JPH0493225A - Sealant film - Google Patents
Sealant filmInfo
- Publication number
- JPH0493225A JPH0493225A JP21123690A JP21123690A JPH0493225A JP H0493225 A JPH0493225 A JP H0493225A JP 21123690 A JP21123690 A JP 21123690A JP 21123690 A JP21123690 A JP 21123690A JP H0493225 A JPH0493225 A JP H0493225A
- Authority
- JP
- Japan
- Prior art keywords
- film
- stretched
- density polyethylene
- heat
- linear low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000565 sealant Substances 0.000 title claims abstract description 25
- 229920000092 linear low density polyethylene Polymers 0.000 claims abstract description 16
- 239000004707 linear low-density polyethylene Substances 0.000 claims abstract description 16
- 229920005989 resin Polymers 0.000 claims abstract description 10
- 239000011347 resin Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 abstract description 24
- 238000007789 sealing Methods 0.000 abstract description 20
- 238000010438 heat treatment Methods 0.000 abstract description 11
- 239000004744 fabric Substances 0.000 abstract description 6
- 230000000704 physical effect Effects 0.000 abstract description 6
- 239000010408 film Substances 0.000 abstract 7
- 238000010276 construction Methods 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 239000010409 thin film Substances 0.000 abstract 1
- 230000037303 wrinkles Effects 0.000 description 12
- 238000002844 melting Methods 0.000 description 11
- 230000008018 melting Effects 0.000 description 11
- 229920001684 low density polyethylene Polymers 0.000 description 8
- 239000004702 low-density polyethylene Substances 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 6
- 238000003475 lamination Methods 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- -1 polypropylene Polymers 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009820 dry lamination Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000004711 α-olefin Substances 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000005026 oriented polypropylene Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 239000000326 ultraviolet stabilizing agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、シーラントフィルムに関するものであり、詳
しくは、線状低密度ポリエチレンを主体とする樹脂より
成る二軸延伸されたシーラントフィルムに関するもので
ある。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a sealant film, and more particularly, to a biaxially stretched sealant film made of a resin mainly composed of linear low-density polyethylene. be.
従来より、シーラントフィルムとしては、低密度ポリエ
チレン(LDPE) 、高密度ポリエチレン(HDPE
)、線状低密度ポリエチレン(LLDPE)、ポリプロ
ピレン(PP) 、エチレン−酢酸ビニル共重合体(E
VA)等より成るフィルムが知られている。これらフィ
ルムは、Tダイキャスト法またはインフレーション法に
よって製造された未延伸または一軸延伸されたフィルム
である。Traditionally, sealant films include low density polyethylene (LDPE) and high density polyethylene (HDPE).
), linear low density polyethylene (LLDPE), polypropylene (PP), ethylene-vinyl acetate copolymer (E
Films made of VA) and the like are known. These films are unstretched or uniaxially stretched films manufactured by the T-die casting method or the inflation method.
上記の各シーラントフィルムは、安価であること、ヒー
トシール部の強度が大きいこと等の特徴から広く使用さ
れている。Each of the above-mentioned sealant films is widely used because of its characteristics such as low cost and high strength of the heat-sealed portion.
しかしながら、盲動な分子配向が付与されていないため
に、フィルム強度が小さく、強度を高くするためにはフ
ィルムを厚くしなければならず、このため、ラミネート
基材が透明性に優れたフィルムであってもシーラントフ
ィルムのためにその優れた透明性を活かしきれない。However, because blind molecular orientation is not imparted, the film strength is low, and in order to increase the strength, the film must be made thicker.For this reason, the laminated base material is a film with excellent transparency. However, because of the sealant film, its excellent transparency cannot be fully utilized.
特に、低密度ポリエチレンインフレーションフィルムの
透明性は非常に悪い。In particular, the transparency of low density polyethylene blown film is very poor.
一軸延伸法では、分子配向が付与されて強度は上がるも
のの、分子配向の異方性のため、ヒートシール時にシー
ル面にシワが発生して部品価値を低下させるなどの問題
がある。Although the uniaxial stretching method imparts molecular orientation and increases strength, due to the anisotropy of molecular orientation, there are problems such as wrinkles occurring on the sealing surface during heat sealing, reducing the value of the part.
近時、二軸延伸されたLDPEより成るシーラントフィ
ルムが提案されている。Recently, a sealant film made of biaxially stretched LDPE has been proposed.
例えば、特開昭60−187544号公報には、沸騰水
温度における熱収縮率が縦および横方向において各々3
0%以上のものが、特開昭62−59037号公報には
、95℃における熱収縮率が縦および横方向において各
々10〜50%のものが、特開昭62−201229号
公報には、90℃における面積収縮率が20%以上のも
のが、特開昭63−214445号公報には、75℃に
おける熱収縮率か縦および横方向において各々6%以上
のものが、それぞれ提案されている。For example, Japanese Patent Application Laid-open No. 60-187544 discloses that the thermal shrinkage rate at boiling water temperature is 3 in the vertical and horizontal directions.
0% or more in JP-A No. 62-59037, and JP-A No. 62-201229 has a heat shrinkage rate of 10 to 50% in the vertical and horizontal directions at 95°C. A material with an area shrinkage rate of 20% or more at 90°C is proposed in JP-A-63-214445, and a heat shrinkage rate of 6% or more in each of the vertical and horizontal directions at 75°C is proposed. .
なお、上記の各シーラントフィルムは、いずれも、チュ
ーブラ−法により二軸延伸されたものである。In addition, each of the above-mentioned sealant films was biaxially stretched by the tubular method.
しかしながら、上記の二軸延伸されたLDPEより成る
シーラントフィルムは、延伸配向により強度は満足でき
るが、大きい熱収縮性を持つために、ヒートシール部に
シワが発生してヒートシール温度条件が制限されるなど
して、作業性および経済性に欠ける欠点がある。However, although the above-mentioned sealant film made of biaxially stretched LDPE has satisfactory strength due to the stretching orientation, it has large heat shrinkability, which causes wrinkles in the heat-sealed portion and limits the heat-sealing temperature conditions. However, there are disadvantages in terms of workability and economy.
また、二軸延伸されたフィルムにおいては、縦(MD)
方向:横(T D)方向もしくは横(TD)方向:縦(
MD)方向の収縮比がアンバランスであると分子配向の
異方性の影響を受け、その結果、−軸延伸法で得られた
フィルムと同様な分子配向の異方性のために、上記と同
様な問題を生じる。In addition, in biaxially stretched films, the longitudinal (MD)
Direction: Horizontal (TD) direction or Horizontal (TD) direction: Vertical (
If the shrinkage ratio in the MD) direction is unbalanced, it will be affected by the anisotropy of molecular orientation, and as a result, due to the anisotropy of molecular orientation similar to that of the film obtained by -axial stretching, A similar problem arises.
本発明の目的は、二軸延伸フィルムの特徴を活かし、し
かも、前記の二軸延伸フィルムが有する欠点を解消し、
例えば、ポリエチレンテレフタレ−) (PET) 、
セロハン、延伸ポリプロピレン(OPP)、延伸ナイロ
ン(ONY)等の基材フィルムに積層され、食品包装用
多層フィルム、般包装用多層フィルムとして好適なシー
ラントフィルムを提供することにある。The purpose of the present invention is to take advantage of the characteristics of biaxially stretched films, and also eliminate the drawbacks of the above-mentioned biaxially stretched films,
For example, polyethylene terephthalate (PET),
The object of the present invention is to provide a sealant film that is laminated onto a base film such as cellophane, oriented polypropylene (OPP), oriented nylon (ONY), etc., and is suitable as a multilayer film for food packaging or a multilayer film for general packaging.
すなわち、本発明の要旨は、線状低密度ポリエチレン樹
脂より成り、縦および横方向に各々3倍以上延伸され、
100℃において、面積収縮率が30%以下であり且つ
縦および横方向の各々の収縮比が0.5〜2.0の範囲
であることを特徴とするシーラントフィルムに存する。That is, the gist of the present invention is made of a linear low-density polyethylene resin, stretched 3 times or more in each of the longitudinal and transverse directions,
The present invention relates to a sealant film having an area shrinkage rate of 30% or less at 100°C and a shrinkage ratio in each of the longitudinal and transverse directions ranging from 0.5 to 2.0.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明のシーラントフィルムは、線状低密度ポリエチレ
ンを主体とする樹脂より成る。The sealant film of the present invention is made of a resin mainly composed of linear low-density polyethylene.
線状低密度ポリエチレンは、エチレンとα−オレフィン
の共重合体であり、従来の高圧法により製造される低密
度ポリエチレンとは異なり、低圧法で製造されるため、
設備費および使用エネルギーが少な(て安価に製造でき
る。そして、エチレンと共重合されるα−オレフィンと
しては、ブテン−1、ペンテン−1、ヘキセン−1、オ
クテン−1,4−メチルペンテン−1等が挙げられる。Linear low-density polyethylene is a copolymer of ethylene and α-olefin, and unlike low-density polyethylene, which is produced by the conventional high-pressure method, it is produced by a low-pressure method.
It can be produced at low cost due to low equipment costs and energy consumption.Alpha-olefins copolymerized with ethylene include butene-1, pentene-1, hexene-1, octene-1,4-methylpentene-1. etc.
高圧法低密度ポリエチレンと線状低密度ポリエチレンと
の構造的違いは、前者は多分岐状の分子構造であり、後
者は直鎖状の分子構造となっている点である。The structural difference between high-pressure low density polyethylene and linear low density polyethylene is that the former has a multi-branched molecular structure, and the latter has a linear molecular structure.
線状低密度ポリエチレンの製法は種々有り、その物性も
製法ごとに多少異なるか、本発明に使用する線状低密度
ポリエチレンは、MI (メルトインデックス、g/
10m1n )が0.5〜3.0のものが好ましい。There are various methods of manufacturing linear low-density polyethylene, and the physical properties vary depending on the manufacturing method.
10m1n) is preferably 0.5 to 3.0.
MIか0.5より小さい場合は、押出性か不十分であり
、後述するような原反の成形に当り、例えば、サージン
グによるシート成形の不安定が厚み変動を引き起こし、
更に、これに起因する冷却斑により、透明性あるいは結
晶性のばらつきなどを生じることが多く、従って、物性
および延伸性に優れた原反を得ることが困難である。If the MI is less than 0.5, the extrudability is insufficient, and when forming the original fabric as described below, for example, instability in sheet forming due to surging causes thickness fluctuations.
Furthermore, cooling spots caused by this often cause variations in transparency or crystallinity, making it difficult to obtain a raw fabric with excellent physical properties and stretchability.
また、MIが3.0より大きい場合は、メルトテンショ
ンが低く、例えば、インフレーション成形でのバブルの
垂れ下がり或いはTダイ成形での冷却ドラムへの接触不
安定に起因するさざ波現象の発生などの原反成形におけ
る不都合がある。更に、分子量が小さいことにより、分
子鎖が短くて分子鎖同士の絡み合が少ないことに起因す
ると思われる延伸性および延伸配向度が低下する。その
結果、フィルム物性も低下して所望の延伸フィルムを得
ることか困難である。If the MI is greater than 3.0, the melt tension is low, and the raw material may be affected by, for example, the drooping of bubbles during inflation molding or the occurrence of ripples due to unstable contact with the cooling drum during T-die molding. There are disadvantages in molding. Furthermore, due to the low molecular weight, the stretchability and degree of stretch orientation are lowered, which is thought to be due to the shorter molecular chains and less entanglement between the molecular chains. As a result, the physical properties of the film deteriorate, making it difficult to obtain a desired stretched film.
また、本発明に使用する線状低密度ポリエチレンは、密
度(g/cc)が0.910〜0.940の範囲のもの
が好ましい。Moreover, the linear low density polyethylene used in the present invention preferably has a density (g/cc) in the range of 0.910 to 0.940.
密度が0.910より小さい場合は、フィルムの柔軟性
は優れるが、加工適性に問題を生じ、また、密度が0.
940より大きい場合は、フィルムの柔軟性が損なわれ
る。If the density is less than 0.910, the flexibility of the film will be excellent, but problems will arise in processability;
If it is larger than 940, the flexibility of the film will be impaired.
なお、線状低密度ポリエチレンには、本発明の目的に支
障を来さない範囲であれば、高圧法ポリエチレン、エチ
レン−酢酸ビニル共重合体アイオノマー、エチレン−プ
ロピレン共重合体等を混合することが出来る。更に、常
法に従い、熱および紫外線安定剤、顔料、帯電防止剤、
蛍光剤、滑剤等を添加しても差支えない。Note that high-pressure polyethylene, ethylene-vinyl acetate copolymer ionomer, ethylene-propylene copolymer, etc. may be mixed with the linear low-density polyethylene as long as it does not interfere with the purpose of the present invention. I can do it. Furthermore, heat and ultraviolet stabilizers, pigments, antistatic agents,
There is no problem in adding fluorescent agents, lubricants, etc.
本発明のシーラントフィルムは、上記のような線状低密
度ポリエチレンを主体とする樹脂より、実質的に未配向
の原反を成形し、該原反を二軸に延伸した後、熱処理す
ることにより得られる。The sealant film of the present invention is produced by molding a substantially unoriented raw film from a resin mainly composed of linear low-density polyethylene as described above, biaxially stretching the raw film, and then heat-treating the film. can get.
原反の成形は、通常のシート成形装置および成形方法に
準じて行えばよく、例えば、TダイによるTダイ成形法
を用いることが出来る。The raw fabric may be formed according to a conventional sheet forming apparatus and forming method, and for example, a T-die forming method using a T-die may be used.
二軸延伸は、同時二軸延伸法、チューブラ−同時二軸延
伸法、逐二軸延伸法のいずれの方法であってもよいが、
逐二軸延伸法が好適に用いられる。Biaxial stretching may be any of the simultaneous biaxial stretching method, tubular simultaneous biaxial stretching method, and sequential biaxial stretching method,
A biaxial stretching method is preferably used.
延伸温度は、原料樹脂の融点−50℃〜融点−10℃の
範囲、好ましくは、融点−30℃〜融点=13℃の範囲
とされる。The stretching temperature is in the range of -50°C to -10°C, the melting point of the raw material resin, preferably in the range of -30°C to melting point = 13°C.
延伸温度が融点−50℃未満の場合は、分子鎖の運動性
が乏しいため、延伸時に破断し易く、たとえ延伸できた
としても延伸倍率が上がらず、物性の優れた延伸フィル
ムを得ることが困難である。If the stretching temperature is below the melting point -50°C, the molecular chains have poor mobility and are likely to break during stretching, and even if stretching is possible, the stretching ratio will not increase, making it difficult to obtain a stretched film with excellent physical properties. It is.
逆に、融点−10℃より高い場合は、線状低密度ポリエ
チレン特有のDSC曲線による複数ピークから推察され
るように、線状低密度ポリエチレンが一部溶は始めて延
伸による配向効果が十分得られず、また、見かけ上延伸
されてもフィルムに延伸斑が生じることがあり、透明性
も十分ではない。On the other hand, when the melting point is higher than -10°C, as can be inferred from the multiple peaks in the DSC curve peculiar to linear low-density polyethylene, the linear low-density polyethylene is partially melted and the orientation effect by stretching cannot be sufficiently obtained. Furthermore, even if the film is apparently stretched, stretching irregularities may occur in the film, and the transparency is not sufficient.
延伸倍率は、二軸延伸性(延伸しやすさ)及び得られる
フィルム物性の観点から、縦および横力向に3倍以上8
倍未満であって二方向の延伸倍率の積が9倍以上50倍
未満とするのがよい。そして、フィルムの厚みは、通常
、5〜50μ、好ましくは、lO〜35μの範囲とする
のがよい。The stretching ratio is 3 times or more in the longitudinal and transverse directions from the viewpoint of biaxial stretchability (easiness of stretching) and physical properties of the obtained film.
The product of the stretching ratios in two directions is preferably 9 times or more and less than 50 times. The thickness of the film is usually in the range of 5 to 50 microns, preferably 10 to 35 microns.
なお、延伸速度は、特に限定されずに適宜の延伸速度を
選択することができる。Note that the stretching speed is not particularly limited, and an appropriate stretching speed can be selected.
一方、熱処理温度は、原料樹脂の融点−40℃〜融点−
3℃の温度が好ましい。熱処理温度が融点−40℃未満
の場合は、得られるフィルムは寸法安定性に欠け、シー
ラントフィルムとして使用した場合、ヒートシール時に
フィルムが収縮してシール面にシワが発生し易い。逆に
、融点−3℃より高い場合は、延伸により生じたフィル
ム内部の分子配向が流動して崩れ、フィルム物性が著し
く低下する。そして、熱処理時間は、5秒以上とするの
が好ましい。熱処理温度が上記温度範囲内であっても、
熱処理時間が5秒未満の場合は、得られるフィルムは寸
法安定性に欠け、シーラントフィルムとして使用した場
合、ヒートシール時にフィルムが収縮してシール面にシ
ワが発生し易い。On the other hand, the heat treatment temperature ranges from -40°C to the melting point of the raw resin.
A temperature of 3°C is preferred. If the heat treatment temperature is lower than the melting point -40°C, the resulting film lacks dimensional stability, and when used as a sealant film, the film tends to shrink during heat sealing and cause wrinkles on the sealing surface. On the other hand, if the melting point is higher than -3°C, the molecular orientation inside the film caused by stretching will flow and collapse, resulting in a marked decline in film properties. The heat treatment time is preferably 5 seconds or more. Even if the heat treatment temperature is within the above temperature range,
When the heat treatment time is less than 5 seconds, the obtained film lacks dimensional stability, and when used as a sealant film, the film tends to shrink during heat sealing and wrinkles are likely to occur on the sealing surface.
本発明のシーラントフィルムは、上記の延伸温度、延伸
倍率、熱処理条件を適宜選択して組み合わせることによ
り、二軸延伸フィルムの縦(MD)方向:横(TD)方
向もしくは横(TD)方向;縦(MD)方向の収縮比が
0.5〜2.0の範囲となるようにする。The sealant film of the present invention can be produced by appropriately selecting and combining the above-mentioned stretching temperature, stretching ratio, and heat treatment conditions to produce a biaxially stretched film in the longitudinal (MD) direction: transverse (TD) direction or in the transverse (TD) direction; The shrinkage ratio in the (MD) direction is set to be in the range of 0.5 to 2.0.
また、本発明のシーラントフィルムには、公知のコロナ
処理、フレーム処理等の表面処理を施すこともできる。Further, the sealant film of the present invention can be subjected to known surface treatments such as corona treatment and flame treatment.
本発明のシーラントフィルムは、公知の方法により、基
材フィルムに積層して所望の多層フィルムとして用いら
れる。The sealant film of the present invention is used as a desired multilayer film by laminating it on a base film by a known method.
積層は、例えば、エクストルージョンラミネート、ドラ
イラミネート等の方法によって容易に行うことができる
。エクストルージョンラミネートとは、溶融押a法によ
り、接着剤層となるフィルム成形可能な熱可塑性樹脂を
押出機のTダイの細いスリットから基材フィルム上に押
出すと共にシーラントフィルムを積層し、冷却固化する
方法である。ドライラミネートとは、ウレタン系などの
有機溶剤型接着剤等を基材フィルムに塗布し、乾燥によ
り溶剤を蒸発除去した後、シーラントフィルムと加熱圧
着により積層する方法である。Lamination can be easily performed by, for example, extrusion lamination, dry lamination, or the like. Extrusion lamination is a method in which a thermoplastic resin that can be formed into a film, which will become the adhesive layer, is extruded onto a base film through a thin slit in the T-die of an extruder using the melt extrusion method, and a sealant film is laminated, and the film is cooled and solidified. This is the way to do it. Dry lamination is a method in which an organic solvent-based adhesive such as urethane adhesive is applied to a base film, the solvent is evaporated off by drying, and then a sealant film is laminated by heat and pressure bonding.
上記ラミネートの際の加工条件は、基材フィルムの種類
に対応して適切に選択される。The processing conditions during the above lamination are appropriately selected depending on the type of base film.
以下、本発明を実施例に基いて具体的に説明するが、本
発明はその要旨を越えない限り以下の実施例に限定され
るものではない。Hereinafter, the present invention will be specifically explained based on Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.
なお、以下の諸例では、ロールによる縦延伸装置と熱風
オーブン方式テンターの横延伸装置を用いた逐次二軸延
伸法を採用した。In the following examples, a sequential biaxial stretching method using a longitudinal stretching device using rolls and a horizontal stretching device using a hot air oven type tenter was adopted.
また、本文および以下の諸例中に示した測定項目は次の
方法によった。In addition, the measurement items shown in the main text and the following examples were carried out by the following method.
1、収縮率
縦横共10cmの正方形に切り取ったフィルムを所定温
度のシリコンオイル浴中に10分間浸漬して取り出し、
縦横それぞれの長さを測定し、次式により算出した。1. Shrinkage rate A film cut into a square of 10 cm in length and width is immersed in a silicone oil bath at a specified temperature for 10 minutes and taken out.
The vertical and horizontal lengths were measured and calculated using the following formula.
収縮率(%) = (10−A or B) X10面
積収縮率(%)=100−AXB
但し、A及びBは浸漬後の縦横それぞれの長さく単位は
am)を示す。Shrinkage rate (%) = (10-A or B) X10 area shrinkage rate (%) = 100-AXB However, A and B indicate length and width after immersion (in am).
2、収縮比 次式より算出した。2. Shrinkage ratio Calculated using the following formula.
3、密度(ρ)
JIS K 6760に準拠し、密度勾配管を用い
23℃で測定した(単位:g/cc)。3. Density (ρ) Measured at 23°C using a density gradient tube in accordance with JIS K 6760 (unit: g/cc).
4、融点
示差走査熱量計(パーキンエルマー社製DSC−II)
の測定による融解曲線上の吸熱メインピーク温度を融点
とした。4. Melting point differential scanning calorimeter (DSC-II manufactured by PerkinElmer)
The endothermic main peak temperature on the melting curve determined by the measurement was taken as the melting point.
測定条件:測定試料 IO〜30■
昇温速度 10℃/mi口
5、MI (メルトインデックス)
JIS K 6760に準拠し、190℃で測定し
た(単位:g/10分)。Measurement conditions: Measurement sample IO~30■ Temperature increase rate 10°C/mi 5, MI (melt index) Measured at 190°C in accordance with JIS K 6760 (unit: g/10 minutes).
6、ラミネート方法
Aニドライラミネート
弐巴製薬製うミ接着剤タケラックA615/A65/酢
酸エチルを使用。約80℃でドライラミネートし、40
℃で4日間熟成した。6. Lamination method A: Nidry laminate Use the adhesive Takelac A615/A65/ethyl acetate manufactured by Nitomoe Pharmaceuticals. Dry laminated at about 80℃, 40℃
It was aged for 4 days at ℃.
B:エクストルージョンラミネート 低密度ポリエチレンを用い押出ラミネートした。B: Extrusion laminate Extrusion laminated using low density polyethylene.
実施例1
23℃における密度0.920 g / cc 、メル
トインデックス0.9 g/ 10m1n 、流動比2
1、共重合成分4−メチルペンテン−1、共重合量10
重量%のエチレン−α−オレフィン共重合体であり、D
SCによる溶融曲線についての主ピーク温度が125℃
である線状低密度ポリエチレンを200〜250℃で溶
融混練し、250℃に保ったTダイより押出し、公知の
エアーナイフ法により、冷却ロールに密着させて未延伸
シートを得た(この未延伸シートを原反とし、以下の諸
例においても用いた)。Example 1 Density at 23°C 0.920 g/cc, melt index 0.9 g/10 m1n, flow ratio 2
1. Copolymerization component 4-methylpentene-1, copolymerization amount 10
% by weight of ethylene-α-olefin copolymer, D
The main peak temperature for the melting curve by SC is 125°C
Linear low-density polyethylene was melt-kneaded at 200 to 250°C, extruded through a T-die maintained at 250°C, and brought into close contact with a cooling roll by the known air knife method to obtain an unstretched sheet (this unstretched The sheet was used as the original fabric and was also used in the following examples).
上記の原反シートを逐次二軸延伸装置に導き、縦延伸温
度112℃、横延伸温度100℃の条件において縦横そ
れぞれ5倍に延伸し、延伸されたフィルムは直ちに熱処
理温度120℃において5秒間熱処理したのち室温に冷
却し巻取った。The above raw sheet is sequentially introduced into a biaxial stretching device, and stretched 5 times in both the length and width at a longitudinal stretching temperature of 112°C and a transverse stretching temperature of 100°C, and the stretched film is immediately heat treated for 5 seconds at a heat treatment temperature of 120°C. Thereafter, it was cooled to room temperature and rolled up.
得られた延伸フィルムは、厚み20μ、100℃の面積
収縮率は16%であった。The obtained stretched film had a thickness of 20 μm and an area shrinkage rate of 16% at 100° C.
上記のフィルムを厚み15μのナイロンニ軸延伸フィル
ム(三菱化成ポリチック社製一般品グレード/サントニ
ールSN)にドライラミネート法(A)又はエクストル
ージョンラミネート法(B)で積層し、ヒートシール温
度140℃1150℃1160℃、シール圧力2kg/
cm2、シール時間1 secでヒートシールしたとこ
ろ、いずれの条件においても、シール面にシワの発生は
みられず、シール強度も4〜5 kg/ 15 mmと
良好なシール部を得た。The above film was laminated on a 15 μm thick nylon biaxially stretched film (general product grade/Santonil SN manufactured by Mitsubishi Kasei Polytechnics) by dry lamination method (A) or extrusion lamination method (B), and heat-sealed at a temperature of 140°C and 1150°C. 1160℃, sealing pressure 2kg/
cm2 and sealing time of 1 sec, no wrinkles were observed on the sealing surface under any conditions, and a good sealing strength of 4 to 5 kg/15 mm was obtained.
実施例2
実施例1と同一条件において延伸されたフィルムを直ち
に熱処理温度100℃において5秒間熱処理したのち室
温に冷却し巻取った。Example 2 A film stretched under the same conditions as Example 1 was immediately heat treated at a heat treatment temperature of 100° C. for 5 seconds, cooled to room temperature, and wound up.
得られた延伸フィルムは、厚み20μ、100℃の面積
収縮率は30%であった。The obtained stretched film had a thickness of 20 μm and an area shrinkage rate of 30% at 100° C.
上記のフィルムを実施例1と同様にしてナイロンニ軸延
伸フィルムに積層し、ヒートシールしたところ、シール
面の収縮によるシワの発生はみられず、シール強度も4
〜5kg/15mmと良好なシール部を得た。When the above film was laminated to a nylon biaxially stretched film in the same manner as in Example 1 and heat-sealed, no wrinkles due to shrinkage of the sealing surface were observed, and the sealing strength was 4.
A good sealing area of ~5 kg/15 mm was obtained.
比較例1
実施例1と同一条件において延伸されたフィルムを直ち
に熱処理温度120℃において3秒間熱処理したのち室
温に冷却し巻取った。Comparative Example 1 A film stretched under the same conditions as Example 1 was immediately heat treated at a heat treatment temperature of 120° C. for 3 seconds, cooled to room temperature, and wound up.
得られた延伸フィルムは、厚み20μ、100℃の面積
収縮率は33%であった。The obtained stretched film had a thickness of 20 μm and an area shrinkage rate of 33% at 100° C.
上記のフィルムを実施例1と同様にしてナイロンニ軸延
伸フィルムに積層し、ヒートシールしたところ、シール
面が収縮し、また、シール面にシワの発生がみられ、商
品としての価値を持たないものであった。When the above film was laminated to a nylon biaxially stretched film in the same manner as in Example 1 and heat-sealed, the sealed surface shrank and wrinkles were observed on the sealed surface, so it had no value as a product. Met.
比較例2
実施例1と同一条件において延伸されたフィルムを直ち
に熱処理温度75℃において5秒間熱処理したのち室温
に冷却し巻取った。Comparative Example 2 A film stretched under the same conditions as Example 1 was immediately heat treated at a heat treatment temperature of 75° C. for 5 seconds, cooled to room temperature and wound up.
得られた延伸フィルムは、厚み20μ、100℃の面積
収縮率は50%であった。The obtained stretched film had a thickness of 20 μm and an area shrinkage rate of 50% at 100° C.
上記のフィルムを実施例1と同様にしてナイロンニ軸延
伸フィルムに積層し、ヒートシールしたところ、シール
面が収縮し、また、シール面にシワの発生がみられた。When the above film was laminated onto a biaxially stretched nylon film and heat sealed in the same manner as in Example 1, the sealed surface shrank and wrinkles were observed on the sealed surface.
なお、以上の実施例および比較例の結果を表−1にまと
めて示した。The results of the above Examples and Comparative Examples are summarized in Table 1.
表中の各記号の意味は次の通りである。The meaning of each symbol in the table is as follows.
○:シワ発生がなく良好 △:若干シワが発生 ×:シワが発生 また、収縮比は下記の式にて求めた値である。○: Good with no wrinkles △: Slight wrinkles occur ×: Wrinkles appear Moreover, the shrinkage ratio is a value calculated using the following formula.
表
〔効果〕
以上説明した本発明によれば、次のような優れた諸特性
を有するシーラントフィルムが提供される。Table [Effects] According to the present invention described above, a sealant film having the following excellent properties is provided.
(1)線状低密度ポリエチレン樹脂を原料として利用す
る利点は、そのまま享受し、シール性が良好であり、シ
ール強度が高い。(1) The advantages of using linear low-density polyethylene resin as a raw material can be enjoyed as is, with good sealing properties and high sealing strength.
(2)フィルム強度が優れ、熱収縮性小さく寸法安定性
に優れている。(2) Excellent film strength, low heat shrinkage and excellent dimensional stability.
(3) ヒートシール時にシワの発生がない。(3) No wrinkles occur during heat sealing.
(4)多層フィルムのシーラントフィルムに用いること
により多層フィルムの薄膜化が可能である。(4) By using it as a sealant film for a multilayer film, it is possible to make the multilayer film thinner.
よって、本発明の産業的価値は大である。Therefore, the industrial value of the present invention is great.
出願人 三菱化成ポリチック株式会社 代理人 弁理士 岡 1)数 彦Applicant: Mitsubishi Kasei Polytech Co., Ltd. Agent: Patent Attorney Oka 1) Kazuhiko
Claims (1)
り、縦および横方向に各々3倍以上延伸され、100℃
において、面積収縮率が30%以下であり且つ縦および
横方向の各々の収縮比が0.5〜2.0の範囲であるこ
とを特徴とするシーラントフイルム。(1) Made of resin mainly composed of linear low-density polyethylene, stretched at least 3 times in the vertical and horizontal directions at 100°C.
A sealant film having an area shrinkage rate of 30% or less and a shrinkage ratio in each of the vertical and horizontal directions ranging from 0.5 to 2.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21123690A JP2821252B2 (en) | 1990-08-09 | 1990-08-09 | Sealant film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21123690A JP2821252B2 (en) | 1990-08-09 | 1990-08-09 | Sealant film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0493225A true JPH0493225A (en) | 1992-03-26 |
JP2821252B2 JP2821252B2 (en) | 1998-11-05 |
Family
ID=16602542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21123690A Expired - Fee Related JP2821252B2 (en) | 1990-08-09 | 1990-08-09 | Sealant film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2821252B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0544098A2 (en) * | 1991-11-27 | 1993-06-02 | Mitsubishi Chemical Corporation | Polyolefin-based wrapping film |
CN112793140A (en) * | 2020-12-18 | 2021-05-14 | 汕头市明佳热收缩膜有限公司 | Process for preparing non-crosslinked biaxially oriented PE (polyethylene) heat shrinkable film by using double-bubble method |
-
1990
- 1990-08-09 JP JP21123690A patent/JP2821252B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0544098A2 (en) * | 1991-11-27 | 1993-06-02 | Mitsubishi Chemical Corporation | Polyolefin-based wrapping film |
CN112793140A (en) * | 2020-12-18 | 2021-05-14 | 汕头市明佳热收缩膜有限公司 | Process for preparing non-crosslinked biaxially oriented PE (polyethylene) heat shrinkable film by using double-bubble method |
CN112793140B (en) * | 2020-12-18 | 2023-09-22 | 汕头市明佳热收缩膜有限公司 | Process for preparing non-crosslinked biaxially oriented PE (polyethylene) heat-shrinkable film by double-bubble method |
Also Published As
Publication number | Publication date |
---|---|
JP2821252B2 (en) | 1998-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0173114B1 (en) | Bioriented blown film | |
US6391411B1 (en) | Machine direction oriented high molecular weight, high density polyethylene films with enhanced water vapor transmission properties | |
JP4915749B2 (en) | Polyolefin multilayer shrink film | |
US6344250B1 (en) | Multilayered polyolefin high shrinkage, low shrink force shrink film | |
JPH01120339A (en) | Heat shrinkable film for packing and preparation thereof | |
EP0204843B1 (en) | Low temperature heat shrinkable film and process for producing the same | |
JPH0899393A (en) | Polyolefinic heat-shrinkable laminated film | |
JP2016179648A (en) | Heat-shrinkable laminated film | |
JP3751965B2 (en) | Polyolefin multilayer shrink film | |
JP2004017545A (en) | Low temperature shrinkable multilayered polyolefinic film and manufacturing method therefor | |
JP5587136B2 (en) | Polyolefin heat shrinkable film with excellent shrink finish | |
JP5545627B2 (en) | Polyolefin thin film multilayer shrink film | |
JPH0493225A (en) | Sealant film | |
JP5399048B2 (en) | Polyethylene-based crosslinked shrink film | |
JP6289261B2 (en) | Heat shrinkable laminated film | |
JP2957660B2 (en) | Heat shrinkable laminated film | |
JPH1199600A (en) | Polyolefinic laminated stretch shrink film | |
JP5660852B2 (en) | Polyolefin heat shrinkable film with excellent shrink finish | |
JPS6227981B2 (en) | ||
JPH04357017A (en) | Manufacture of polyethylene-based biaxially oriented film | |
CA2207698C (en) | Multilayered polyolefin high shrinkage, low shrink force shrink film | |
EP0434322B1 (en) | Improved heat shrinkable polyolefin film | |
JP2000336221A (en) | Polypropylenic resin composition and heat-shrinkable film | |
JPH054276A (en) | Manufacture of polyethylene biaxially oriented film | |
JP7461799B2 (en) | Gas barrier shrink film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080828 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090828 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |