[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0491038A - Production of hydrocarbon - Google Patents

Production of hydrocarbon

Info

Publication number
JPH0491038A
JPH0491038A JP2209044A JP20904490A JPH0491038A JP H0491038 A JPH0491038 A JP H0491038A JP 2209044 A JP2209044 A JP 2209044A JP 20904490 A JP20904490 A JP 20904490A JP H0491038 A JPH0491038 A JP H0491038A
Authority
JP
Japan
Prior art keywords
carbon
methane
reaction
oxidative coupling
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2209044A
Other languages
Japanese (ja)
Other versions
JP3026451B2 (en
Inventor
Kaoru Fujimoto
薫 藤元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP02209044A priority Critical patent/JP3026451B2/en
Publication of JPH0491038A publication Critical patent/JPH0491038A/en
Application granted granted Critical
Publication of JP3026451B2 publication Critical patent/JP3026451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To selectively produce >=2C hydrocarbon by subjecting methane to heat-oxidative coupling using CO2 or steam as an oxidizing agent in the presence of a solid corbon under pressurization. CONSTITUTION:Methane is subjected to oxidative coupling to produce ethane, ethylene, propylene, etc., at 800-900 deg.C and 5-15kg/cm<2> using a solid carbon as a catalyst and using CO2 or steam as an oxidizing agent. The solid carbon includes coal, charcoal produced when coal is distilled, carbon black or active carbon, especially preferably having 500-4000m<2>/g specific surface area. An alkali (earth) metal or compound thereof may be added to the solid carbon. >=2C hydrocarbon can selectively be produced without using an expensive rare earth element as the catalyst.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、メ4ンからエタン、エチレン、プロピレンな
どの炭素数2以上の炭化水素を製造する上で有用な炭化
水素の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing hydrocarbons useful for producing hydrocarbons having two or more carbon atoms, such as ethane, ethylene, and propylene, from methane.

[従来の技術と発明が解決しようとする課題]天然ガス
には、いわゆるCI 化学原料として注目されているメ
タンが豊富に含まれている。このメタンを用いて、エタ
ン、エチレン、プロピレンなどのC2、Cs炭化水素を
合成することは、天然ガスの化学的転換技術の開発にお
いて非常に重要である。
[Prior art and problems to be solved by the invention] Natural gas contains abundant methane, which is attracting attention as a so-called CI chemical raw material. Synthesizing C2, Cs hydrocarbons such as ethane, ethylene, and propylene using this methane is very important in the development of chemical conversion technology for natural gas.

メタンからC2、C3炭化水素を製造する方法として、
酸素及び各種触媒の存在下で、メタンを酸化カップリン
グ反応に供する方法が提案されている。例えば、特開昭
61−165340号公報には、希土類金属触媒を含有
する触媒、特開昭62−238220号公報には、アル
カリ金属と第1遷移系列元素とを含有する触媒、特開昭
62−205038号公報には、塩基性酸化物にアルカ
リ金属のハロゲン化物を担持させた触媒が提案されてい
る。
As a method for producing C2 and C3 hydrocarbons from methane,
A method has been proposed in which methane is subjected to an oxidative coupling reaction in the presence of oxygen and various catalysts. For example, JP-A-61-165340 discloses a catalyst containing a rare earth metal catalyst; JP-A-62-238220 discloses a catalyst containing an alkali metal and a first transition series element; JP-A-205038 proposes a catalyst in which an alkali metal halide is supported on a basic oxide.

これらの触媒を用いて、酸化カップリング反応によりエ
タンやエチレンなどを製造する場合には、メタンのC2
、C3炭化水素への選択率が低い。
When producing ethane, ethylene, etc. by oxidative coupling reaction using these catalysts, methane C2
, the selectivity to C3 hydrocarbons is low.

特に、酸素が共存する酸化カップリング反応では酸素が
水に変換され、また多量の二酸化炭素が副生ずる。さら
に、これらの触媒は、高価な希土類元素を含むものが多
く、しかも、触媒活性が短期間内に低下し晶いので、転
化コストが高くなる。
In particular, in an oxidative coupling reaction in which oxygen coexists, oxygen is converted to water and a large amount of carbon dioxide is produced as a by-product. Furthermore, many of these catalysts contain expensive rare earth elements, and furthermore, their catalytic activity decreases and crystallizes within a short period of time, resulting in high conversion costs.

特開昭63−222126号公報には、触媒を用いるこ
となく、酸素を用いてメタンを酸化カップリングする方
法が提案されている。この方法においては、メタンを分
子状酸素と共に加圧下で加熱するので、燃焼反応を伴な
い、多量の一酸化炭素及び二酸化炭素を生成する。
JP-A-63-222126 proposes a method of oxidative coupling of methane using oxygen without using a catalyst. In this method, methane is heated together with molecular oxygen under pressure, resulting in a combustion reaction and producing large amounts of carbon monoxide and carbon dioxide.

一方、石炭のガス化は、水蒸気又は炭酸ガスと酸素との
混合ガスを用い、1000℃以上で反応させることによ
って容易に進行し、実用化の段階にある。しかしながら
、得られるガスは、水素と一酸化炭素のみであり、その
価値は必ずしも高くはない。
On the other hand, gasification of coal easily proceeds by reaction at 1000° C. or higher using water vapor or a mixed gas of carbon dioxide and oxygen, and is at the stage of practical application. However, the gases obtained are only hydrogen and carbon monoxide, and their value is not necessarily high.

従って、本発明の目的は、高価な触媒を用いることなく
、メタンから炭素数2以上の炭化水素を高い選択率で生
成させることができる炭化水素の製造方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a method for producing hydrocarbons that can produce hydrocarbons having two or more carbon atoms from methane with high selectivity without using an expensive catalyst.

[発明の構成] 本発明者らは、石炭のガス化反応プロセスの解析過程で
、(1)炭素表面に生成する「表面酸化物」と称される
中間体を経由してガス化反応が進行すること、(2)前
記「表面酸化物」と炭素との間には酸化・還元反応の繰
り返しである「レドックスサイクル」が生じ、「表面酸
化物」の生成量により、石炭のガス化反応が支配されて
いること、(3)メタンの酸化カップリング反応は、活
性化された酸素により進行するが、「表面酸化物」が、
メタンの酸化カップリング反応における活性化された酸
素と同様に機能することを見いだし、本発明を完成した
。すなわち、本発明は、メタンを酸化剤と共に、加圧下
で加熱し、酸化カップリングにより炭素数2以上の炭化
水素を製造する方法であって、酸化剤として二酸化炭素
又は水蒸気を用い、固体炭素の存在下でメタンを酸化カ
ップリングする炭化水素の製造方法を提供する。
[Structure of the Invention] In the process of analyzing the coal gasification reaction process, the present inventors discovered that (1) the gasification reaction progresses through intermediates called "surface oxides" that are generated on the carbon surface; (2) A "redox cycle" consisting of repeated oxidation and reduction reactions occurs between the "surface oxides" and carbon, and the amount of produced "surface oxides" increases the gasification reaction of coal. (3) The oxidative coupling reaction of methane proceeds with activated oxygen, but “surface oxides”
The present invention was completed based on the discovery that activated oxygen functions in the same way as activated oxygen in the oxidative coupling reaction of methane. That is, the present invention is a method for producing hydrocarbons having two or more carbon atoms by oxidative coupling by heating methane together with an oxidizing agent under pressure. Provided is a method for producing hydrocarbons by oxidative coupling of methane in the presence of methane.

本発明では触媒として固体炭素を使用する。固体炭素と
しては、例えば、石炭、石炭を乾留した際に生成するチ
ャー、カーボンブラックあるいは活性炭などが挙げられ
る。これらの固体炭素の中で、比表面積が大きな固体炭
素、例えば、比表面積500〜4000 m’ / g
程度の固体炭素か好ましい。また、固体炭素には、カリ
ウム、ナトリウムなどのアルカリ金属、カルシウム、マ
グネシウムなどのアルカリ土類金属、あるいはそれらの
化合物を添着してもよい。
In the present invention, solid carbon is used as a catalyst. Examples of solid carbon include coal, char produced when coal is carbonized, carbon black, and activated carbon. Among these solid carbons, solid carbon with a large specific surface area, for example, a specific surface area of 500 to 4000 m'/g
Solid carbon is preferred. Further, solid carbon may be impregnated with alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, or compounds thereof.

本発明では、−酸化炭素の生成を抑制するため、酸素で
はなく、酸化剤として機能する二酸化炭素又は水蒸気を
用いる。二酸化炭素と水蒸気は混合して使用してもよい
。二酸化炭素及び水蒸気は、前記固体炭素表面において
、炭素−酸素活性種を生成する。より詳細には、分子状
酸素を酸化剤として使用した従来のメタンの酸化カップ
リング反応のメカニズムは、次の通りである。なお、記
号*は活性化されていることを示す。
In the present invention, carbon dioxide or water vapor, which functions as an oxidizing agent, is used instead of oxygen in order to suppress the generation of carbon oxide. Carbon dioxide and water vapor may be used in combination. Carbon dioxide and water vapor generate carbon-oxygen active species at the solid carbon surface. More specifically, the mechanism of the conventional oxidative coupling reaction of methane using molecular oxygen as an oxidizing agent is as follows. Note that the symbol * indicates activation.

CH4C」4*(a) 02−20*              (b)CH
4+ 20          CH3・  +  H
O2・   (e)CH3・ + CH3・ →C2H
6(d)CH3・ +02→ CH302 →C01CO2(e) この酸化カップリング反応においては、活性化された酸
素により反応が進行する。触媒の機能は、この活性化さ
れた酸素[M+O−]  (Mは金属触媒を示し、0は
実際上は金属に吸着された分子状の吸着酸素種である)
を生成することにあると説明されている。そして、この
酸化カップリング反応においては、分子状酸素によるメ
タンの酸化反応、燃焼反応に伴ない、多量の一酸化炭素
及び二酸化炭素が副生ずる。
CH4C” 4*(a) 02-20* (b) CH
4+ 20 CH3・+H
O2・ (e) CH3・ + CH3・ →C2H
6(d) CH3.+02→CH302→C01CO2(e) In this oxidative coupling reaction, the reaction proceeds with activated oxygen. The function of the catalyst is to convert this activated oxygen [M+O-] (M indicates a metal catalyst, and 0 is actually a molecular adsorbed oxygen species adsorbed on the metal).
It is explained that the purpose is to generate. In this oxidative coupling reaction, a large amount of carbon monoxide and carbon dioxide are produced as by-products due to the oxidation reaction and combustion reaction of methane by molecular oxygen.

これに対して、本発明のメタンの酸化カップリング反応
のメカニズムは、酸化剤として二酸化炭素を用いた場合
、次のように推測される。なお、Cは固体炭素を示し、
C(0)は固体炭素表面の表面酸化物を示す。
On the other hand, the mechanism of the methane oxidative coupling reaction of the present invention is presumed to be as follows when carbon dioxide is used as the oxidizing agent. In addition, C indicates solid carbon,
C(0) represents a surface oxide on the solid carbon surface.

(+C02→C(0) +CO(A) 2CH4+C(0)−”C2H6+H20+C(B)C
2H6+C(0)→C2H4+H20+C(C)C(C
O) −CO(1)) 二の反応において固体炭素は、触媒として機能し、酸化
剤である二酸化炭素又は水蒸気により、固体炭素の表面
に、活性な表面酸素基を形成して保持する。従って、メ
タンは、固体炭素表面の表面前化物により、事実1全て
炭素数2以上の炭化水素に転換され、選択率が大きい。
(+C02→C(0) +CO(A) 2CH4+C(0)-”C2H6+H20+C(B)C
2H6+C(0)→C2H4+H20+C(C)C(C
O) -CO(1)) In the second reaction, the solid carbon functions as a catalyst, and active surface oxygen groups are formed and retained on the surface of the solid carbon by the oxidizing agent carbon dioxide or water vapor. Therefore, methane is actually all converted into hydrocarbons having two or more carbon atoms by the surface precursors on the solid carbon surface, and the selectivity is high.

また、同時に、固体炭素は表面酸素によって酸化され、
通常のガス化生成物である一酸化炭素などを与える。す
なわち、−酸化炭素は、石炭のガス化と同様な、固体炭
素と酸化剤との反応により生成する。この点、メタンの
酸化反応により一酸化炭素を併産する従来の方法と異な
る。
At the same time, solid carbon is oxidized by surface oxygen,
Provides common gasification products such as carbon monoxide. That is, -carbon oxide is produced by a reaction between solid carbon and an oxidizing agent, similar to the gasification of coal. In this respect, it differs from conventional methods in which carbon monoxide is co-produced through the oxidation reaction of methane.

前記反応メカニズムからも明らかなように、本発明にお
いては、石炭などの炭素質物質のガス化プロセスに、単
にメタンを導入することによって、エタン、エチレンな
どを効率よく製造できる。
As is clear from the reaction mechanism described above, in the present invention, ethane, ethylene, etc. can be efficiently produced by simply introducing methane into the gasification process of carbonaceous materials such as coal.

本発明のメタンの酸化カップリング反応において、メタ
ンと、二酸化炭素又は水蒸気との割合は、メタン1モル
に対して、二酸化炭素又は水蒸気031〜5モル、好ま
しくは0.25〜2モル程度である。なお、固体炭素量
と、炭素数2以上の炭化水素の生成量との間には、比例
関係が認められる。
In the methane oxidative coupling reaction of the present invention, the ratio of methane to carbon dioxide or water vapor is about 031 to 5 moles, preferably about 0.25 to 2 moles, per 1 mole of methane. . Note that there is a proportional relationship between the amount of solid carbon and the amount of hydrocarbons having two or more carbon atoms produced.

また、固体炭素、反応温度なとのファクターを調整する
ことにより、転化率、選択率を制御できる。
Furthermore, the conversion rate and selectivity can be controlled by adjusting factors such as solid carbon and reaction temperature.

反応温度の下限は、メタンの転化率および選択率を考慮
して選択され、その上限はエネルギーコストなどの点か
ら選択できる。反応温度は、例えば、650〜1000
℃、好ましくは800〜900℃程度である。反応温度
が650℃未満ではメタンの転化が殆ど進行せず、10
00℃を越える場合には、選択率がさほど向上しない。
The lower limit of the reaction temperature is selected in consideration of the conversion rate and selectivity of methane, and the upper limit thereof can be selected in consideration of energy costs and the like. The reaction temperature is, for example, 650 to 1000
℃, preferably about 800 to 900℃. If the reaction temperature is lower than 650°C, methane conversion will hardly proceed;
When the temperature exceeds 00°C, the selectivity does not improve much.

反応圧力の下限は、メタンの転化率および選択率を考慮
して決定でき、その上限は装置上の観点から決定できる
。反応圧力は、例えば、2.5〜20 kg / cシ
、好ましくは5〜15眩/C−程度である。圧力が2.
5)cg/c−未満では加圧効果か小さく、20kg/
c−を越えると収率がそれほど向上せず、高圧のため耐
圧構造の装置とする必要があり、経済的でない。
The lower limit of the reaction pressure can be determined by considering the conversion rate and selectivity of methane, and the upper limit can be determined from the viewpoint of the equipment. The reaction pressure is, for example, about 2.5 to 20 kg/c, preferably about 5 to 15 dazzle/c. Pressure is 2.
5) If it is less than cg/c-, the pressurizing effect is small, and 20kg/c-
If it exceeds c-, the yield will not improve much and the high pressure will require a pressure-resistant structure, which is not economical.

[発明の効果] 本発明の炭化水素の製造方法では、高価な希土類元素を
触媒として使用することなく、炭素数2以上の炭化水素
を選択率よく製造できる。
[Effects of the Invention] In the method for producing hydrocarbons of the present invention, hydrocarbons having 2 or more carbon atoms can be produced with high selectivity without using expensive rare earth elements as catalysts.

[実施例] 以下に、実施例に基づいて本発明をより詳細に説明する
[Examples] The present invention will be described in more detail below based on Examples.

実施例1 加圧流通装置を用いて酸化カップリング反応を行なった
。なお、金属表面での反応を防止するため、反応器は、
前型のインコロイHの保護筒内に石英管を挿入すること
により構成した。
Example 1 An oxidative coupling reaction was carried out using a pressurized flow device. In addition, in order to prevent reactions on the metal surface, the reactor is
It was constructed by inserting a quartz tube into the protective cylinder of the previous type Incoloy H.

流動床パイロライザーを用いて、ヤルーン(Yaour
n)炭、バイドリー(Baldurl)炭および太平4
炭を、それぞれ温度900℃、窒素気流中で乾留するこ
とにより、炭種の異なる石炭チャーを作製した。得られ
たチャーを石英管に充填し、反応温度850℃、メー欧
ン二二酸化炭素−1:1 (モル比)、ガス流量1.0
 ml /秒、および圧力6 k’i / ojの条件
で酸化カップリング反応を行なった。なお、参考までに
、チャーを充填することなく、上記と同様にして、メタ
ンおよび二酸化炭素を供給した。
Using a fluidized bed pyrolyzer, Yaour
n) Charcoal, Baldurl Charcoal and Taiping 4
Coal chars of different charcoal types were produced by carbonizing each charcoal at a temperature of 900° C. in a nitrogen stream. The obtained char was filled into a quartz tube, and the reaction temperature was 850°C, carbon dioxide - 1:1 (mole ratio), and the gas flow rate was 1.0.
The oxidative coupling reaction was carried out under the conditions of ml/sec and a pressure of 6 k'i/oj. For reference, methane and carbon dioxide were supplied in the same manner as above without filling with char.

反応生成物の組成をガスクロマトグラフィーにより分析
した。チャーの充填量と共に、反応開始から1.00秒
経過後の結果を表1に示す。
The composition of the reaction product was analyzed by gas chromatography. Table 1 shows the results 1.00 seconds after the start of the reaction, along with the amount of char filled.

表1より、チャーの充填量と、C2化合物の生成量とが
比例関係にあることが認められ、選択率が大きい。また
、チャ一種としては、ヤルーン炭チャーが高い触媒活性
を有している。
From Table 1, it is recognized that there is a proportional relationship between the amount of char packed and the amount of C2 compound produced, and the selectivity is high. Furthermore, as a type of char, Yaloon char has high catalytic activity.

比較例1 チャーに代えて、石英を充填する以外、実施例1と同様
にして反応したところ、C2化合物は生成せず、反応が
進行しないことが確認された。
Comparative Example 1 When a reaction was carried out in the same manner as in Example 1 except that quartz was filled instead of char, it was confirmed that no C2 compound was generated and the reaction did not proceed.

比較例2 実施例1と同一装置を用いて、活性炭(武田薬品工業■
製、商品名白鷺C1比表面積1200 m’/g、20
〜40メツシユ)を60mg充填し、反応温度850℃
、圧力6 kg / c−の条件で、メタンのみをガス
流量1.0 ml /秒の速度で流して反応した。その
結果、活性炭に吸着した酸素に起因するためか、反応当
初はエタン、エチレンの生成が見られたものの、時間の
経過とともに減少し、最終的にはC2化合物は検出され
なかった。
Comparative Example 2 Using the same equipment as in Example 1, activated carbon (Takeda Pharmaceutical Co., Ltd.
Manufactured by Shirasagi C1 Specific surface area 1200 m'/g, 20
~40 meshes) was charged, and the reaction temperature was 850°C.
, and the pressure was 6 kg/c-, and the reaction was carried out by flowing only methane at a gas flow rate of 1.0 ml/sec. As a result, the production of ethane and ethylene was observed at the beginning of the reaction, probably due to oxygen adsorbed on the activated carbon, but the production decreased over time, and ultimately no C2 compound was detected.

実施例2 比較例2で用いた活性炭を用い、反応温度850.90
0℃、メタン:二酸化炭素−3=1(モル比)、混合ガ
スの流量20m1/秒、圧力12kg/C−の条件で酸
化カップリング反応を行なった。
Example 2 Using the activated carbon used in Comparative Example 2, the reaction temperature was 850.90.
The oxidative coupling reaction was carried out under the conditions of 0°C, methane:carbon dioxide-3=1 (molar ratio), mixed gas flow rate of 20 ml/sec, and pressure of 12 kg/C-.

活性炭などの充填量と共に、結果を表2に示す。The results are shown in Table 2 along with the amount of activated carbon etc. charged.

実施例3 実施例2で用いた活性炭に代えて、この活性炭に炭酸カ
リウムを含浸法により担持させた固体炭素[担持量:カ
リウム換算10モル/炭素(−)]を用いる以外、実施
例2と同様にして、酸化カップリング反応を行なった。
Example 3 The same procedure as Example 2 was carried out, except that instead of the activated carbon used in Example 2, solid carbon in which potassium carbonate was supported on the activated carbon by an impregnation method [supported amount: 10 mol/carbon (-) in terms of potassium] was used. An oxidative coupling reaction was carried out in the same manner.

結果を表2に示す。The results are shown in Table 2.

(以下、余白) 表2より、前記表1と同様に、エタンおよびエチレンの
選択率が大きい。
(Hereinafter, blank spaces) From Table 2, similar to Table 1, the selectivity of ethane and ethylene is large.

実施例4 比較例2で用いた活性炭にNaを担持させた固体炭素[
担持量:10モル/炭素(kg)]を反応管に100m
g充填し、表3に示す反応温度にて、メタン:窒素、水
蒸気−5ml /秒:10m1/秒・3.5ml/秒の
条件で混合ガスを流し、酸化カップリング反応を行なっ
た。なお、反応管の上流側にベーパライザーを配置して
固体炭素の充填層に水蒸気を供給し、また下流側に耐圧
水蒸気トラップを設置し、加圧状態のうちに水蒸気を凝
縮させた。結果を表3に示す。
Example 4 Solid carbon in which Na was supported on the activated carbon used in Comparative Example 2 [
Supported amount: 10 mol/carbon (kg)] in a reaction tube of 100 m
At the reaction temperature shown in Table 3, a mixed gas of methane:nitrogen, water vapor-5 ml/sec: 10 ml/sec, 3.5 ml/sec was flowed to carry out an oxidative coupling reaction. A vaporizer was placed on the upstream side of the reaction tube to supply water vapor to the packed bed of solid carbon, and a pressure-resistant steam trap was placed on the downstream side to condense the water vapor under pressure. The results are shown in Table 3.

表3 表3より、前記表1と同様に、エタンおよびエチレンの
選択率が大きい。
Table 3 From Table 3, similar to Table 1 above, the selectivity of ethane and ethylene is large.

Claims (1)

【特許請求の範囲】[Claims] メタンを酸化剤と共に、加圧下で加熱し、酸化カップリ
ングにより炭素数2以上の炭化水素を製造する方法であ
って、酸化剤として二酸化炭素又は水蒸気を用い、固体
炭素の存在下でメタンを酸化カップリングする炭化水素
の製造方法。
A method for producing hydrocarbons with a carbon number of 2 or more by heating methane together with an oxidizing agent under pressure and oxidative coupling, in which methane is oxidized in the presence of solid carbon using carbon dioxide or water vapor as the oxidizing agent. A method for producing hydrocarbons to be coupled.
JP02209044A 1990-08-06 1990-08-06 Hydrocarbon production method Expired - Fee Related JP3026451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02209044A JP3026451B2 (en) 1990-08-06 1990-08-06 Hydrocarbon production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02209044A JP3026451B2 (en) 1990-08-06 1990-08-06 Hydrocarbon production method

Publications (2)

Publication Number Publication Date
JPH0491038A true JPH0491038A (en) 1992-03-24
JP3026451B2 JP3026451B2 (en) 2000-03-27

Family

ID=16566331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02209044A Expired - Fee Related JP3026451B2 (en) 1990-08-06 1990-08-06 Hydrocarbon production method

Country Status (1)

Country Link
JP (1) JP3026451B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304693A (en) * 1994-05-13 1995-11-21 Agency Of Ind Science & Technol Catalytic dehydrogenative condensation process for lower alkane
EP1628937A2 (en) * 2003-02-07 2006-03-01 Robert C. Dalton Method to transport energy
JP2008508418A (en) * 2004-08-02 2008-03-21 ダルトン,ロバート,シー. High energy transport gas and method for transporting this gas
JP2016175889A (en) * 2014-11-28 2016-10-06 旭化成株式会社 Manufacturing method of hydrocarbon
JP2020037061A (en) * 2018-09-03 2020-03-12 高知県公立大学法人 Hydrocarbon conversion catalyst, manufacturing method therefor, and manufacturing method of hydrocarbon using hydrocarbon conversion catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6367782B2 (en) * 2015-11-20 2018-08-01 ファナック株式会社 Machine Tools

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07304693A (en) * 1994-05-13 1995-11-21 Agency Of Ind Science & Technol Catalytic dehydrogenative condensation process for lower alkane
EP1628937A2 (en) * 2003-02-07 2006-03-01 Robert C. Dalton Method to transport energy
EP1628937A4 (en) * 2003-02-07 2007-04-11 Robert C Dalton Method to transport energy
JP2008508418A (en) * 2004-08-02 2008-03-21 ダルトン,ロバート,シー. High energy transport gas and method for transporting this gas
JP2016175889A (en) * 2014-11-28 2016-10-06 旭化成株式会社 Manufacturing method of hydrocarbon
JP2020037061A (en) * 2018-09-03 2020-03-12 高知県公立大学法人 Hydrocarbon conversion catalyst, manufacturing method therefor, and manufacturing method of hydrocarbon using hydrocarbon conversion catalyst

Also Published As

Publication number Publication date
JP3026451B2 (en) 2000-03-27

Similar Documents

Publication Publication Date Title
KR100483218B1 (en) How to reduce nitrogen oxides in exhaust from gas turbine power generation
EP3390353B1 (en) Integrated process for the production of formaldehyde-stabilised urea
US4973786A (en) Process for the pyrolytic oxidation of methane to higher molecular weight hydrocarbons and synthesis gas
US3962300A (en) Process for producing methanol
EA034603B1 (en) Process for the production of formaldehyde
CN1274678A (en) Process for transformation of water and dimethyl ether and producing energy
US4242103A (en) Cyclic two step process for production of methane from carbon monoxide
JP4273211B2 (en) Method for producing dimethyl ether from biomass
JPH0491038A (en) Production of hydrocarbon
US3429680A (en) Steam reforming of hydrocarbons
US4242104A (en) Cyclic process for producing methane with catalyst regeneration
US4242105A (en) Process for producing methane from gas streams containing carbon monoxide and hydrogen
JP3512444B2 (en) Method for producing hydrogen and carbon monoxide from methane
EP0004456B1 (en) Methanation of carbon monoxide without prior separation of inert gases
JPS61186202A (en) Manufacture of hydrogen-containing gas from hydrocarbon and steam and/or co2
JP2736330B2 (en) Method for producing hydrogen from cellulosic biomass
JPH08239201A (en) Production of hydrogen by reforming of methane
Lin et al. Oxidative bromination of methane on silica-supported non-noble metal oxide catalysts
US4510071A (en) Methanol conversion process
JP2003246990A (en) Method for gasifying biomass and catalyst therefor
Meijer et al. Methane formation in H2, CO mixtures over carbon-supported potassium carbonate
JPH09313940A (en) Ammonia oxidation decomposition catalyst
JPS6039050B2 (en) Methanol manufacturing method
JP3472606B2 (en) Method for producing methanol by partial oxidation of methane
KR102257026B1 (en) Continuously preparation method of hydrogen from hydrocarbon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees