が存在
しない部分にてスライスして、隔壁10を形成す
ることにより行うことができる。また、中空糸膜
束内への、ガス誘導部材の挿入は、ハウジング内
に中空糸膜束を挿入した後に行つてもよい。この
ように、ガス誘導部材3の端部を隔壁10内に埋
め込むことにより、ガス誘導部材3の移動を防止
することができる。 上記説明では、隔壁10により、ガス誘導部材
3の端部が保持される場合について説明したが、
これに限らず、ガス誘導部材3は、隔壁10によ
り保持されないものであつてもよい。この場合、
ガス誘導部材3の端部は、ハウジングと中空糸膜
の外壁とにより形成されるガス室内に位置するこ
とになる。 そして、ガス誘導部材3を設けたことによりガ
ス誘導部材3が設けられている部分の中空糸膜の
充填率が、50%以上であつても、ガスはほぼ中空
糸膜束4の中心まで流入することができ、ガス交
換効率を高めることができる。中空糸膜の充填率
とは、ハウジング6の内径をRとし、中空糸膜の
外径をr,中空糸膜の本数をnとしたとき、 充填率=中空糸膜の断面積の総和/ハウジング
の内断面積×100であり、 充填率=n・1/4πr2/1/4R2×100 により求められる。 上記説明では、ガス誘導部材3として、4枚の
平面形状をしたものを用いた場合を例として、説
明したが、これに限らず種々の形態が考えられ
る。例えば、第4図ないし第11図にガス誘導部
材3の他の形態を有する実施例について説明す
る。第4図ないし第11図は、ガス流入口13付
近にて、切断した中空糸膜型人工肺の断面図であ
る。なお、中空糸膜を省略してある。 第4図に示すものは、ガス誘導部材3は、1枚
の平面形状をしたガス誘導部材であり、中空糸膜
束4の周縁部内部より中空糸膜束4のほぼ中心
(ハウジング6の中心)を通り他の周縁部内部ま
で延びているものである。ちようど、中空糸膜束
4を2つに区分するように設けられている。ガス
誘導部材の材質等については、上述したものと同
じである。 第5図に示すものでは、ガス誘導部材3は、中
空糸膜束4周縁部内部より中空糸膜束4の中心方
向(ハウジング6の中心方向)に延びる3枚数の
ガス誘導部材よりなるものである。また、3枚の
ガス誘導部材は、ほぼ等間隔に離間した周縁部内
部より中空糸膜束4のほぼ中心方向に延びている
ものである。 第6図に示すものでは、ガス誘導部材3は、中
空糸膜束4周縁部内部より中空糸膜束4の中心方
向(ハウジング6の中心方向)に延びる平面形状
の8枚数のガス誘導部材よりなるものである。ま
た、8枚のガス誘導部材は、ほぼ等間隔に離間し
た周縁部内部より中空糸膜束4のほぼ中心方向に
延びているものである。 第7図に示すものでは、ガス誘導部材3は、3
枚の平面形状をしたガス誘導部材よりなり、各ガ
ス誘導部材は、ほぼ等間隔に離間した周縁部内部
より中空糸膜束4の内部方向でかつ隣合うガス誘
導部材の端部方向に延びているものである。 第8図に示すものは、ガス誘導部材3は、3枚
の平面形状をしたガス誘導部材であり、1枚のガ
ス誘導部材は、中空糸膜束4の周縁部内部より中
空糸膜束4のほぼ中心(ハウジング6の中心)を
通り他の周縁部内部まで延びており、他の2枚の
ガス誘導部材は、中空糸膜束4の中心部分を通る
ガス誘導部材より若干離間した位置に平行に設け
られている。 第9図に示すものでは、ガス誘導部材3は、中
空糸膜束4周縁部内部より中空糸膜束4の中心方
向(ハウジング6の中心方向)に延びる曲面形状
の4枚のガス誘導部材よりなるものである。ま
た、4枚のガス誘導部材は、ほぼ等間隔に離間し
た周縁部内部より中空糸膜束4のほぼ中心方向に
延びているものである。 第10図に示すものでは、ガス誘導部材3は、
中空糸膜束4周縁部内部より中空糸膜束4の中心
方向(ハウジング6の中心方向)に延びさらに中
空糸膜束4の周縁部方向に延びる曲面形状の2枚
数のガス誘導部材よりなるものである。また、2
枚のガス誘導部材は、ほぼ等間隔に離間した周縁
部内部より中空糸膜束4のほぼ中心方向に延びさ
らに中空糸膜束4のほぼ等間隔離間した周縁部ま
で延びているものである。第10図のガス誘導部
材3の設置状態の簡略図を第13図に示す。 第11図に示すものでは、ガス誘導部材3は、
中空糸膜束4周縁部内部より1枚のガス誘導部材
を、渦巻き状に中空糸膜束4の中心部分(ハウジ
ング6の中心部分)に至るように設けたものであ
る。 次に、本発明の実施例を挙げて説明する。 実施例 1 長さ170mm、端部内径124mm、中間部内径92mmの
ポリカーボネート製ハウジングに、内径200μm、
肉厚50μm、空孔率35%、水銀圧入法により測定
した平均孔径600Å、長さ約217mmのポリプロピレ
ン製中空糸膜約62000本よりなる中空糸膜束内に、
第2図ないし第3図に示すような平面形状をした
ポリエステル製の70メツシユの網目構造を有する
ガス誘導部材(中空糸膜束の中心方向の長さ30
mm、中空糸膜束の軸方向の長さ50mmのもの)を4
枚ほぼ等間隔離間して、中空糸膜束の周縁部内部
より中空糸膜束のほぼ中心方向に延びるように、
かつ中空糸膜束の端部よりガス誘導部材の端部が
約20mm中空糸膜束の中心側となるように挿入し、
中空糸膜束の端部にて中空糸膜を分散し、中空糸
膜束の端部に目止め剤を充填した容器を被嵌し、
かつこの容器をハウジングの端部に固定した。さ
らに、ハウジングのガス流入口よりポツテイング
剤を注入し、中空糸膜束およびガス誘導部材をハ
ウジングに固定し、上記容器を取り外した後、ガ
ス誘導部材が存しない部分にて、ポツテイング剤
をスライスし、隔壁を形成し、ガス誘導部材を有
していない反対側の隔壁も同様に形成し、第1図
に示すような構造を有する中空糸膜型人工肺を作
成した。ガス誘導部材の中空糸膜束の軸方向の有
効長(隔壁に埋め込まれていない部分の長さ)
は、約40mmであつた。中空糸膜の有効長(隔壁に
埋め込まれていない部分の長さ)は、約140mmで
あつた。 また、この人工肺の膜面積約5.4m2である。こ
の人工肺のガス流入口付近における中空糸膜の充
填率は、50%であつた。 実施例 2 長さ170mm、端部内径124mm、中間部内径92mmの
ポリカーボネート製ハウジングに、内径200μm、
肉厚50μm、空孔率35%、水銀圧入法により測定
した平均孔径600Å、長さ約217mmのポリプロピレ
ン製中空糸膜約62000本よりなる中空糸膜束内に、
第10図および第12図に示すような曲面形状を
したポリエステル製の70メツシユの網目構造を有
するガス誘導部材(中空糸膜束の中心方向の長さ
30mm、中空糸膜束の軸方向の長さ50mmのもの)を
2枚、中空糸膜束の周縁部内部より中空糸膜束の
ほぼ中心方向に延びるように、かつ中空糸膜束の
端部よりガス誘導部材の端部が約20mm中空糸膜束
の中心側となるように挿入し、中空糸膜束の端部
にて中空糸膜を分散し、中空糸膜束の端部に目止
め剤を充填した容器を被嵌し、かつこの容器をハ
ウジングの端部に固定した。さらに、ハウジング
のガス流入口よりポツテイング剤を注入し、中空
糸膜束およびガス誘導部材をハウジングに固定
し、上記容器を取り外した後、ガス誘導部材が存
在しない部分にて、ポツテイング剤をスライス
し、隔壁を形成し、ガス誘導部材を有していない
反対側の隔壁も同様に形成し、本発明の中空糸膜
型人工肺を作成した。ガス誘導部材の中空糸膜束
の軸方向の有効長(隔壁に埋め込まれていない部
分の長さ)は、約40mmであつた。中空糸膜の有効
長(隔壁に埋め込まれていない部分の長さ)は、
約140mmであつた。 また、この人工肺の膜面積約5.4m2である。こ
の人工肺のガス流入口付近における中空糸膜の充
填率は、50%であつた。 比較例 1 長さ170mm、端部内径124mm、中間部内径92mmの
ポリカーボネート製ハウジングに、内径200μm、
肉厚50μm、空孔率35%、水銀圧入法により測定
した平均孔径600Å、長さ約217mmのポリプロピレ
ン製中空糸膜約62000本よりなり、ガス流入口付
近での中空糸膜束の外径が約100mmである中空糸
膜束をハウジングに収納し、膜面積約5.4m2を有
する第13図に示すような中空糸膜型人工肺を作
成した。中空糸膜の有効長(隔壁に埋め込まれて
いない部分の長さ)は、約140mmであつた。 この人工肺のガス流入口付近における中空糸膜
の充填率は、50%であつた。 [実験 1] 上記実施例1,2および比較例の人工肺を用い
て、血液ガス交換能を測定した。 測定は、人工肺の血液流入口より新鮮ヘパリン
化牛血(ヘマトクリツト値を生理食塩水により35
%に調整、ヘモグロビン濃度12±1g/dl、ベー
ス・エクセス0±2mEq/、酸素飽和度65±
5%、炭酸ガス分圧45±5mmHg、温度37±2℃)
をシングルパスで5.4/minの流量で流し、ガ
ス流入口より、純酸素を5.4/mの流量で流し、
人工肺の血液流入口および血液流出口での血液の
PH、炭酸ガス分圧(pCO2)、酸素ガス分圧
(pO2)を血液ガス測定装置(Radiometer社製、
ABL30)により測定し、その結果より血液ガス
交換速度(ガス交換能)を算出した。その結果
を、表1に示す。
[Industrial Application Field] The present invention relates to a hollow fiber membrane oxygenator for removing carbon dioxide from blood and adding oxygen in extracorporeal blood circulation. [Prior Art] Conventionally, artificial lungs are broadly classified into bubble type and membrane type. Membrane oxygenators such as stacked, coil, and hollow fiber oxygenators are superior to bubble oxygenators in that they cause less blood damage such as hemolysis, protein denaturation, and blood coagulation, and have become quite popular in recent years. . Furthermore, among membrane oxygenators, those using a porous gas exchange membrane are widely used because they have a high gas exchange ability. As a membrane oxygenator using a porous gas exchange membrane, for example,
54-160098, JP-A-57-136456, etc. A conventional membrane oxygenator is shown in FIG. In this artificial lung, blood flows inside the hollow fiber membrane 60, and gas flows between the outside of the hollow fiber membrane 60 and the housing 62. In order to prevent gas channeling, the diameter of the hollow fiber membrane bundles is increased at the partition wall where the hollow fiber membrane bundles are bonded at both ends of the oxygenator housing to increase the gap between the hollow fiber membranes. In the middle of the direction, the outer diameter of the hollow fiber membrane bundle is made small so that gas can spread throughout the hollow fiber membranes. [Problems to be Solved by the Invention] However, in the oxygenator shown in FIG. 13, if the hollow fiber membranes in the hollow fiber membrane bundle are not sufficiently dispersed, or if the housing has a narrow inner diameter in order to make the oxygenator smaller, When a hollow fiber membrane bundle is housed in a hollow fiber membrane and the filling rate of the hollow fiber membrane is high, the oxygen-containing gas flowing in from the gas inlet 64 does not come into contact with the entire hollow fiber membrane, and the oxygen-containing gas does not reach the center of the hollow fiber membrane bundle. Since it is difficult for the contained gas to flow in, there is a problem in that the oxygen-containing gas flows along the periphery of the hollow fiber membrane bundle, and the hollow fiber membranes in the center do not contribute to gas exchange. In addition, in the oxygenator described above, in order to ensure that the oxygen-containing gas sufficiently flows to the inside of the hollow fiber membrane bundle, the filling rate of the hollow fiber membranes at the end of the housing must be made quite low. For this purpose, a housing with a large inner diameter must be used, resulting in the problem that the entire oxygenator becomes large and the priming volume of blood increases. Therefore, the applicant proposed a hollow fiber membrane type artificial membrane with high gas exchange ability, which allows the oxygen-containing gas flowing in from the gas inlet to flow into the interior of the hollow fiber membrane bundle without using a large housing. The lungs include a housing, a hollow fiber membrane bundle consisting of a large number of porous hollow fiber membranes inserted into the housing, and a partition wall that fluid-tightly fixes both ends of the hollow fiber membrane bundle to both ends of the housing. , a gas inlet and a gas outlet that are provided near the end of the housing and communicate with a space formed by the outer surface of the hollow fiber membrane, the inner surface of the housing, and the partition wall; In a hollow fiber membrane oxygenator having a blood inlet and a blood outlet, a hollow fiber membrane is provided with a gas guiding member extending inward of the hollow fiber membrane bundle at least in the vicinity of the gas inlet. We are proposing a type of artificial lung. With the above oxygenator, oxygen-containing gas flowing from the gas inlet can flow into the hollow fiber membrane bundle without using a large housing, and a hollow fiber membrane oxygenator with high gas exchange capacity can be created. However, since a gas guide member is housed inside the oxygenator, if the end of the gas guide member is embedded in the partition wall, a pinhole may occur in the partition wall. is likely to occur,
There was a risk of blood leaking. Therefore, the present invention enables the oxygen-containing gas flowing in from the gas inlet to flow into the interior of the hollow fiber membrane bundle without using a large housing, has high gas exchange ability, and has a gas guiding member. To provide a hollow fiber membrane type oxygenator which does not generate pinholes in the partition wall even when the membrane is housed, and there is no risk of blood leakage. [Means for Solving the Problems] The object of the present invention described above is achieved by a housing, a hollow fiber membrane bundle consisting of a large number of porous hollow fiber membranes inserted into the housing, and the hollow fiber membranes. partition walls that liquid-tightly fix both ends of the bundle to both ends of the housing; and a space provided near both ends of the housing and formed by the outer surface of the hollow fiber membrane, the inner surface of the housing, and the partition wall. A gas inlet and a gas outlet that communicate with each other, a blood inlet and a blood outlet that are respectively attached to both ends of the housing, and communicate with the gas inlet and the hollow fiber membrane bundle and the inner surface of the housing. has an annular portion that does not contact, and further includes at least
A gas guiding member is provided in the hollow fiber membrane bundle in the portion where the annular portion is provided, and further, an end portion of the gas guiding member extends inward from the peripheral edge of the hollow fiber membrane bundle. This is a hollow fiber membrane oxygenator that is installed so as not to reach the outer end surface of the partition wall on the gas inlet side. Furthermore, it is preferable that the end portion of the gas guide member is housed so as not to reach the outer end surface of the partition wall on the gas inlet side, and is held by the partition wall. The hollow fiber membrane has an inner diameter of 100~
1000μm, wall thickness 5-80μm, and diameter 100Å-5μm
It is preferable that the material has micropores of . The gas guiding member is, for example, planar. Further, the gas guide member has, for example, a curved surface shape. Furthermore, the gas guiding member
Preferably, the thickness is 30 to 400 μm. Furthermore, it is preferable that the gas guide member has a network structure. Furthermore, it is preferable that the gas guiding member has a mesh size of 20 to 400 meshes. The gas guide member extends, for example, from the inside of the peripheral edge of the hollow fiber membrane bundle to the inside of another peripheral edge through approximately the center of the hollow fiber membrane bundle. Furthermore, a plurality of gas guide members may be provided. Further, the gas guiding member is, for example, a plurality of gas guiding members extending from inside the peripheral portion of the hollow fiber membrane bundle toward the center of the hollow fiber membrane bundle. Further, the plurality of gas guiding members are spaced apart from each other at approximately equal intervals, for example, and extend from inside the peripheral portion toward approximately the center of the hollow fiber membrane bundle. Further, in the hollow fiber membrane oxygenator, the hollow fiber membrane bundle and the inner surface of the housing are continuous with an annular portion that does not come into contact with each other, and
It is preferable that the outer periphery of the hollow fiber membrane bundle and the inner surface of the housing have an annular portion in contact with each other. Furthermore, the gas guiding member extends beyond a portion of the hollow fiber membrane bundle where an annular portion is provided where the hollow fiber membrane bundle and the inner surface of the housing do not come into contact with each other, and extends between the outer periphery of the hollow fiber membrane bundle and the inner surface of the housing. It is preferable that the housing is provided so as to reach an annular portion in contact with the housing, and the terminal end is provided so as not to reach an intermediate portion of the housing. The membrane oxygenator of the present invention will be explained using examples shown in the drawings. FIG. 1 is a partial sectional view of a hollow fiber membrane oxygenator according to an embodiment of the present invention, and FIG. 2 shows a gas inlet 13 in the hollow fiber membrane oxygenator shown in FIG. It is a cut sectional view. The hollow fiber membrane oxygenator 1 of the present invention has a housing 6
, a hollow fiber membrane bundle 4 consisting of a large number of porous hollow fiber membranes inserted into the housing 6 , and partition walls 10 and 11 that fix both ends of the hollow fiber membrane bundle 4 to both ends of the housing 6 in a fluid-tight manner. , a gas inlet 13 and a gas outlet 14 that are provided near both ends of the housing 6 and communicate with the space formed by the outer surface of the hollow fiber membrane, the inner surface of the housing 6, and the partition wall, and Blood inlet 29 and blood outlet 28 and gas inlet 13 are respectively attached.
The hollow fiber membrane bundle 4 has an annular portion 40 that communicates with the hollow fiber membrane bundle 4 and the inner surface of the housing 6 and does not come into contact with the inner surface of the housing 6. It has a gas guide member 3 extending inward from the peripheral edge of the membrane bundle 4, and furthermore, the end of the gas guide member 3 is provided so as not to reach the outer end surface 35 of the partition wall 10 on the gas inlet 13 side. There is. The hollow fiber membrane 2 used in the oxygenator 1 of the present invention is
It is a porous membrane and has many micropores penetrating the hollow fiber membrane wall. As a gas exchange membrane, the wall thickness is 5.
~80μm, preferably 10~60μm, porosity 20~80
%, preferably 30-60%, and the fine pore size is 0.01
~5μm, preferably about 0.01~1μm, inner diameter 100~
A thickness of 1000 μm, preferably 100 to 300 μm is suitably used. The material of the hollow fiber membrane 2 is polypropylene,
Hydrophobic polymers such as polyethylene, polytetrafluoroethylene, polysulfone, polyacrylonitrile, and cellulose acetate can be used, preferably hydrophobic polymers, particularly preferably polyolefin resins, and more preferably polypropylene. Polypropylene in which fine pores have been formed by a stretching method or a solid-liquid phase separation method is desirable. As a hollow fiber membrane type oxygenator 1, FIG. 1 shows an assembled state of a hollow fiber membrane type oxygenator which is one embodiment thereof. This hollow fiber membrane type oxygenator 1 includes a cylindrical housing 6 and 10,000 to 70,000 hollow fiber membranes 2 spread throughout the housing 6. This hollow fiber membrane 2 has a large number of micropores in its wall that form a gas flow path that communicates the inside and outside of the hollow fiber membrane, and both ends of the hollow fiber membrane 2 are connected to each other. Partition wall 1 with the opening not blocked
0 and 11, it is fixed to the end of the housing 6 in a liquid-tight manner. The partition walls 10 and 11 allow the inside of the housing 6 to be divided into an oxygen chamber 12 formed by the outer wall of the hollow fiber membrane, the inner wall of the housing 6, and the partition walls 10 and 11, and a blood circulation space formed inside the hollow fiber membrane. It is divided into The housing 6 is provided with an inlet 13 for a gas containing oxygen near one end, and an outlet 14 near the other end. Furthermore, a flow path forming member 19 having a blood inlet 29 and an annular protrusion 25 is fixed to the outside of the partition 11 with a screw ring 23, and a blood outlet 28 and an annular protrusion are attached to the outside of the partition 10. A flow path forming member 18 having a diameter of 24 is fixed by a screw ring 22 . The convex portions 24 and 25 of the flow path forming members 18 and 19 are in contact with the partition walls 10 and 11,
On the outer periphery of the convex portions 24 and 25, at least two
A sealant is filled from one of the holes 30, 31, 32, 33, and the flow path forming members 18, 19 are fixed to the partition walls 10, 11 in a liquid-tight manner. In the above explanation, the threaded ring is used, but the flow path forming member may be directly fused to the housing using high frequency waves, ultrasonic waves, etc., or may be bonded using an adhesive or the like. You may. Further, instead of the above sealant, an O-ring made of silicone rubber or the like may be used to liquid-tightly seal the flow path forming member to the partition wall. In the hollow fiber membrane bundle 4 near the gas inlet 13 of the oxygenator 1, a gas guide member 3 extending at least toward the inside of the hollow fiber membrane bundle 4 from near the periphery of the hollow fiber membrane bundle 4 is installed. The end portion 36 of the partition wall 10 is housed so as not to reach the outer end surface 35 of the partition wall 10 on the gas inlet 13 side. In the embodiment shown in FIG.
The gas guide member 3 has a planar shape, and is formed by four gas guide members extending from the peripheral edge of the hollow fiber membrane bundle 4 to the vicinity of the center of the hollow fiber membrane bundle 4 at approximately equal intervals. A simplified diagram of the installed state of the gas guide member 3 is shown in FIG. The gas guiding member 3 formed by four gas guiding members has a portion in the center of the hollow fiber membrane bundle 4 that does not come into contact with each other. By doing so, the gas flows only through the gas guiding member, and it is preferable to prevent the gas from diffusing around the hollow fiber membrane located at a position away from the gas guiding member. Further, the number of gas guiding members is not limited to four, and may be one, or even two or more. More preferably, three or more membranes are provided so as to extend from the periphery of the hollow fiber membrane bundle 4 to near the center of the hollow fiber membrane bundle 4 with approximately equal spacing. Further, the shape of the gas guiding member is not limited to a planar shape, but may be a curved shape. The gas guide member 3 may be a plate-shaped member made of synthetic resin such as polyolefin (for example, polyethylene, polypropylene), polyester, or polyvinyl chloride, metal such as iron or stainless steel, or ceramic, but is preferably has a network structure with low gas inflow resistance. Examples of mesh structures include mesh or nonwoven fabric using synthetic fibers such as polyester fibers, polyamide fibers, and polypropylene fibers, metal wires such as stainless steel, carbon fibers, glass fibers, porous ceramics, etc., and the size of the mesh is 20 to 400 meshes, preferably 20 to 100 meshes, and the thickness is 30 to 400 μm, preferably 150 to 400 μm.
300 μm, and the length of the hollow fiber membrane bundle 4 in the axial direction is 10 to 80%, preferably 20 to 40%, of the effective length of the hollow fiber membrane. As shown in FIGS. 1 and 2, the oxygenator 1 has an annular portion 40 in which the outer periphery of the hollow fiber membrane bundle 4 does not come into contact with the housing 6, and the gas inlet is provided through this annular portion 40. is connected to. Furthermore, the oxygenator 1 has an annular portion in which the outer periphery of the hollow fiber membrane bundle 4 is continuous with an annular portion 40 that does not come into contact with the housing 6, and in which the outer periphery of the hollow fiber membrane bundle 4 and the inner surface of the housing are in contact. ing. The gas guiding member 3 is shown in FIGS. 1 and 2.
As shown in the figure, the annular portion 40 that does not contact the hollow fiber membrane bundle 4 with the inner surface of the housing 6 is provided so as to exist at least in a portion of the hollow fiber membrane bundle surrounded by the annular portion 40 . In this way, the gas guiding member 3
Since the hollow fiber membrane bundle 4 and the inner surface of the housing 6 are not in contact with each other, the annular portion is provided in the surrounding portion of the hollow fiber membrane bundle, so that the gas flowing in from the gas inlet 3 flows into the annular portion 40, in other words, inside the annular portion. It flows into the space and is distributed throughout the annular portion 40 . Therefore, the inflowing gas reliably contacts the peripheral edge of the hollow fiber membrane bundle in the portion surrounded by the annular portion 40 where the hollow fiber membrane bundle 4 and the inner surface of the housing 6 do not come into contact. Furthermore, since the gas guiding member 3 is provided within the hollow fiber membrane bundle in the portion surrounded by the annular portion 40, the gas easily comes into contact with the gas guiding member 3, and gas is reliably introduced into the hollow fiber membrane bundle. Induce. In the artificial lung shown in FIG. 1, the gas guiding member 3 is provided only near the gas inlet 13. Specifically, as shown in FIG. 1, one end of the gas guiding member 3 is held inside the partition wall 10, and the other end is held within the hollow fiber membrane bundle 4.
The annular portion 4 does not come into contact with the inner surface of the housing 6.
0 and extends to the annular portion where the outer periphery of the hollow fiber membrane bundle 4 contacts the inner surface of the housing, and the other end is located at the restraining portion of the hollow fiber membrane bundle 4 which is the middle portion of the housing 6. It is designed to prevent this from happening. Providing the gas guide member as described above is preferable because it can reliably prevent the formation of a gas short-circuit path due to the gas guide member 3;
The gas guiding member 3 may extend to a restraining portion of the hollow fiber membrane bundle 4, which is an intermediate portion of the housing 6. Furthermore, it may extend to the vicinity of the gas outlet 14. As in the embodiment shown in FIG. It is stored in. By doing this, the end portion 36 of the gas guiding member 3 is not present near the outer end surface 35 of the partition wall 10, and only the hollow fiber membrane is present, so that the hollow fiber membrane is not alienated by the gas guiding member. The potting agent used to form the partition walls that fix the hollow fiber membranes to the housing can be dispersed uniformly, and the potting agent used to form the partition walls that fix the hollow fiber membranes to the housing can be reliably flowed between the hollow fiber membranes of the hollow fiber membrane bundle, and the potting agent used to form the partition walls that fix the hollow fiber membranes to the housing can be reliably flowed between the hollow fiber membranes of the hollow fiber membrane bundle. The occurrence of pinholes can be prevented. Furthermore, as in the embodiment shown in FIG. It is preferable that the end portion 36 is embedded and held inside the partition wall 10. As a method for holding the end portion 36 of the gas guiding member 3 by the partition wall 10, a method for holding the end portion 36 of the gas guiding member 3 by the partition wall 10 includes
The gas guiding member 3 housed in such a manner that the end thereof is closer to the inside of the hollow fiber membrane than the end of the hollow fiber membrane is inserted into the housing, and the hollow fiber membranes are dispersed at the end of the hollow fiber membrane bundle. After that, the end 36 of the gas guide member 3 is fixed to the end of the housing 6 together with the hollow fiber membrane bundle 4 with a potting agent (for example, polyurethane), and this potting agent is applied to the part where the gas guide member 3 is not present. This can be done by slicing to form the partition walls 10. Further, the gas guiding member may be inserted into the hollow fiber membrane bundle after the hollow fiber membrane bundle is inserted into the housing. By embedding the end portion of the gas guide member 3 within the partition wall 10 in this manner, movement of the gas guide member 3 can be prevented. In the above description, the case where the end portion of the gas guiding member 3 is held by the partition wall 10 has been described.
However, the gas guide member 3 may not be held by the partition wall 10. in this case,
The end of the gas guiding member 3 will be located within the gas chamber formed by the housing and the outer wall of the hollow fiber membrane. By providing the gas guide member 3, even if the filling rate of the hollow fiber membrane in the area where the gas guide member 3 is provided is 50% or more, the gas flows almost to the center of the hollow fiber membrane bundle 4. can improve gas exchange efficiency. The filling rate of the hollow fiber membrane is as follows: When the inner diameter of the housing 6 is R, the outer diameter of the hollow fiber membrane is r, and the number of hollow fiber membranes is n, the filling rate = total cross-sectional area of the hollow fiber membrane/housing The internal cross-sectional area of is x 100, and it is determined by the following formula: Filling rate = n・1/4πr 2 /1/4R 2 x 100. In the above description, an example is given in which four planar plates are used as the gas guiding member 3, but the present invention is not limited to this, and various other configurations are possible. For example, embodiments having other forms of the gas guide member 3 will be described with reference to FIGS. 4 to 11. 4 to 11 are cross-sectional views of the hollow fiber membrane oxygenator cut near the gas inlet 13. Note that the hollow fiber membrane is omitted. The gas guiding member 3 shown in FIG. ) and extends inside the other periphery. It is provided so as to divide the hollow fiber membrane bundle 4 into two. The material etc. of the gas guiding member are the same as those described above. In the one shown in FIG. 5, the gas guiding member 3 is composed of three gas guiding members extending from inside the peripheral edge of the hollow fiber membrane bundle 4 toward the center of the hollow fiber membrane bundle 4 (towards the center of the housing 6). be. Further, the three gas guide members extend approximately toward the center of the hollow fiber membrane bundle 4 from the inside of the peripheral portion spaced apart at approximately equal intervals. In the one shown in FIG. 6, the gas guiding member 3 is composed of eight planar gas guiding members extending from the inside of the peripheral edge of the hollow fiber membrane bundle 4 toward the center of the hollow fiber membrane bundle 4 (towards the center of the housing 6). It is what it is. Further, the eight gas guide members extend approximately toward the center of the hollow fiber membrane bundle 4 from inside the peripheral edge portions spaced at approximately equal intervals. In the one shown in FIG.
Each gas guide member extends from the inside of the periphery at approximately equal intervals toward the inside of the hollow fiber membrane bundle 4 and toward the ends of the adjacent gas guide members. It is something that exists. In the gas guide member 3 shown in FIG. 8, the gas guide member 3 has three planar shapes, and one gas guide member connects the hollow fiber membrane bundle 4 from the inside of the peripheral edge of the hollow fiber membrane bundle 4. The other two gas guiding members are located at a position slightly apart from the gas guiding member passing through the center of the hollow fiber membrane bundle 4. are placed in parallel. In the one shown in FIG. 9, the gas guiding member 3 is composed of four curved gas guiding members extending from the inside of the peripheral edge of the hollow fiber membrane bundle 4 toward the center of the hollow fiber membrane bundle 4 (towards the center of the housing 6). It is what it is. Further, the four gas guiding members extend approximately toward the center of the hollow fiber membrane bundle 4 from inside the peripheral edge portions spaced at approximately equal intervals. In the one shown in FIG. 10, the gas guiding member 3 is
Consisting of two gas guiding members each having a curved surface shape extending from the inside of the periphery of the hollow fiber membrane bundle 4 toward the center of the hollow fiber membrane bundle 4 (toward the center of the housing 6) and further extending toward the periphery of the hollow fiber membrane bundle 4. It is. Also, 2
The gas guide members extend from the inside of the peripheral edge portions spaced at approximately equal intervals toward the center of the hollow fiber membrane bundle 4 and further extend to the peripheral edge portions of the hollow fiber membrane bundle 4 spaced at approximately equal intervals. FIG. 13 shows a simplified diagram of the installed state of the gas guiding member 3 shown in FIG. 10. In the one shown in FIG. 11, the gas guiding member 3 is
One gas guiding member is spirally provided from inside the peripheral edge of the hollow fiber membrane bundle 4 to the center of the hollow fiber membrane bundle 4 (the center of the housing 6). Next, examples of the present invention will be described. Example 1 A polycarbonate housing with a length of 170 mm, an inner diameter of 124 mm at the end, and an inner diameter of 92 mm at the middle, an inner diameter of 200 μm,
Inside a hollow fiber membrane bundle consisting of approximately 62,000 polypropylene hollow fiber membranes with a wall thickness of 50 μm, a porosity of 35%, an average pore diameter of 600 Å measured by mercury intrusion method, and a length of approximately 217 mm.
A gas guiding member made of polyester having a planar shape as shown in Figures 2 and 3 and having a network structure of 70 meshes (the length in the center direction of the hollow fiber membrane bundle is
mm, the length of the hollow fiber membrane bundle in the axial direction is 50 mm) is 4
extending from the inside of the peripheral edge of the hollow fiber membrane bundle approximately toward the center of the hollow fiber membrane bundle, spaced apart from each other at approximately equal intervals;
and insert the gas guide member so that the end of the gas guiding member is about 20 mm closer to the center of the hollow fiber membrane bundle than the end of the hollow fiber membrane bundle,
The hollow fiber membranes are dispersed at the ends of the hollow fiber membrane bundle, and a container filled with a sealant is fitted onto the end of the hollow fiber membrane bundle.
and the container was secured to the end of the housing. Furthermore, a potting agent is injected from the gas inlet of the housing to fix the hollow fiber membrane bundle and the gas guiding member to the housing, and after removing the container, the potting agent is sliced in the part where the gas guiding member is not present. , a partition wall was formed, and the partition wall on the opposite side, which did not have a gas guide member, was formed in the same manner, and a hollow fiber membrane oxygenator having the structure shown in FIG. 1 was created. Effective length in the axial direction of the hollow fiber membrane bundle of the gas guiding member (length of the part not embedded in the partition wall)
was approximately 40 mm. The effective length of the hollow fiber membrane (the length of the portion not embedded in the partition wall) was approximately 140 mm. Additionally, the membrane area of this oxygenator is approximately 5.4 m 2 . The filling rate of the hollow fiber membrane near the gas inlet of this oxygenator was 50%. Example 2 A polycarbonate housing with a length of 170 mm, an inner diameter of 124 mm at the end, and an inner diameter of 92 mm at the middle, an inner diameter of 200 μm,
Inside a hollow fiber membrane bundle consisting of approximately 62,000 polypropylene hollow fiber membranes with a wall thickness of 50 μm, a porosity of 35%, an average pore diameter of 600 Å measured by mercury intrusion method, and a length of approximately 217 mm.
A gas guide member (the length in the direction of the center of the hollow fiber membrane bundle) has a polyester network structure of 70 meshes with a curved surface shape as shown in Figures 10 and 12.
30 mm, and the length in the axial direction of the hollow fiber membrane bundle is 50 mm), so that it extends from inside the peripheral edge of the hollow fiber membrane bundle toward the center of the hollow fiber membrane bundle, and at the end of the hollow fiber membrane bundle. Insert the gas guiding member so that the end of the hollow fiber membrane bundle is approximately 20 mm toward the center of the hollow fiber membrane bundle, disperse the hollow fiber membranes at the ends of the hollow fiber membrane bundle, and seal the ends of the hollow fiber membrane bundle. A container filled with the agent was fitted and secured to the end of the housing. Furthermore, a potting agent is injected from the gas inlet of the housing to fix the hollow fiber membrane bundle and the gas guide member to the housing, and after removing the container, the potting agent is sliced in the part where the gas guide member is not present. , a partition wall was formed, and a partition wall on the opposite side that did not have a gas guide member was formed in the same manner to create a hollow fiber membrane oxygenator of the present invention. The effective length in the axial direction of the hollow fiber membrane bundle of the gas guiding member (the length of the portion not embedded in the partition wall) was approximately 40 mm. The effective length of the hollow fiber membrane (the length of the part not embedded in the partition wall) is:
It was about 140mm. Additionally, the membrane area of this oxygenator is approximately 5.4 m 2 . The filling rate of the hollow fiber membrane near the gas inlet of this oxygenator was 50%. Comparative example 1 A polycarbonate housing with a length of 170 mm, an inner diameter of 124 mm at the end, and an inner diameter of 92 mm at the middle, an inner diameter of 200 μm,
It consists of approximately 62,000 polypropylene hollow fiber membranes with a wall thickness of 50 μm, a porosity of 35%, an average pore diameter of 600 Å measured by mercury intrusion method, and a length of approximately 217 mm.The outer diameter of the hollow fiber membrane bundle near the gas inlet is A hollow fiber membrane oxygenator having a membrane area of about 5.4 m 2 as shown in FIG. 13 was prepared by housing a hollow fiber membrane bundle of about 100 mm in a housing. The effective length of the hollow fiber membrane (the length of the portion not embedded in the partition wall) was approximately 140 mm. The filling rate of the hollow fiber membrane near the gas inlet of this oxygenator was 50%. [Experiment 1] Blood gas exchange capacity was measured using the artificial lungs of Examples 1 and 2 and Comparative Example. The measurement was performed using fresh heparinized bovine blood from the blood inlet of the oxygenator (the hematocrit value was adjusted to 35% with physiological saline).
%, hemoglobin concentration 12 ± 1 g/dl, base excess 0 ± 2 mEq/, oxygen saturation 65 ±
5%, carbon dioxide partial pressure 45±5mmHg, temperature 37±2℃)
is flowed at a flow rate of 5.4/min in a single pass, and pure oxygen is flowed at a flow rate of 5.4/m from the gas inlet.
Blood flow at the blood inlet and blood outlet of the oxygenator
PH, partial pressure of carbon dioxide gas (pCO 2 ), partial pressure of oxygen gas (pO 2 ) was measured using a blood gas measuring device (manufactured by Radiometer,
ABL30), and the blood gas exchange rate (gas exchange capacity) was calculated from the results. The results are shown in Table 1.

【表】 分圧−出口での血液
のCO分圧
炭酸ガス除去率=
[Table] Partial pressure - blood at outlet
CO 2 partial pressure Carbon dioxide removal rate =

Claims (1)

【特許請求の範囲】 1 ハウジングと、該ハウジング内に挿入された
多数の多孔質中空糸膜からなる中空糸膜束と、該
中空糸膜束の両端部を前記ハウジングの両端部に
液密に固定する隔壁と、前記ハウジングの両端部
付近にそれぞれ設けられ、前記中空糸膜の外面と
前記ハウジングの内面と隔壁とにより形成される
空間に連通するガス流入口およびガス流出口と、
前記ハウジングの両端部にそれぞれ取り付けられ
た血液流入口と血液流出口と、前記ガス流入口と
連通し、かつ前記中空糸膜束と前記ハウジングの
内面とが接触しない環状部分とを有し、さらに、
少なくとも、前記環状部分が設けられている部分
の前記中空糸膜束内に、該中空糸膜束の周縁部よ
り内部方向に延びるガス誘導部材を有し、さら
に、該ガス誘導部材の端部は、前記ガス流入口側
の隔壁の外端面に至らないように設けられている
ことを特徴とする中空糸膜型人工肺。 2 前記ガス誘導部材の端部は、前記ガス流入口
側の隔壁の外端面に至らないように収納され、か
つ該隔壁により保持されている特許請求の範囲第
1項に記載の中空糸膜型人工肺。 3 前記中空糸膜は、内径100〜1000μm、肉厚
5〜80μmでかつ直径100Å〜5μmの微細孔を有
するものである特許請求の範囲第1項または第2
項に記載の中空糸膜型人工肺。 4 前記ガス誘導部材は、平面状のものである特
許請求の範囲第1項ないし第3項のいずれかに記
載の中空糸膜型人工肺。 5 前記ガス誘導部材は、曲面状のものである特
許請求の範囲第1項ないし第4項のいずれかに記
載の中空糸膜型人工肺。 6 前記ガス誘導部材は、厚さが30〜400μmであ
る特許請求の範囲第1項ないし第5項のいずれか
に記載の中空糸膜型人工肺。 7 前記ガス誘導部材は、網目構造物である特許
請求の範囲第1項ないし第6項のいずれかに記載
の中空糸膜型人工肺。 8 前記ガス誘導部材は、網目の大きさが20〜
400メツシユである特許請求の範囲第7項に記載
の中空糸膜型人工肺。 9 前記ガス誘導部材は、中空糸膜束の周縁部内
部より中空糸膜束のほぼ中心を通り他の周縁部内
部まで延びているものである特許請求の範囲第1
項ないし第8項のいずれかに記載の中空糸膜型人
工肺。 10 前記ガス誘導部材は、複数設けられている
特許請求の範囲第1項ないし第9項のいずれかに
記載の中空糸膜型人工肺。 11 前記ガス誘導部材は、中空糸膜束周縁部内
部より中空糸膜束の中心方向に延びる複数のガス
誘導部材よりなるものである特許請求の範囲第1
0項に記載の中空糸膜型人工肺。 12 前記複数のガス誘導部材は、ほぼ等間隔に
離間し、周縁部内部より中空糸膜束のほぼ中心方
向に延びるものである特許請求の範囲第11項に
記載の中空糸膜型人工肺。 13 前記中空糸膜型人工肺は、前記中空糸膜束
と前記ハウジングの内面とが接触しない環状部分
と連続し、かつ、前記中空糸膜束の外周と前記ハ
ウジングの内面とが接触する環状部分を有してい
る特許請求の範囲第1項ないし第12項のいずれ
かに記載の中空糸膜型人工肺。 14 前記ガス誘導部材は、前記中空糸膜束と前
記ハウジングの内面とが接触しない環状部分が設
けられている部分の中空糸膜束部分を越え、前記
中空糸膜束の外周とハウジングの内面とが接触す
る環状部分にまで至るように設けられており、終
端は、前記ハウジングの中間部分にまで至らない
ように設けられている特許請求の範囲第13項に
記載の中空糸膜型人工肺。
[Claims] 1. A housing, a hollow fiber membrane bundle consisting of a large number of porous hollow fiber membranes inserted into the housing, and both ends of the hollow fiber membrane bundle being liquid-tightly attached to both ends of the housing. a partition wall to be fixed; a gas inlet and a gas outlet that are provided near both ends of the housing and communicate with a space formed by the outer surface of the hollow fiber membrane, the inner surface of the housing, and the partition;
The housing includes a blood inlet and a blood outlet respectively attached to both ends of the housing, and an annular portion that communicates with the gas inlet and does not allow the hollow fiber membrane bundle and the inner surface of the housing to come into contact with each other, ,
At least a gas guiding member is provided in the hollow fiber membrane bundle in the portion where the annular portion is provided, and further, an end portion of the gas guiding member extends inward from a peripheral edge of the hollow fiber membrane bundle. A hollow fiber membrane oxygenator, characterized in that the membrane is provided so as not to reach the outer end surface of the partition wall on the gas inlet side. 2. The hollow fiber membrane type according to claim 1, wherein the end of the gas guide member is housed so as not to reach the outer end surface of the partition wall on the gas inlet side and is held by the partition wall. Artificial lung. 3. Claim 1 or 2, wherein the hollow fiber membrane has an inner diameter of 100 to 1000 μm, a wall thickness of 5 to 80 μm, and has micropores of 100 Å to 5 μm in diameter.
The hollow fiber membrane oxygenator described in Section 1. 4. The hollow fiber membrane oxygenator according to any one of claims 1 to 3, wherein the gas guiding member is planar. 5. The hollow fiber membrane oxygenator according to any one of claims 1 to 4, wherein the gas guide member has a curved surface. 6. The hollow fiber membrane oxygenator according to any one of claims 1 to 5, wherein the gas guide member has a thickness of 30 to 400 μm. 7. The hollow fiber membrane oxygenator according to any one of claims 1 to 6, wherein the gas guiding member is a network structure. 8 The gas guiding member has a mesh size of 20 to
The hollow fiber membrane oxygenator according to claim 7, which has a mesh size of 400 mesh. 9. Claim 1, wherein the gas guiding member extends from inside the peripheral edge of the hollow fiber membrane bundle to the inside of another peripheral edge through approximately the center of the hollow fiber membrane bundle.
The hollow fiber membrane oxygenator according to any one of Items 1 to 8. 10. The hollow fiber membrane oxygenator according to any one of claims 1 to 9, wherein a plurality of gas guide members are provided. 11. Claim 1, wherein the gas guiding member is comprised of a plurality of gas guiding members extending from inside the peripheral edge of the hollow fiber membrane bundle toward the center of the hollow fiber membrane bundle.
The hollow fiber membrane oxygenator according to item 0. 12. The hollow fiber membrane oxygenator according to claim 11, wherein the plurality of gas guide members are spaced apart from each other at approximately equal intervals and extend from inside the peripheral portion toward the center of the hollow fiber membrane bundle. 13 The hollow fiber membrane oxygenator includes an annular portion that is continuous with an annular portion where the hollow fiber membrane bundle and the inner surface of the housing do not come into contact with each other, and an annular portion where the outer periphery of the hollow fiber membrane bundle and the inner surface of the housing come into contact. A hollow fiber membrane oxygenator according to any one of claims 1 to 12, comprising: 14. The gas guiding member extends beyond a portion of the hollow fiber membrane bundle provided with an annular portion where the hollow fiber membrane bundle and the inner surface of the housing do not come into contact with each other, and extends between the outer periphery of the hollow fiber membrane bundle and the inner surface of the housing. 14. The hollow fiber membrane oxygenator according to claim 13, wherein the hollow fiber membrane oxygenator is provided so as to reach an annular portion in contact with the housing, and a terminal end is provided so as not to reach an intermediate portion of the housing.
JP19565787A 1987-08-05 1987-08-05 Artificial lung made of hollow yarn membrane Granted JPS6440059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19565787A JPS6440059A (en) 1987-08-05 1987-08-05 Artificial lung made of hollow yarn membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19565787A JPS6440059A (en) 1987-08-05 1987-08-05 Artificial lung made of hollow yarn membrane

Publications (2)

Publication Number Publication Date
JPS6440059A JPS6440059A (en) 1989-02-10
JPH049424B2 true JPH049424B2 (en) 1992-02-20

Family

ID=16344821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19565787A Granted JPS6440059A (en) 1987-08-05 1987-08-05 Artificial lung made of hollow yarn membrane

Country Status (1)

Country Link
JP (1) JPS6440059A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120977A (en) * 1976-04-06 1977-10-11 Toshisuke Kawahara Shelllanddtube substance exchange apparatus using hollow fibers
JPS5411152A (en) * 1977-06-27 1979-01-27 Ajikawa Iron Works & Constr Resin powder coating on metal pipe inner surface
JPS60145153A (en) * 1984-01-10 1985-07-31 三菱レイヨン株式会社 Hollow yarn type artificial lung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120977A (en) * 1976-04-06 1977-10-11 Toshisuke Kawahara Shelllanddtube substance exchange apparatus using hollow fibers
JPS5411152A (en) * 1977-06-27 1979-01-27 Ajikawa Iron Works & Constr Resin powder coating on metal pipe inner surface
JPS60145153A (en) * 1984-01-10 1985-07-31 三菱レイヨン株式会社 Hollow yarn type artificial lung

Also Published As

Publication number Publication date
JPS6440059A (en) 1989-02-10

Similar Documents

Publication Publication Date Title
US4911846A (en) Fluid treating apparatus and method of using it
EP0005866B1 (en) An oxygenator
EP0576677B1 (en) Apparatus for exchanging substances
EP0908191B1 (en) Hollow fiber membrane oxygenator
JPH1147268A (en) Hollow fiber membrane type artificial lung
JPH02109572A (en) Hollow yarn type fluid treating device
JPH049424B2 (en)
JP2792048B2 (en) Hollow fiber type fluid treatment device
JPH049425B2 (en)
JPH01198557A (en) Hollow yarn membrane type oxygenator
JPH029816Y2 (en)
JPS61268304A (en) Fluid separator
JPH0299067A (en) Hollow fiber type fluid treatment apparatus
JP4237534B2 (en) Blood purifier
JP2023177553A (en) artificial lung
JPS6311972Y2 (en)
JPS60225572A (en) Hollow yarn membrane type artificial lung
JPH10314300A (en) Hollow fiber membrane type artificial lung
JPS59108563A (en) Hollow yarn type artifical long
JPS6137251A (en) Heat exchanger built-in artificial lung
JPH0119902B2 (en)
JP2784922B2 (en) Hollow fiber oxygenator
JPS61119273A (en) Hollow yarn membrane type artificial lung
JPS6129360A (en) Artificial lung having dialytic function
JPS6145771A (en) Hollow yarn membrane type artificial lung