JPH0493361A - Abrasion-resistant resin composition - Google Patents
Abrasion-resistant resin compositionInfo
- Publication number
- JPH0493361A JPH0493361A JP2211999A JP21199990A JPH0493361A JP H0493361 A JPH0493361 A JP H0493361A JP 2211999 A JP2211999 A JP 2211999A JP 21199990 A JP21199990 A JP 21199990A JP H0493361 A JPH0493361 A JP H0493361A
- Authority
- JP
- Japan
- Prior art keywords
- wear
- abrasion
- resistant
- resin composition
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims description 58
- 238000005299 abrasion Methods 0.000 title abstract description 60
- 239000000463 material Substances 0.000 claims abstract description 44
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 32
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 30
- 239000004917 carbon fiber Substances 0.000 claims abstract description 30
- 229920005989 resin Polymers 0.000 claims abstract description 27
- 239000011347 resin Substances 0.000 claims abstract description 27
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 4
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 4
- 238000002156 mixing Methods 0.000 claims description 16
- 239000000203 mixture Substances 0.000 claims description 15
- 150000001875 compounds Chemical class 0.000 claims description 9
- -1 whiskers Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 238000013329 compounding Methods 0.000 abstract description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract 1
- 239000011707 mineral Substances 0.000 abstract 1
- 230000035939 shock Effects 0.000 description 21
- 239000000758 substrate Substances 0.000 description 17
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229910052700 potassium Inorganic materials 0.000 description 11
- 239000011591 potassium Substances 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000003822 epoxy resin Substances 0.000 description 8
- 229920000647 polyepoxide Polymers 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229920001971 elastomer Polymers 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000007822 coupling agent Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229910052701 rubidium Inorganic materials 0.000 description 3
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- KUBDPQJOLOUJRM-UHFFFAOYSA-N 2-(chloromethyl)oxirane;4-[2-(4-hydroxyphenyl)propan-2-yl]phenol Chemical compound ClCC1CO1.C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 KUBDPQJOLOUJRM-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007716 flux method Methods 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical class C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229940104181 polyflex Drugs 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000013008 thixotropic agent Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、種々の設備機器において、摩擦、衝撃等によ
って摩耗、損傷しやすい部分に適用し、耐摩耗性を付与
して機器保全性を高めるに有効な耐摩耗樹脂組成物に関
するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention is applied to parts of various equipment that are easily worn out or damaged by friction, impact, etc., to impart wear resistance and improve equipment maintainability. This invention relates to a resin composition that is effective for increasing wear resistance.
(従来の技術)
従来、耐摩耗性を必要とする基体表面に耐摩耗性を付与
する方法としては、金属粒、セラミック粒、セラミック
タイル等を内包または表面に貼着したゴムシートを基体
表面に接着剤で貼りつける方法や、各種合成樹脂に耐摩
耗材を混合した樹脂組成物を基体表面に塗布した後に硬
化させる方法等が実施されてきた。特に後者の方法にお
いて熱硬化性樹脂と耐摩耗材とからなる耐摩耗樹脂組成
物が重用されるようになった。(Prior art) Conventionally, as a method of imparting wear resistance to the surface of a substrate that requires wear resistance, a rubber sheet containing metal particles, ceramic particles, ceramic tiles, etc. or attached to the surface is attached to the surface of the substrate. Methods such as pasting with an adhesive and methods in which a resin composition prepared by mixing various synthetic resins with an abrasion resistant material are applied to the surface of the substrate and then cured have been implemented. Particularly in the latter method, wear-resistant resin compositions consisting of thermosetting resins and wear-resistant materials have come to be used heavily.
(発明が解決しようする課題)
しかし、耐摩耗材を内包または表面に貼着したゴムシー
トを基体表面に貼りつける方法では、鋭角折曲り面、小
径曲面への使用、管内部等の施工は極めて困難であり、
また施行後においても長期間使用すると、耐摩耗材の剥
落、ゴムシートの剥離が起こり易い等の問題か起こる。(Problem to be solved by the invention) However, with the method of attaching a rubber sheet with a wear-resistant material inside or attached to the surface of the substrate, it is extremely difficult to use it on sharply bent surfaces, small diameter curved surfaces, and work inside pipes. and
Furthermore, if used for a long period of time even after installation, problems such as peeling of the wear-resistant material and peeling of the rubber sheet may occur.
さらに、耐摩耗材と流動性の低いゴムとを均一に混練す
るには手間かかかり、作業性の点でも問題がある。Furthermore, uniformly kneading the wear-resistant material and the rubber with low fluidity takes time and effort, and there are also problems in terms of workability.
一方、前記の耐摩耗性付与に用いられる熱硬化性樹脂と
耐摩耗材とからなる耐摩耗樹脂組成物は、その製造およ
び施行の容易さ、耐摩耗性能の点で従来の他の方法に比
べて優れている。しかし、次に述べるような問題点が残
されている。On the other hand, the abrasion-resistant resin composition made of a thermosetting resin and an abrasion-resistant material used to impart abrasion resistance is superior to other conventional methods in terms of ease of manufacture and application, and abrasion-resistant performance. Are better. However, the following problems remain.
熱硬化性樹脂と耐摩耗材とからなる耐摩耗樹脂組成物に
おいて、耐摩耗性能を高めるために耐摩耗材の混合比率
を上げると、耐摩耗樹脂組成物の流動性が低下し製造お
よび施行時の作業性が低下するばかりでなく、熱硬化性
樹脂と耐摩耗材の結合力が弱まり、施行後の耐摩耗材や
耐摩耗樹脂組成物の基体からの剥落の原因となる。耐摩
耗材の混合比率を下げれば、作業性は改善されるか、耐
摩耗性能が低下してしまう。また作業性が多少劣っても
耐摩耗材の混合比率を高めると、ある程度までは耐摩耗
性の向上か得られるか、相手物体の摩耗損傷を惹起し、
場合によっては相手物体の品質低下のみならず、機器の
目詰まりや運転阻害に至ることかある。さらに、耐熱性
に乏しく使用分野に制限か多い。In a wear-resistant resin composition composed of a thermosetting resin and an abrasion-resistant material, if the mixing ratio of the wear-resistant material is increased in order to improve the wear-resistant performance, the fluidity of the wear-resistant resin composition decreases, making it difficult to work during manufacturing and installation. This not only reduces the properties of the thermosetting resin and the wear-resistant material, but also weakens the bond between the thermosetting resin and the wear-resistant material, causing the wear-resistant material or the wear-resistant resin composition to peel off from the substrate after application. If the mixing ratio of the wear-resistant material is lowered, the workability will be improved or the wear-resistant performance will be lowered. In addition, even if workability is somewhat inferior, increasing the mixing ratio of wear-resistant materials may improve wear resistance to a certain extent, or may cause wear damage to the other object.
In some cases, this may not only reduce the quality of the object, but also cause equipment to become clogged or interfere with operation. Furthermore, it has poor heat resistance, which limits its use in many areas.
(課題を解決するための手段)
本発明は、前記問題点を解決するために、耐摩耗樹脂組
成物において、その配合組成として、熱硬化性樹脂、耐
摩耗材、ウィスカおよび炭素繊維を有することを特徴と
する耐摩耗樹脂組成物を提案するものである。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a wear-resistant resin composition that includes a thermosetting resin, a wear-resistant material, whiskers, and carbon fibers as its compounding composition. This paper proposes a wear-resistant resin composition with characteristics.
前記ウィスカとしては、
一般式
%式%
(−最大中Aはアルカリ金属、nは1.2.4.6.8
の整数を示す)
で示される化合物のウィスカの内少なくとも一つである
。ウィスカは構造欠陥のほとんどない完全な結晶で機械
的強度においても理想的強度に近く、従来の耐摩耗樹脂
組成物に混合して耐摩耗性および耐熱性を高めるととも
に組成物に清流性を付与する。前記−数式で示される化
合物チタン酸アルカリは白色針状結晶であり、そのウィ
スカは直径0.2〜0.5μm、長さ10〜20μmで
、アスペクト比の大きい無機短繊維である。式中Aで表
されるアルカリ金属としては、ナトリウム、カリウム、
ルビジウム等か挙げられ、化合物としては、チタン酸、
ニチタン酸、四チタン酸、六チタン酸、へチタン酸のカ
リウム、ナトリウム、ルビジウムが挙げられる。これら
の化合物の中で六チタン酸ナトリウム、六チタン酸カリ
ウムおよび六チタン酸ルビジウムが妊ましく、化合物ウ
ィスカの安定性、耐摩耗樹脂組成物の製造工程、施行法
、耐摩耗性能の点で六チタン酸カリウムが最も好ましい
。また、これらの化合物の水和物も適用できる。The whisker has the general formula % (-A is an alkali metal, n is 1.2.4.6.8
) is at least one of the whiskers of the compound represented by . Whiskers are perfect crystals with almost no structural defects, and their mechanical strength is close to ideal, so they can be mixed into conventional wear-resistant resin compositions to increase wear resistance and heat resistance, as well as impart clear flow properties to the composition. . The compound alkali titanate represented by the above formula is a white needle-like crystal, and its whiskers are inorganic short fibers with a diameter of 0.2 to 0.5 μm and a length of 10 to 20 μm, and a large aspect ratio. The alkali metal represented by A in the formula includes sodium, potassium,
Examples of compounds include rubidium, titanic acid,
Examples include potassium, sodium, and rubidium of nititanic acid, tetratitanic acid, hexatitanic acid, and hetitanic acid. Among these compounds, sodium hexatitanate, potassium hexatitanate, and rubidium hexatitanate are the most promising in terms of the stability of compound whiskers, the manufacturing process of the wear-resistant resin composition, the implementation method, and the wear-resistant performance. Potassium titanate is most preferred. Moreover, hydrates of these compounds can also be applied.
なお、前記ウィスカは種々の製法、例えば焼成法、徐冷
焼成法、溶融法、融体法、フラックス法、水熱法等によ
って合成され、製法について特定するものではない。Note that the whiskers are synthesized by various manufacturing methods, such as a firing method, a slow cooling firing method, a melting method, a melt method, a flux method, a hydrothermal method, etc., and the manufacturing method is not specified.
本発明に用いる熱硬化性樹脂として、例えばウレタン樹
脂、エポキシ樹脂、不飽和ポリエステル樹脂、エポキシ
アクリレート樹脂、フラン樹脂、ポリイミド樹脂、シリ
コン樹脂等が挙げられ、特に限定されるものではなく、
一種または二種以上を組み合わせて用いることかできる
。これらの熱硬化性樹脂の中でもウレタン樹脂またはエ
ポキシ樹脂が好ましく、これらは−波型、二液型のいず
れも使用することができる。Examples of thermosetting resins used in the present invention include urethane resins, epoxy resins, unsaturated polyester resins, epoxy acrylate resins, furan resins, polyimide resins, silicone resins, etc., and are not particularly limited.
They can be used alone or in combination. Among these thermosetting resins, urethane resins or epoxy resins are preferred, and both corrugated and two-component types can be used.
本発明で用いる耐摩耗材としては、例えば耐衝ll性に
優れる金属、金属化合物、天然の各種鉱石、各種セラミ
ック等が挙げられる。特に炭化ケイ素、炭化ホウ素、溶
解アルミナ、アルミナジルコニア等に代表されるセラミ
ック類が好ましく、これら天然または人造の高硬度化合
物を砕粒または焼結、細砕して得られる粉粒体が特に好
ましい。これらの耐摩耗材は一種または二種以上を併用
してもよい。耐摩耗材の形状についても、球状、多面体
、円筒形、角柱体等特に11ilIllされるものでは
なく、異なる形状、大きさのものを併用することもてき
る。Examples of the wear-resistant material used in the present invention include metals with excellent impact resistance, metal compounds, various natural ores, and various ceramics. Particularly preferred are ceramics represented by silicon carbide, boron carbide, molten alumina, alumina zirconia, etc., and granules obtained by crushing, sintering, or pulverizing these natural or artificial high-hardness compounds are particularly preferred. These wear-resistant materials may be used alone or in combination of two or more. The shape of the wear-resistant material is not particularly limited, such as spherical, polyhedral, cylindrical, prismatic, etc., and materials of different shapes and sizes may be used in combination.
本発明に用いる炭素繊維は高強度を有し、耐摩耗性、耐
薬品性、耐熱性等に優れ、例えばポリアクリロニトリル
(以下、rPAN」と略す。)を酸化し黒化繊維とした
後不融化して得られるPAN系炭素炭素繊維ッチを原料
として酸化、不融化して得られるピッチ系炭素繊維等が
あるが特に限定するものではない。The carbon fiber used in the present invention has high strength and is excellent in abrasion resistance, chemical resistance, heat resistance, etc. For example, polyacrylonitrile (hereinafter abbreviated as rPAN) is oxidized to form a blackened fiber and then infusible. There are pitch-based carbon fibers obtained by oxidizing and infusible PAN-based carbon fibers obtained by using the PAN-based carbon fibers as a raw material, but there are no particular limitations thereto.
従来の耐摩耗樹脂組成物に炭素繊維を配合しても、格段
の耐摩耗性の向上は認められないがウィスカと混合併用
した場合にはウィスカおよび炭素繊維のそれぞれ単独の
使用に比較して極めて顕著な耐摩耗性、耐熱性および耐
熱衝撃性の向上か認められた。Even if carbon fiber is blended into a conventional wear-resistant resin composition, no significant improvement in wear resistance is observed, but when used in combination with whiskers, the effect is significantly greater than when whiskers and carbon fibers are used alone. Significant improvements in abrasion resistance, heat resistance, and thermal shock resistance were observed.
本発明の耐摩耗樹脂組成物において、熱硬化性樹脂、耐
摩耗材、ウィスカおよび炭素繊維の好まし配合割合は次
に述べる通りである。In the wear-resistant resin composition of the present invention, preferred blending ratios of the thermosetting resin, wear-resistant material, whiskers, and carbon fibers are as described below.
熱硬化性樹脂9〜75wt%、特に好ましくは15〜6
5wt%、耐摩耗材20〜90wt%。Thermosetting resin 9 to 75 wt%, particularly preferably 15 to 6
5 wt%, wear-resistant material 20-90 wt%.
特に好ましくは30〜80 w t%1 ウィスカ0.
05〜40wt%、特に好ましくは0.5〜20wt%
、炭素繊維0.05〜25wt%、特に好ましくは0.
5〜15wt%である。Particularly preferably 30 to 80 wt%1 whisker 0.
05-40 wt%, particularly preferably 0.5-20 wt%
, 0.05 to 25 wt% carbon fiber, particularly preferably 0.05 to 25 wt% carbon fiber.
It is 5 to 15 wt%.
熱硬化性樹脂の配合量が9wt%未満では他の配合原料
である耐摩耗材、ウィスカ、炭素繊維の混合が困難であ
り、生成耐摩耗樹脂組成物からのこれら添加物の剥離、
脱落が甚だしくなる。また、75wt%を超すと耐摩耗
性が低下する。If the blending amount of the thermosetting resin is less than 9 wt%, it will be difficult to mix other blended raw materials such as wear-resistant materials, whiskers, and carbon fibers, and these additives will be peeled off from the produced wear-resistant resin composition.
The fallout becomes severe. Moreover, when it exceeds 75 wt%, wear resistance decreases.
耐摩耗材の配合量が20wt%未満では耐摩耗性が悪く
、耐摩耗樹脂組成物の基体表面からの剥離、欠落が生じ
やすい。90wt%を超すと清流性が無(なって耐摩耗
樹脂組成物製造作業や塗布施行が困難になるばかりでは
なく、耐摩耗性も低下する。If the amount of the wear-resistant material is less than 20 wt %, the wear resistance will be poor, and the wear-resistant resin composition will likely peel off or chip off the substrate surface. If it exceeds 90 wt%, there will be no clear flowability (not only will it become difficult to manufacture and apply the wear-resistant resin composition, but also the wear resistance will decrease).
ウィスカの配合量が0.5wt%以下では熱衝撃耐摩耗
性が乏しくなり、0.05wt%未満では耐摩耗樹脂組
成物に対する耐摩耗性および清流性付与能力が認められ
ない。ウィスカの1wt%以上の添加によって相手物体
の摩耗損傷を防ぐことができるようになったが、5wt
%を超えると塗布作業が低下し40wt%を超えると耐
摩耗性が低下する傾向がある。If the whisker content is less than 0.5 wt%, thermal shock abrasion resistance will be poor, and if it is less than 0.05 wt%, the ability to impart abrasion resistance and clear flow properties to the wear-resistant resin composition will not be recognized. Addition of 1wt% or more of whiskers made it possible to prevent abrasion damage to the opposing object, but 5wt% or more of whiskers
If it exceeds 40 wt %, the coating work tends to deteriorate, and if it exceeds 40 wt %, the abrasion resistance tends to decrease.
炭素繊維の配合量は0.05wt%以上において耐摩耗
性および耐熱性が向上し、さらに0.5wt%を超える
と優れた熱衝撃耐摩耗性が得られる。15wt%以上で
は耐摩耗性および清流性が低下する傾向がある。When the blending amount of carbon fiber is 0.05 wt% or more, wear resistance and heat resistance are improved, and when it exceeds 0.5 wt%, excellent thermal shock abrasion resistance is obtained. At 15 wt% or more, abrasion resistance and clear flow properties tend to decrease.
本発明の耐摩耗樹脂組成物の必須有効成分としては、熱
硬化性樹脂、耐摩耗材、ウィスカおよび炭素繊維である
が、製造、施行時の作業性の向上または各種付加機能を
与えるために、必要に応じてコロイダルシカ、有機ベン
トナイト、水添ヒマシ油、微粒状炭酸カルシウム、塩化
ビニルパウダーと公知の揺変性付与剤、溶剤、硬化促進
剤、可塑剤、安定剤、有機または炭素繊維以外の無機繊
維状物、アルミナ粉、シリカ粉等の充填材、着色料、消
泡剤、難燃剤、電磁波シール剤、静電防止剤等の添加物
を耐摩耗性を阻害しない範囲内で適宜用いることができ
る。The essential active ingredients of the wear-resistant resin composition of the present invention are a thermosetting resin, a wear-resistant material, whiskers, and carbon fibers. Colloidal cica, organic bentonite, hydrogenated castor oil, finely divided calcium carbonate, vinyl chloride powder and known thixotropic agents, solvents, hardening accelerators, plasticizers, stabilizers, organic or inorganic fibers other than carbon fibers Additives such as fillers, colorants, antifoaming agents, flame retardants, electromagnetic wave sealants, antistatic agents, etc., such as aluminum powder, alumina powder, and silica powder, may be used as appropriate within the range that does not impair wear resistance. .
本発明の耐摩耗樹脂組成物は熱硬化性樹脂、耐摩耗材、
ウィスカおよび炭素繊維またはさらに前記の添加剤を均
一に混合するか、または基体表面に熱硬化性樹脂を塗布
し、その表面に耐摩耗材、ウィスカおよび炭素繊維を散
布などして得ることができる。The wear-resistant resin composition of the present invention includes a thermosetting resin, a wear-resistant material,
It can be obtained by uniformly mixing whiskers and carbon fibers or the above-mentioned additives, or by applying a thermosetting resin to the surface of a substrate and scattering an abrasion resistant material, whiskers and carbon fibers on the surface.
本発明の耐摩耗樹脂組成物を製造するにあたり、耐摩耗
材、ウィスカおよび炭素繊維を熱硬化性樹脂に配合する
前に、予めシランカップリング剤、チタンカップリング
剤あるいは樹脂、薬液等の化学的表面処理、またはプラ
ズマエツチング等の物理的表面処理を施すことによって
、熱硬化性樹脂と前記添加物との結合を容易かつ強固に
にすることができる。In producing the wear-resistant resin composition of the present invention, before blending the wear-resistant material, whiskers, and carbon fibers into the thermosetting resin, a chemical surface treatment such as a silane coupling agent, a titanium coupling agent, a resin, a chemical solution, etc. The bonding between the thermosetting resin and the additive can be facilitated and strengthened by treatment or physical surface treatment such as plasma etching.
本発明の耐摩耗#を詣組成物を適用する基体は耐摩耗性
が要求されるものならば、その材質を選ぶものではなく
、例えば金属、木質、ガラス、コンクリート等が挙げら
れる。木質、コンクリート等の多孔質なものやひび割れ
、クラックのある表面への施行にあたっては、それらの
欠損部にパテ、との粉、樹脂等によるシーリングを施し
、必要に応じてブラスト、油性分の清拭等の表面処理を
行うことも有効である。また、基体表面の錆落とし、リ
ン酸処理、カップリング剤による表面処理によって耐摩
耗層の剥離を防止することができる。The substrate to which the abrasion resistant composition of the present invention is applied can be made of any material as long as abrasion resistance is required, and examples thereof include metal, wood, glass, concrete, and the like. When applying to porous materials such as wood or concrete, or surfaces with cracks, seal the damaged areas with putty, powder, resin, etc., and use blasting or oil-based cleaning as necessary. It is also effective to perform surface treatment such as wiping. Further, peeling of the wear-resistant layer can be prevented by removing rust from the surface of the substrate, treating it with phosphoric acid, and treating the surface with a coupling agent.
また、基体表面の錆落し、リン酸処理、カップリング剤
による表面処理、さらに必要に応じて、基体表面に予め
ブライマーを塗布し、耐摩耗層の剥離を防ぎ耐摩耗性を
より確実にすることができる。用いられるプライマーは
特に限定されるものではなく、公知の一液型または二液
型ブライマーのどちらでもよいか、基体表面との接着性
かよく、かつ耐摩耗材と耐摩耗樹脂組成物間の密着性に
優れたものが好ましい。例えば二液型エポキシ樹脂系プ
ライマー −波型の湿気硬化型ウレタン樹脂系ブライマ
ー、変性シリコン系プライマー、フェノキシ樹脂系ブラ
イマー等が挙げられる。これらのプライマー塗布量は、
特に制限されないが通常30〜500g/m2である。In addition, we remove rust from the surface of the substrate, treat it with phosphoric acid, treat the surface with a coupling agent, and if necessary, apply a primer to the surface of the substrate in advance to prevent the peeling of the wear-resistant layer and further ensure wear resistance. I can do it. The primer used is not particularly limited, and may be a known one-component or two-component primer, or one that has good adhesion to the substrate surface and good adhesion between the wear-resistant material and the wear-resistant resin composition. Those with excellent properties are preferable. Examples include two-component epoxy resin primer, wave-type moisture-curable urethane resin primer, modified silicone primer, and phenoxy resin primer. The amount of primer applied is
Although not particularly limited, it is usually 30 to 500 g/m2.
本発明の耐摩耗樹脂組成物によって基体表面上に形成さ
れた耐摩耗層の表面上に必要に応じてトップコートを塗
布してもよく、耐l![耗性能を助長するものである。If necessary, a top coat may be applied on the surface of the wear-resistant layer formed on the substrate surface using the wear-resistant resin composition of the present invention. [It promotes wear performance.]
(発明の作用効果)
本発明の耐摩耗樹脂組成物を使用することによって、従
来の耐摩耗材を有するゴムシートを基体表面に貼り着け
る方法において殆ど不可能とされていた管内部への施行
、耐摩耗材の剥落、ゴムシートの剥離等を解決すること
ができた。また、ウィスカおよび炭素繊維を添加するこ
とによって、熱硬化性樹脂と耐摩耗材からなる従来の耐
摩耗樹脂組成物と比較して、耐摩耗性、耐熱性および耐
熱衝撃性か向上したばかりでなく耐摩耗樹脂組成物に対
して清流性および展着性か付与され、調製作業、基体表
面への塗布作業か極めて容易になった。(Operation and Effect of the Invention) By using the abrasion-resistant resin composition of the present invention, it is possible to apply the abrasion-resistant resin composition to the inside of a pipe, which was almost impossible with the conventional method of attaching a rubber sheet containing an abrasion-resistant material to the substrate surface. We were able to solve problems such as peeling of wear materials and peeling of rubber sheets. In addition, by adding whiskers and carbon fibers, compared to conventional wear-resistant resin compositions consisting of thermosetting resin and wear-resistant material, not only the wear resistance, heat resistance, and thermal shock resistance are improved, but also the resistance to wear is improved. The abrasion resin composition is given clear flowability and spreadability, making preparation work and application work to the substrate surface extremely easy.
また、耐摩耗性の向上とともに相手物体の摩耗損傷はほ
とんどなくなり、この結果、従来穀物等の搬送、サイロ
貯蔵作業等での摩耗損傷による穀物の品質低下、金属や
鉱石の摩耗屑による機器の目詰まりによる運転阻害、ベ
ルトの摩損による機器の寿命短縮等か大幅に改善された
。In addition, as wear resistance improves, wear and tear on the opposing object are almost eliminated, resulting in lower grain quality due to abrasion and damage during transportation of grain, silo storage, etc., and damage to equipment due to abrasion debris from metals and ores. This has resulted in significant improvements in problems such as operational obstruction due to clogging and shortened equipment life due to belt wear.
さらに、耐熱性および耐熱衝撃性が飛躍的に向上し、高
熱作業分野の設備機器への耐摩耗性付与か実施できるよ
うになった。Furthermore, heat resistance and thermal shock resistance have been dramatically improved, making it possible to impart wear resistance to equipment used in high-temperature work fields.
したがって、気体、液体、固体、スラリー等の輸送管、
特にベンド部の内側面、スラリーポンプのケーシング内
面、サイクロン、ホッパー、シュータ−等の壁面、プー
リー アイドラー等の作用面、サイロの内表面、岸壁、
橋脚のスプラシュゾーン等の摩耗防止が容易にかつ確実
になり、これらの機器の保守が簡単になり、この種産業
に貢献すること大である。Therefore, transport pipes for gases, liquids, solids, slurries, etc.
In particular, the inner surfaces of bends, the inner surfaces of slurry pump casings, the walls of cyclones, hoppers, shooters, etc., the working surfaces of pulley idlers, etc., the inner surfaces of silos, quay walls,
This will make it easier and more reliable to prevent wear on the splash zones of bridge piers, simplify maintenance of these equipment, and greatly contribute to this type of industry.
(実施例)
次に本発明の耐摩耗樹脂組成物の具体的な実施例および
比較例を説明する。(Examples) Next, specific examples and comparative examples of the wear-resistant resin composition of the present invention will be described.
本実施例および比較例で行った耐摩耗試験方法および熱
衝撃耐摩耗試験方法は次の通りである。The abrasion resistance test method and thermal shock abrasion resistance test method conducted in the present examples and comparative examples are as follows.
耐摩耗層を有する基体を(A)25°C1(B)130
’Cおよび(C)200℃の雰囲気中にそれぞれ500
時間保持した後、直ちに耐摩耗層の表面に粒度40番の
レジノイド型丸砥石(′直径2゜5−5−1l125を
回転数120Orpmにて2秒間隔で3秒間ずつ強く接
触させる動作を20サイクル実施し、供試片の表面状態
およびレジノイド型砥石の表面状態を観測する。Substrate with wear-resistant layer (A) 25°C1 (B) 130°C
'C and (C) 500 each in an atmosphere of 200℃
Immediately after holding the wear-resistant layer for 20 cycles, strongly contact the surface of the wear-resistant layer with a resinoid-type round whetstone (diameter 2゜5-5-1l125 with a grain size of No. 40) at a rotation speed of 120 Orpm for 3 seconds at 2-second intervals. The surface condition of the specimen and the surface condition of the resinoid type grindstone were observed.
(A>供試片を室温から1時間を要してso’cに昇温
し、直ちに5℃の冷水中に浸漬する。この熱衝撃テスト
を20サイクル実施した後、前述の耐摩耗試験を行い、
供試片および砥石の表面状態を観測する。(A> The test piece is heated from room temperature to SO'C over 1 hour and immediately immersed in cold water at 5°C. After carrying out 20 cycles of this thermal shock test, the above-mentioned abrasion test is carried out. conduct,
Observe the surface condition of the specimen and grindstone.
(B)(A)において高温域を180’c、低温域を2
5℃の水とした。(B) In (A), the high temperature range is 180'c and the low temperature range is 2
The water was at 5°C.
(実施例1)
スミエポキシELA−128(住人化学工業(株)製部
品名、エポキシ樹脂)80重量部、スミエポキシELA
−301(住人化学工業(株)製部品名、エポキシ樹脂
)20重量部、スミキュアーP740(住人化学工業(
株)製部品名、ボリアミド系エポキシ樹脂用硬化剤)4
5重1部およびスミキュアーD(住人化学工業(株)製
部品名、エポキシ樹脂用硬化促進剤)2重量部をよく混
合して熱硬化性樹脂組成物を得た後、直ちにアルミナジ
ルコニア砕粒(平均粒径1.2mm)430重量部、四
チタン酸ナトリウムウィスカ25重量部、炭素繊維6重
量部および炭酸カルシウム粉末23重量部を加え充分混
合して耐摩耗樹脂組成物を得た。(Example 1) 80 parts by weight of Sumiepoxy ELA-128 (part name manufactured by Sumitomo Chemical Co., Ltd., epoxy resin), Sumiepoxy ELA
20 parts by weight of -301 (part name, epoxy resin manufactured by Sumima Kagaku Kogyo Co., Ltd.), Sumicure P740 (produced by Sumima Kagaku Kogyo Co., Ltd.)
Co., Ltd. part name, hardening agent for polyamide-based epoxy resin) 4
After thoroughly mixing 1 part of 5-weight and 2 parts by weight of Sumicure D (part name, curing accelerator for epoxy resin, manufactured by Sumima Kagaku Kogyo Co., Ltd.) to obtain a thermosetting resin composition, immediately alumina zirconia crushed particles (average 430 parts by weight (particle size: 1.2 mm), 25 parts by weight of sodium tetratitanate whiskers, 6 parts by weight of carbon fibers and 23 parts by weight of calcium carbonate powder were added and thoroughly mixed to obtain a wear-resistant resin composition.
この耐摩耗性樹脂組成物を、予めサンドブラストおよび
プライマー処理した300mmX300on×3−の鋼
板の表面に5anの厚さに塗布した。塗布作業は平コテ
で円滑に実施することかできた。This wear-resistant resin composition was applied to a thickness of 5 ann on the surface of a 300 mm x 300 on x 3- steel plate that had been subjected to sandblasting and primer treatment in advance. The application work could be carried out smoothly using a flat trowel.
1日室温で硬化後、温度50゛Cのオーブンにて5時間
アフターキュアーを行って耐摩耗層を有する供試片を作
成した。After curing at room temperature for one day, after-curing was performed in an oven at a temperature of 50°C for 5 hours to prepare a test piece having an abrasion-resistant layer.
得られた供試片について前述の耐摩耗試験および熱衝撃
耐摩耗試験を行い、その結果を第1表に示した。The above-mentioned abrasion resistance test and thermal shock abrasion resistance test were conducted on the obtained test pieces, and the results are shown in Table 1.
(実施例2)
実施例1において四チタン酸ナトリウムウィスカの代わ
りに六チタン酸カリウムウィスカを使ったほかは実施例
1と同じ組成で同様に処理して耐摩耗樹脂組成物を製造
した後、同じようにして供試片を作成し、前述の耐摩耗
試験および熱衝撃耐摩耗試験を行い、その結果を第1表
に示した。(Example 2) A wear-resistant resin composition was produced using the same composition as in Example 1, except that potassium hexatitanate whiskers were used instead of sodium tetratitanate whiskers in Example 1, and the same treatment was performed. Test pieces were prepared in this manner and subjected to the abrasion resistance test and thermal shock abrasion resistance test described above, and the results are shown in Table 1.
(実施例3)
実施例1で得た熱硬化性樹脂組成物と同じ熱硬化性エポ
キシ樹脂組成物150重量部にアルミナジルコニア砕粒
(平均粒径1. 2an) 325重量部、窒化はう素
65重量部、六チタン酸カリウムウィスカ7重量部、炭
素繊維23重量部および炭酸カルシウム15重量部、ク
レー粉末15重量部を加え充分混合して耐摩耗#脂組成
物を得た。(Example 3) 150 parts by weight of the same thermosetting epoxy resin composition as the thermosetting resin composition obtained in Example 1, 325 parts by weight of crushed alumina zirconia (average particle size 1.2 an), and 65 parts by weight of boron nitride were added. parts by weight, 7 parts by weight of potassium hexatitanate whiskers, 23 parts by weight of carbon fibers, 15 parts by weight of calcium carbonate, and 15 parts by weight of clay powder were added and thoroughly mixed to obtain a wear-resistant #greasy composition.
この耐摩耗樹脂組成物を実施例1と同様にして5m肉厚
の供試片を作成し、前述の耐摩耗試験および熱衝撃耐摩
耗試験を行い、その結果を第1表に示した。A test piece with a thickness of 5 m was prepared from this abrasion-resistant resin composition in the same manner as in Example 1, and the above-mentioned abrasion resistance test and thermal shock abrasion resistance test were conducted. The results are shown in Table 1.
なお、耐摩耗樹脂組成物調製時の混合作業および該組成
物の塗布作業は容易であった。In addition, the mixing operation and the coating operation of the composition during preparation of the wear-resistant resin composition were easy.
(実施例4)
スミアツブMC;−IL(三速化工(株)製部品名、不
飽和ポリエステル樹脂)100重量部、8%オクチン酸
コバルト0.5重量部およびサンハードSL(三速化工
(株)製部品名、パーオキサイド)1.5重量部をよく
混合した後、直ちにアルミナジルコニア砕粒(平均粒径
1.5wm)25050重量溶融アルミナ系セラミック
砂(平均粒径θ、1mm)200重量部、六チタン酸カ
リウムウィスカ25重量部および炭素繊維25重量部を
加え均一に混合して耐摩耗樹脂組成物を調製した。(Example 4) 100 parts by weight of Smear Tube MC;-IL (part name manufactured by Sansei Kako Co., Ltd., unsaturated polyester resin), 0.5 parts by weight of 8% cobalt octinate, and Sanhard SL (Sansei Kako Co., Ltd.) 25050 parts by weight of crushed alumina zirconia particles (average particle size 1.5 wm) 200 parts by weight of fused alumina ceramic sand (average particle size θ, 1 mm), 25 parts by weight of potassium hexatitanate whiskers and 25 parts by weight of carbon fibers were added and mixed uniformly to prepare a wear-resistant resin composition.
この耐摩耗性樹脂組成物を、予めサンドブラストおよび
プライマー処理した300mmX300閣X3mの鋼板
の表面に5閣の厚さに塗布し、1日室温で硬化後、温度
40°Cのオーブンにて5時間アフターキュアーを行っ
て耐摩耗層を有する供試片を作成した。This abrasion-resistant resin composition was applied to the surface of a 300mm x 300mm x 3m steel plate that had been sandblasted and primed in advance to a thickness of 5mm, cured at room temperature for 1 day, and then placed in an oven at a temperature of 40°C for 5 hours. A specimen having a wear-resistant layer was prepared by curing.
耐摩耗樹脂組成物調製時の混合操作および該組成物の塗
布作業は容易であった。供試片は実施例1で行ったと同
じ方法で耐摩耗試験および熱衝撃耐摩耗試験を行い、そ
の結果を第1表に示した。The mixing operation during the preparation of the wear-resistant resin composition and the application operation of the composition were easy. The test piece was subjected to an abrasion resistance test and a thermal shock abrasion resistance test in the same manner as in Example 1, and the results are shown in Table 1.
(実施例5)
ポリフレックスFL−37(第一工業製薬(株)MI商
品名、ポリイソシアネート化合物、NGO含有率6.5
%)96重量とコロイダルシリカ4重J1部からなる組
成物を主剤とし、3.3゜ジクロロ−4,4−ジアミノ
ジフェニルメタン19.5重1部、フタル酸ジオクチル
18重量部、クレー粉末8重量部、コロイダルシリカ3
重量部、シランカップリング剤1.5重量部を含有する
組成物を硬化剤とし、この主剤と硬化剤を混合比2:1
(重量比)で混合して熱硬化性樹脂組成物を得た後、直
ちにアルミナジルコニア砕粒(平均粒径2mm)250
重量部、溶融アルミナ系セラミック砂50重量部、六チ
タン酸カリウムウィスカ12重量部、炭素繊維7重量部
、クレー粉末30重量部およびチタンカップリング剤1
重量部とを加えてよく混合して耐摩耗組成物を得た。(Example 5) Polyflex FL-37 (Daiichi Kogyo Seiyaku Co., Ltd. MI brand name, polyisocyanate compound, NGO content 6.5
%) 96 parts by weight and 1 part by weight of colloidal silica 4 parts by weight, 3.3゜dichloro-4,4-diaminodiphenylmethane 19.5 parts by weight, 18 parts by weight of dioctyl phthalate, and 8 parts by weight of clay powder. , colloidal silica 3
parts by weight, a composition containing 1.5 parts by weight of a silane coupling agent is used as a curing agent, and this main ingredient and curing agent are mixed at a mixing ratio of 2:1.
(weight ratio) to obtain a thermosetting resin composition, immediately after mixing 250 alumina zirconia crushed particles (average particle size 2 mm)
Parts by weight, 50 parts by weight of fused alumina ceramic sand, 12 parts by weight of potassium hexatitanate whiskers, 7 parts by weight of carbon fiber, 30 parts by weight of clay powder, and 1 part by weight of titanium coupling agent.
parts by weight were added and mixed well to obtain an anti-wear composition.
この耐摩耗性樹脂組成物を、予めサンドブラストおよび
プライマー処理した300mx300■x3mの鋼板の
表面に5mの厚さに塗布し、7日間室温で養生硬化させ
て耐摩耗層を有する供試片を作成した。This abrasion-resistant resin composition was applied to a thickness of 5 m on the surface of a 300 m x 300 x 3 m steel plate that had been sandblasted and primed in advance, and cured at room temperature for 7 days to create a test piece with an abrasion resistant layer. .
耐摩耗樹脂組成物調製時の混合操作および該組成物の塗
布作業は容易であった。The mixing operation during the preparation of the wear-resistant resin composition and the application operation of the composition were easy.
供試片は実施例1で行ったと同じ方法で耐摩耗試験およ
び熱衝撃耐摩耗試験を行い、その結果を第1表に示した
。The test piece was subjected to an abrasion resistance test and a thermal shock abrasion resistance test in the same manner as in Example 1, and the results are shown in Table 1.
(実施例6)
実施例5で調製したと同じ熱硬化性樹脂組成物150重
量部に六チタン酸カリウムウィスカ8重量部および炭素
繊維10重量部を加えよく混合して熱硬化性樹脂ペース
トを得た。(Example 6) 8 parts by weight of potassium hexatitanate whiskers and 10 parts by weight of carbon fiber were added to 150 parts by weight of the same thermosetting resin composition as prepared in Example 5, and mixed well to obtain a thermosetting resin paste. Ta.
予めサンドブラストおよびプライマー処理した3 00
mX 300mmX 3mmの鋼板の周囲に高さ5園の
塩化ビニル製枠板を固定し、この中に先ず熱硬化性樹脂
ペーストを約1m厚に塗布し、その上に耐摩耗材を充填
し、鋼板の裏側から数分間振盪放置し、ペーストか未硬
化のうちに鋼板を裏返して密集固化していない耐摩耗材
を除去した。指触硬化後さらにその上に前記ペーストを
塗布し、耐摩耗材を充填、振盪、余剰耐摩耗材除去を繰
り返し、最後に熱硬化性樹脂ペーストでトップコートし
て厚み5mの耐摩耗樹脂組成物層を形成した。Pre-sandblasted and primed 300
A vinyl chloride frame plate with a height of 5mm is fixed around a steel plate measuring m x 300mm x 3mm, and a thermosetting resin paste is first applied to a thickness of about 1m, and then a wear-resistant material is filled on top of it, and the steel plate is The steel plate was left to shake for several minutes from the back side, and while the paste was still unhardened, the steel plate was turned over to remove the wear-resistant material that had not become densely hardened. After hardening to the touch, the paste was further applied on top of it, filled with wear-resistant material, shaken, and excess wear-resistant material removed.Finally, a thermosetting resin paste was top coated to form a layer of wear-resistant resin composition with a thickness of 5 m. Formed.
7日間養生硬化させて耐摩耗層を有する供試外作成した
。A specimen with a wear-resistant layer was prepared by curing and curing for 7 days.
使用した熱硬化性樹脂ペーストの総量と耐摩耗材の総量
との比は重量比で50・70であった。The ratio of the total amount of thermosetting resin paste used to the total amount of wear-resistant material was 50.70 by weight.
供試片は実施例1で行ったと同じ方法で耐i11耗試験
及び熱衝撃耐摩耗試験を行い、その結果を第1表に示し
た。The test pieces were subjected to an i11 abrasion test and a thermal shock abrasion test in the same manner as in Example 1, and the results are shown in Table 1.
(実施例7)
実施例3で調製したと同じ熱硬化性樹脂組成物と耐摩耗
材とを実施例6の方法に従って塗布作業を行って実施例
6と同様の供試片を作成し、耐摩耗試験及び熱衝撃耐摩
耗試験を行い、その結果を第1表に示した。(Example 7) A test piece similar to Example 6 was prepared by applying the same thermosetting resin composition and wear-resistant material as prepared in Example 3 according to the method of Example 6, and the wear-resistant Tests and thermal shock abrasion resistance tests were conducted, and the results are shown in Table 1.
但し使用した熱硬化性樹脂組成物の総量と耐摩耗材総量
との使用比は重量比で28:82であった。However, the ratio of the total amount of thermosetting resin composition used to the total amount of wear-resistant material was 28:82 by weight.
(比較例1)
実施例2において、六チタン酸カリウムウィスカおよび
炭素繊維を使用しなかった以外は実施例2と全く同様に
して耐摩耗樹脂組成物を調製し、供試片を作成して耐摩
耗試験および熱衝撃耐摩耗試験を行い、その結果を第1
表に示した。供試片作成時の耐摩耗樹脂組成物の塗布は
かなりの力を要してコテ捌きに苦労し、なおかつ表面平
滑は困難であった。(Comparative Example 1) A wear-resistant resin composition was prepared in exactly the same manner as in Example 2, except that potassium hexatitanate whiskers and carbon fibers were not used, and test pieces were prepared to test the wear resistance. Abrasion tests and thermal shock abrasion tests were conducted, and the results were presented in the first
Shown in the table. Application of the abrasion resistant resin composition during the preparation of the test piece required considerable force, making it difficult to handle with a trowel, and furthermore, it was difficult to smooth the surface.
(比較例2)
実施例2において、六チタン酸カリウムウィスカおよび
炭素繊維の代わりに酸化チタン粉末を使用した以外は実
施例2と全く同様にして耐摩耗樹脂組成物を調製し、供
試片を作成して耐摩耗試験および熱衝撃耐摩耗試験を行
い、その結果を第1表に示した。耐摩耗樹脂組成物は実
施例2よりも固(、塗布作業は容易ではなかった。(Comparative Example 2) A wear-resistant resin composition was prepared in exactly the same manner as in Example 2, except that titanium oxide powder was used instead of potassium hexatitanate whiskers and carbon fibers, and a test piece was prepared. The samples were prepared and subjected to an abrasion resistance test and a thermal shock abrasion resistance test, and the results are shown in Table 1. The wear-resistant resin composition was harder than that of Example 2 (and the application work was not easy).
(比較例3)
実施例2において六チタン酸カリウムウィスカを使用し
なかった以外は実施例2戸全く同様にして供試片を作成
し、耐摩耗試験および熱衝撃耐摩耗試験を行い、その結
果を第1表に示した。耐摩耗樹脂組成物は実施例2より
も固く、塗布作業は容易ではなかった。(Comparative Example 3) A test piece was prepared in exactly the same manner as in Example 2 except that potassium hexatitanate whiskers were not used in Example 2, and a wear resistance test and a thermal shock abrasion test were conducted. are shown in Table 1. The wear-resistant resin composition was harder than that of Example 2, and the application work was not easy.
(比較例4)
実施例2において炭素繊維を使用しなかった以外は実施
例2と全く同様にして供試片を作成し、耐摩耗試験およ
び熱衝撃耐摩耗試験を行い、その結果を第1表に示した
。耐摩耗樹脂組成物の調製作業、塗布作業は実施例2と
同様に容易であった。(Comparative Example 4) A test piece was prepared in exactly the same manner as in Example 2 except that carbon fiber was not used in Example 2, and a wear resistance test and a thermal shock abrasion test were conducted. Shown in the table. Preparation and application of the wear-resistant resin composition were easy as in Example 2.
表中、耐摩耗性欄A、 B、およびCは供試片の保持温
度25℃、130″Cおよび200°Cを示す。In the table, abrasion resistance columns A, B, and C indicate the holding temperatures of the specimens at 25°C, 130″C, and 200°C.
熱衝撃耐摩耗製槽Aは80°Cおよび5°Cの繰り返し
、Bは180°Cおよび25°Cの繰り返しである。Thermal shock and abrasion resistant manufacturing bath A is a cycle of 80°C and 5°C, and tank B is a cycle of 180°C and 25°C.
表中の記号は、 ◎;殆ど変化なし O;若干の摩耗あり ロー摩耗あり △二摩耗多く、若干の耐摩耗材の剥離を認める を示す。The symbols in the table are ◎; Almost no change O: Some wear With low wear △2: A lot of wear, and some peeling of the wear-resistant material is observed. shows.
実施例および比較例の結果から、本発明耐摩耗樹脂組成
物は従来の耐+l!耗樹脂組成物に較べて組成物の調製
作業、基体/\の塗布作業か容易であり、耐摩耗性、耐
熱性および熱衝撃耐摩耗性か優ねていることか判る。From the results of Examples and Comparative Examples, the wear-resistant resin composition of the present invention has a resistance of +1! It can be seen that the preparation work of the composition and the work of applying the substrate/\\ are easier than the wear resin composition, and the wear resistance, heat resistance, and thermal shock abrasion resistance are superior.
(注)いずれも繰り返し3回の平均値である。(Note) All values are the average values of three repetitions.
Claims (1)
熱硬化性樹脂、耐摩耗材、ウィスカおよび炭素繊維を有
することを特徴とする耐摩耗樹脂組成物。 2 前記ウィスカは、 一般式 A_2O・nTiO_2 (一般式中Aはアルカリ金属、nは1、2、4、6、8
の整数を示す) で示される化合物のウィスカの内少なくとも一つである
請求項1に記載の耐摩耗樹脂組成物。 3 前記耐摩耗樹脂組成物の配合組成が、熱硬化性樹脂
9〜75wt%、耐摩耗材20〜90wt%、ウィスカ
0.05〜40wt%、炭素繊維0.05〜25wt%
である請求項1に記載の耐摩耗樹脂組成物。[Claims] 1. In the wear-resistant resin composition, the blending composition thereof is as follows:
A wear-resistant resin composition comprising a thermosetting resin, a wear-resistant material, whiskers, and carbon fibers. 2 The whisker has the general formula A_2O・nTiO_2 (in the general formula, A is an alkali metal, and n is 1, 2, 4, 6, 8
The wear-resistant resin composition according to claim 1, wherein the composition is at least one whisker of a compound represented by the following. 3. The composition of the wear-resistant resin composition is 9 to 75 wt% of thermosetting resin, 20 to 90 wt% of wear-resistant material, 0.05 to 40 wt% of whiskers, and 0.05 to 25 wt% of carbon fiber.
The wear-resistant resin composition according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2211999A JPH0493361A (en) | 1990-08-09 | 1990-08-09 | Abrasion-resistant resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2211999A JPH0493361A (en) | 1990-08-09 | 1990-08-09 | Abrasion-resistant resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0493361A true JPH0493361A (en) | 1992-03-26 |
Family
ID=16615219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2211999A Pending JPH0493361A (en) | 1990-08-09 | 1990-08-09 | Abrasion-resistant resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0493361A (en) |
-
1990
- 1990-08-09 JP JP2211999A patent/JPH0493361A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101570651B (en) | Corrosion-resistance coating of polysilicon ingot furnace, high temperature resistance protective layer and preparation method thereof | |
FR2508026A1 (en) | REFRACTORY MINERAL COMPOSITIONS BASED ON POWDERED MINERAL OXIDES | |
US7238390B2 (en) | Coating precursor and method for coating a substrate with a refractory layer | |
JPS59169968A (en) | Graphite-containing refractories | |
JPH0493361A (en) | Abrasion-resistant resin composition | |
CN108178646A (en) | Wear-resistant castable for metallurgical residues processing technique and preparation method thereof | |
JP2813802B2 (en) | Wear resistant resin composition | |
JP2004168586A (en) | Refractory material for repairing coke oven | |
AU2002362826B2 (en) | Coating precursor and method for coating a substrate with a refractory layer | |
JP3735095B2 (en) | Epoxy repair curable resin composition | |
JP3726303B2 (en) | Spray repair material | |
CN106587724A (en) | Composite material coating and its preparation method, and desulfurization system | |
JP2766660B2 (en) | Repair method of molten metal container | |
JP3420360B2 (en) | Refractory brick for hot metal pretreatment vessel | |
JP3629686B2 (en) | Curable resin composition | |
JPH02239009A (en) | Wear resisting pulley | |
JPS59156949A (en) | Polymer cement mortar composition | |
CN114369381B (en) | Converter oxygen lance anti-sticking coating and preparation method thereof | |
JPH11130547A (en) | Setting control admixture for refractory shotcreting technique | |
JPS62176963A (en) | Filling material around blast furnace tapping hole constructed by flow-in | |
CN1099738A (en) | High temp. resistance energy-saving inorganic coating material and preparing method | |
KR950007711B1 (en) | Composition and method for coating refractrories mass | |
JP2845557B2 (en) | Primer composition and resin-coated metal body | |
JP3223039B2 (en) | High durability baking repair material | |
JP2000160218A (en) | Adhesive for monolithic refractory, and method for repairing main runner of blast furnace |