[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0489620A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH0489620A
JPH0489620A JP20071290A JP20071290A JPH0489620A JP H0489620 A JPH0489620 A JP H0489620A JP 20071290 A JP20071290 A JP 20071290A JP 20071290 A JP20071290 A JP 20071290A JP H0489620 A JPH0489620 A JP H0489620A
Authority
JP
Japan
Prior art keywords
film layer
thin film
thin
alloy thin
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20071290A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hata
久敏 秦
Naohiko Fujino
直彦 藤野
Fumiaki Satake
佐竹 文明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20071290A priority Critical patent/JPH0489620A/en
Publication of JPH0489620A publication Critical patent/JPH0489620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To decrease medium noises and to improve S/N by providing a 1st Cr thin-film layer on a base material consisting of a nonmagnetic material, providing a Co alloy thin-film layer on this 1st Cr thin-film layer and further, providing a 2nd Cr thin-film layer on this Co alloy thin-film layer and subjecting the layers to a heat treatment at >=150 deg.C. CONSTITUTION:The base material 10 consisting of the nonmagnetic material is constituted of an Al-Mg substrate 1 and an Ni-P underlying cured layer 2. The 1st Cr thin-film layer 3, the Co alloy thin-film layer 4, the 2nd Cr thin- film layer 5, and the protective film layer 6 are laminated in this order thereon; thereafter, the layers are heat treated at >=150 deg.C. Namely, these layers are so formed that the Cr thin-film layer diffuses to the Co alloy thin-film layer and, therefore, the isolatability of the particles of the Co alloy thin-film layer is enhanced by the Cr of the nonmagnetic material. The Cr of the nonmagnetic material is diffused by the Co alloy thin-film layer and is segregated at the grain boundaries of the Co alloy and, therefore, the medium noises are decreased and the S/N is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は磁気記録媒体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a magnetic recording medium.

[従来の技術] 従来、磁気記録媒体としては、 NiP等の下地硬化層
を設けたAl−Mg基板または直接Al−Mg基板上に
酸化鉄などの針状粒子を樹脂バインダー中に分散させた
ものを磁気記録層として形成させたものが主流であった
。しかし、近年の情報の高密度記録化の要求から、湿式
メツキ、真空蒸着、スパッタリング等の薄膜形成法によ
り形成された強磁性薄膜層を磁気記録層とする磁気記録
媒体が精力的に研究開発されており、中でもスパッタリ
ング法により作製される磁気記録媒体が高密度特性およ
び量産性に優れるもので今後の磁気記録媒体の主流にな
るものと考えられている。
[Prior Art] Conventionally, magnetic recording media have been made by dispersing acicular particles such as iron oxide in a resin binder on an Al-Mg substrate with a hardened base layer such as NiP or directly on an Al-Mg substrate. The mainstream was to form it as a magnetic recording layer. However, due to the recent demand for high-density recording of information, magnetic recording media whose magnetic recording layer is a ferromagnetic thin film layer formed by thin film forming methods such as wet plating, vacuum evaporation, and sputtering have been actively researched and developed. Among these, magnetic recording media manufactured by sputtering are considered to be the mainstream of magnetic recording media in the future because of their excellent high-density characteristics and mass productivity.

[発明が解決しようとする課] しかし、このスパッタリング法により作製される磁気記
録媒体(以下、メタルスパッタ媒体と略す。)は一般に
、NiP下地硬化層を設けたAl−Mg基板」二にCr
薄膜、Go合金薄膜、保護膜を順次形成することにより
得られるが、この磁気特性および電磁変換特性は、Cr
薄膜層およびCo合金薄膜層の膜厚およびこれらを形成
する際の条件(基板温度、スパッタガス圧等)に強く依
存しており、基板温度の影響を見ても、例えば、刊行物
(昭和63年電子通信学会研究会資料MRa8−2)に
おいて報告されているように、基板温度を高めることに
より磁気特性(特に保磁力)は向上し、高密度記録時の
再生信号は大きくなるものの、媒体ノイズも増加するた
め、S/N比(信号強度と雑音との比)で見る限りにお
いては、磁気特性の向上から期待されるほどの改善がみ
られないという課題がある。この媒体ノイズは磁気記録
層である00合金薄膜の結晶構造(結晶粒径、結晶粒間
の孤立性等)に強く依存しており、例えば刊行物(IE
EE Trans。
[Problem to be solved by the invention] However, magnetic recording media (hereinafter abbreviated as metal sputtering media) produced by this sputtering method are generally made of an Al-Mg substrate with a hardened NiP underlayer.
It is obtained by sequentially forming a thin film, a Go alloy thin film, and a protective film, but the magnetic properties and electromagnetic conversion properties are different from those of Cr.
It strongly depends on the thickness of the thin film layer and the Co alloy thin film layer and the conditions for forming them (substrate temperature, sputtering gas pressure, etc.). As reported in the Institute of Electronics and Communication Engineers Research Group Material MRa8-2), increasing the substrate temperature improves the magnetic properties (especially coercive force) and increases the reproduction signal during high-density recording, but the media noise Therefore, as far as the S/N ratio (ratio of signal strength to noise) is concerned, there is a problem that the improvement expected from the improvement in magnetic properties is not observed. This medium noise strongly depends on the crystal structure (crystal grain size, isolation between crystal grains, etc.) of the 00 alloy thin film that is the magnetic recording layer.
EE Trans.

阿ogn、MAG−25,P3869−3871198
9年刊)において、結晶粒間に働く相互作用の大きさを
低減させることにより、媒体ノイズが低減することが報
告されている。結晶粒間に働く相互作用の大きさを低減
させるためには、結晶粒間の孤立性を増すことが必要で
あり、そのためには、結晶粒界に非磁性材を偏析させて
やることが必要である。結晶粒界に非磁性材を偏析させ
る方法として、例えば成膜時のスパッタガス圧を高くす
る等があるが、それも限界があり、より結晶粒間の孤立
性を増し、媒体ノイズを低減させるにも限界があった。
Aogn, MAG-25, P3869-3871198
It has been reported in 1999) that media noise can be reduced by reducing the magnitude of the interaction between crystal grains. In order to reduce the magnitude of the interaction between crystal grains, it is necessary to increase the isolation between the crystal grains, and to do this, it is necessary to segregate non-magnetic materials at the grain boundaries. It is. There are methods to segregate non-magnetic materials at grain boundaries, such as increasing the sputtering gas pressure during film formation, but this also has its limits, and it is necessary to increase isolation between grains and reduce media noise. There were also limits.

この発明はかかる課題を解決するためになされたもので
、媒体ノイズを低減できると共に、S/N比を向上でき
る磁気記録媒体の製造方法を得ることを目的とする。
The present invention has been made to solve these problems, and an object of the present invention is to provide a method for manufacturing a magnetic recording medium that can reduce media noise and improve the S/N ratio.

[課題を解決するための手段] この発明の磁気記録媒体の製造方法は、非磁性体基材に
第1Cr薄膜層を設け、この第1cr薄膜層にCo合金
薄膜層を設け、このCo合金薄膜層に第2Cr薄膜層を
設けて、150℃以上で熱処理するものである。
[Means for Solving the Problems] The method for manufacturing a magnetic recording medium of the present invention includes providing a first Cr thin film layer on a non-magnetic base material, providing a Co alloy thin film layer on the first Cr thin film layer, and forming the Co alloy thin film on the first Cr thin film layer. A second Cr thin film layer is provided on the layer and heat treated at 150° C. or higher.

[作用コ 特許請求の範囲に示した方法により、非磁性材のCrが
Co合金薄膜層に拡散し、しかもCo合金の結晶粒界に
偏析するので、媒体ノイズが小さくなり、S/N比が向
上する。
[Operation] By the method shown in the claims, Cr, which is a non-magnetic material, diffuses into the Co alloy thin film layer and segregates at the grain boundaries of the Co alloy, so that the medium noise is reduced and the S/N ratio is increased. improves.

[実施例] 図面は、この発明の一実施例に係わる熱処理前の積層状
態を示す断面図であり、図において(1)はAlMg基
板、(2)はN1−P下地硬化層で、Al−Mg基板(
1)およびN1−P下地硬化層(2)で非磁性体基材(
10)を構成し、(3)は第1Cr薄膜層、(4)はC
o合金薄膜層、(5)は第2Cr薄膜層、(6)は保護
膜層である。
[Example] The drawing is a cross-sectional view showing a laminated state before heat treatment according to an example of the present invention. In the drawing, (1) is an AlMg substrate, (2) is an N1-P base hardening layer, and Mg substrate (
1) and N1-P base hardening layer (2) to form a non-magnetic base material (
10), (3) is the first Cr thin film layer, and (4) is the C
o alloy thin film layer, (5) is a second Cr thin film layer, and (6) is a protective film layer.

即ち、この発明の一実施例の磁気記録媒体の製造方法に
おいて、図面のように積層した後、150℃以上で熱処
理する。即ち、Cr薄膜層がCo合金薄膜層に拡散する
ようにしたもので、Co合金薄膜層の粒子が非磁性材の
Crにより、その孤立性が高められるため、媒体ノイズ
が減少し高いS/N比が得られるのである。
That is, in a method for manufacturing a magnetic recording medium according to an embodiment of the present invention, after laminating layers as shown in the drawings, heat treatment is performed at 150° C. or higher. That is, the Cr thin film layer is made to diffuse into the Co alloy thin film layer, and since the particles of the Co alloy thin film layer are isolated by the non-magnetic Cr, the media noise is reduced and the S/N is high. The ratio is obtained.

なお、この発明に係わる第1Cr薄膜層の膜厚は、50
0〜3000人が望ましく、その範囲以外では00合金
薄膜層の結晶性のコントロールが困難になる。
The thickness of the first Cr thin film layer according to the present invention is 50 mm.
The number is preferably 0 to 3,000, and outside that range it becomes difficult to control the crystallinity of the 00 alloy thin film layer.

また、この発明に係わる第2Cr薄膜層の膜厚は、10
0Å以下が望ましく、それ以上では磁性層とヘッドとの
間隔が大きくなる。
Further, the thickness of the second Cr thin film layer according to the present invention is 10
The distance is preferably 0 Å or less; if it is more than that, the distance between the magnetic layer and the head becomes large.

この発明に係わる熱処理温度は150℃以上であり、そ
れ以下では、Crの拡散が起こり難い、また熱処理は基
材の耐熱温度以下で行われるのが望ましく、上記この発
明の一実施例に用いたNiP下地硬化層を設けたAl−
Mg基板では300℃以下であるのが望ましい。
The heat treatment temperature according to this invention is 150° C. or higher; at lower temperatures, diffusion of Cr is difficult to occur, and it is desirable that the heat treatment is performed at a temperature lower than the heat resistance temperature of the base material. Al- with NiP base hardening layer
For Mg substrates, the temperature is preferably 300°C or less.

それ以上では、NiP下地硬化層が帯磁するのである。Above this, the hardened NiP underlayer becomes magnetized.

次に、この発明を実施例により具体的に説明するが、こ
れに限定されるものではない。
Next, the present invention will be specifically explained with reference to examples, but the present invention is not limited thereto.

実施例 非磁性体基材としてNjP下地硬化層を設けたA1にg
基板にテクスチャ加工を施したものを用い、00合金薄
膜層としてCoe2.5Ni3eCrv、sat%の組
成のC。
Example A1 with a hardened NjP base layer as a non-magnetic base material
A textured substrate was used, and the 00 alloy thin film layer was Coe2.5Ni3eCrv, C with a sat% composition.

NiCrを、保護膜としてカーボンを用い、各層をスパ
ッタリング法により形成した。第1Cr薄膜層の膜厚を
2000人、CoNiCrを500人、第2Cr薄膜層
の膜厚を80人、カーボン保護膜層を320人形成し、
その後、大気中にて250℃、1時間の熱処理を施し、
この発明の一実施例による磁気記録媒体を製造した。な
お、各層を形成する際の基板温度は200℃、ガス圧は
全て10mTorrとした。
Each layer of NiCr was formed by sputtering using carbon as a protective film. The thickness of the first Cr thin film layer was 2000, the thickness of CoNiCr was 500, the thickness of the second Cr thin film was 80, and the carbon protective film layer was 320.
After that, heat treatment was performed at 250°C for 1 hour in the atmosphere.
A magnetic recording medium according to an embodiment of the present invention was manufactured. Note that the substrate temperature when forming each layer was 200° C., and the gas pressure was all 10 mTorr.

比較例1 実施例1において、熱処理を行わない他は実施例1と同
様にして磁気記録媒体を製造した。
Comparative Example 1 A magnetic recording medium was manufactured in the same manner as in Example 1 except that the heat treatment was not performed.

比較例2 実施例1において、00合金薄膜層に第2Cr薄膜層を
形成せず、直接カーボン保護膜を400人形成する他は
、実施例1と同様にして磁気記録媒体を製造した。
Comparative Example 2 A magnetic recording medium was manufactured in the same manner as in Example 1, except that the second Cr thin film layer was not formed on the 00 alloy thin film layer and a carbon protective film was directly formed by 400 people.

電磁変換特性測定 実施例、比較例1および比較例2で得られた磁気記録媒
体の電磁変換特性を測定した。電磁変換特性測定には薄
膜磁気ヘッドを用い、相対速度12.1m/see。
Electromagnetic Conversion Characteristic Measurement The electromagnetic conversion characteristics of the magnetic recording media obtained in Example, Comparative Example 1, and Comparative Example 2 were measured. A thin film magnetic head was used to measure the electromagnetic conversion characteristics at a relative speed of 12.1 m/see.

記録周波数8MHz、ノイズ帯域20MH2にて行った
。その結果を表に示す。
The recording frequency was 8 MHz and the noise band was 20 MH2. The results are shown in the table.

表 表によると、実施例、比較例1および比較例2とも再生
出力はほぼ同じ値が得られている。一方、媒体ノイズに
関しては、実施例は、比較例1および比較例2に比べ低
い値を示しており、S/Nにおいて2dB以上の改善が
見られた。
According to the table, almost the same reproduction output values were obtained in the example, comparative example 1, and comparative example 2. On the other hand, regarding the medium noise, the example showed a lower value than Comparative Example 1 and Comparative Example 2, and an improvement of 2 dB or more in S/N was observed.

即ち、この発明の一実施例による磁気記録媒体は、第2
Cr@膜層を形成し熱処理を行うことにより、Co合金
薄rg層にCrを拡散させるようにしたものであり、C
o合金薄膜層の結晶粒界にCrを偏析させたもので、結
晶粒間に働く相互作用を小さくでき、媒体ノイズを低減
できる。また、比較例1から解るように、単に第2Cr
薄膜層を設けても熱処理を施さないとノイズ低減には効
果が見られず、比較例2から解るように、第2Cr薄膜
層を設けなければ、熱処理を施してもノイズ低減には効
果が見られなかった。
That is, the magnetic recording medium according to an embodiment of the present invention has a second
By forming a Cr@ film layer and performing heat treatment, Cr is diffused into the Co alloy thin RG layer.
Cr is segregated at the grain boundaries of the o-alloy thin film layer, which can reduce interaction between grains and reduce media noise. In addition, as can be seen from Comparative Example 1, simply the second Cr
Even if a thin film layer is provided, no noise reduction effect is observed unless heat treatment is performed, and as can be seen from Comparative Example 2, no noise reduction effect is observed even if heat treatment is performed unless a second Cr thin film layer is provided. I couldn't.

なお、−上記実施例において、非磁性体基材としてNi
P等の下地硬化層を設けた^1−Mg基板にテクスチャ
加工を施したものを用い、Co合金薄膜層としてco6
25Ni31ICr75at%の組成のCoNiCrを
用いた場合について説明したが、これに限らず他の非磁
性体基材および他のCo合金薄膜を用いても同様の効果
を得ることができる。
Note that - in the above examples, Ni was used as the non-magnetic base material.
A textured ^1-Mg substrate with a hardened base layer of P, etc. was used, and a Co6 alloy thin film layer was used.
Although a case has been described in which CoNiCr having a composition of 25Ni31ICr75 at% is used, the same effect can be obtained by using other non-magnetic base materials and other Co alloy thin films.

また、成膜時の基板温度、ガス圧等スパッタ条件も上記
実施例に限定されるものではなく、熱処理温度も150
℃以上であれば所期目的を達成することができる。
Furthermore, the sputtering conditions such as the substrate temperature and gas pressure during film formation are not limited to the above examples, and the heat treatment temperature is also 150°C.
If the temperature is above ℃, the desired purpose can be achieved.

[発明の効果] 以上説明した通り、この発明は非磁性体基材に第1Cr
薄膜層を設け、この第1Cr薄膜層にCo合金薄膜層を
設け、このCo合金薄膜層に第2Cr薄膜層を設けて、
150℃以上で熱処理することにより、媒体ノイズを低
減できると共に、S/N比を向上できる磁気記録媒体の
製造方法を得ることができる。
[Effects of the Invention] As explained above, the present invention has a non-magnetic base material containing 1Cr.
providing a thin film layer, providing a Co alloy thin film layer on the first Cr thin film layer, providing a second Cr thin film layer on the Co alloy thin film layer,
By performing the heat treatment at 150° C. or higher, it is possible to obtain a method for manufacturing a magnetic recording medium that can reduce medium noise and improve the S/N ratio.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、この発明の一実施例に係わる熱処理前の積層状
態を示す断面図である。 図において(3)は第1Cr薄膜層、(4)はCo合金
薄膜層、(5)は第2Cr薄膜層、(10)は非磁性体
基材である。
The drawing is a sectional view showing a stacked state before heat treatment according to an embodiment of the present invention. In the figure, (3) is the first Cr thin film layer, (4) is the Co alloy thin film layer, (5) is the second Cr thin film layer, and (10) is the nonmagnetic base material.

Claims (1)

【特許請求の範囲】[Claims] 非磁性体基材に第1Cr薄膜層を設け、この第1Cr薄
膜層にCo合金薄膜層を設け、このCo合金薄膜層に第
2Cr薄膜層を設けて、150℃以上で熱処理する磁気
記録媒体の製造方法。
A first Cr thin film layer is provided on a non-magnetic substrate, a Co alloy thin film layer is provided on the first Cr thin film layer, a second Cr thin film layer is provided on the Co alloy thin film layer, and the magnetic recording medium is heat-treated at 150° C. or higher. Production method.
JP20071290A 1990-07-25 1990-07-25 Production of magnetic recording medium Pending JPH0489620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20071290A JPH0489620A (en) 1990-07-25 1990-07-25 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20071290A JPH0489620A (en) 1990-07-25 1990-07-25 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0489620A true JPH0489620A (en) 1992-03-23

Family

ID=16428966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20071290A Pending JPH0489620A (en) 1990-07-25 1990-07-25 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0489620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device
US7670696B2 (en) 2007-05-01 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with patterned magnetic islands and nonmagnetic trenches and manufacturing method for suppressing surface diffusion of trench material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device
US7670696B2 (en) 2007-05-01 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium with patterned magnetic islands and nonmagnetic trenches and manufacturing method for suppressing surface diffusion of trench material
US7846565B2 (en) 2007-05-01 2010-12-07 Hitachi Golbal Storage Technologies Netherlands B.V. Perpendicular magnetic recording disk drive with patterned disk having capping layer for suppression of surface diffusion of trench material

Similar Documents

Publication Publication Date Title
US8197891B2 (en) Perpendicular magnetic recording medium and method for manufacturing same
JPH0714142A (en) Thin film magnetic recording medium
JP2002190108A (en) Magnetic recording medium and its production method
JPH0489620A (en) Production of magnetic recording medium
JP2780588B2 (en) Stacked magnetic head core
CN100578626C (en) Method for manufacturing perpedicular magnetic recording medium, perpendicular magnetic recording medium, and perpendicular magnetic recording/reproducing apparatus
JP2570337B2 (en) Soft magnetic laminated film
JPH03273525A (en) Production of magnetic recording medium
JPS6313256B2 (en)
JPH08329442A (en) Magnetic recording medium
JPH0821502B2 (en) Thin film permanent magnet
JPH02308419A (en) Production of magnetic recording medium
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
KR100324730B1 (en) Method for fabricating magnetic head
JPH03165315A (en) Magnetic recording medium and production thereof
JPH04305807A (en) Co-based soft magnetic thin film and magnetic head formed by using this film
JP2001331934A (en) Magnetic recording medium, method for producing the same, magnetic recording and reproducing unit and sputtering target
JPS6364623A (en) Magnetic recording medium
JPH04123310A (en) Magnetic recording medium and production thereof
JPH06223352A (en) Magnetic recording medium
JP2000030234A (en) Magnetic recording medium
JPH04117611A (en) Magnetic recording medium
JPH01133217A (en) Magnetic recording body
JPH0447527A (en) Production of magnetic recording medium
JPS62125523A (en) Magnetic recording medium