JPH0485903A - Manufacture of superconducting magnet coil - Google Patents
Manufacture of superconducting magnet coilInfo
- Publication number
- JPH0485903A JPH0485903A JP19968090A JP19968090A JPH0485903A JP H0485903 A JPH0485903 A JP H0485903A JP 19968090 A JP19968090 A JP 19968090A JP 19968090 A JP19968090 A JP 19968090A JP H0485903 A JPH0485903 A JP H0485903A
- Authority
- JP
- Japan
- Prior art keywords
- winding
- coil
- superconducting
- superconducting wire
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000004804 winding Methods 0.000 claims abstract description 61
- 229920005989 resin Polymers 0.000 claims abstract description 39
- 239000011347 resin Substances 0.000 claims abstract description 39
- 125000006850 spacer group Chemical group 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000010791 quenching Methods 0.000 abstract description 13
- 238000005470 impregnation Methods 0.000 abstract description 12
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 239000003822 epoxy resin Substances 0.000 abstract description 3
- 229920000647 polyepoxide Polymers 0.000 abstract description 3
- 239000007789 gas Substances 0.000 abstract description 2
- 239000011261 inert gas Substances 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 1
- 239000000945 filler Substances 0.000 abstract 1
- 230000000171 quenching effect Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008602 contraction Effects 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 229920005749 polyurethane resin Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は超電導マグネットコイルの製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a superconducting magnet coil.
超電導マグネットコイルは超電導線を巻枠に巻付け、樹
脂を含浸したコイルで形成され5通常液体ヘリウムで極
低温に冷却し、超電導線の電気抵抗を零にすることによ
り、大電流の通電を可能として強磁場を発生させる。し
かし、通電時には超電導線に大きな電磁力が発生し、こ
の大きな電磁力により超電導線が何等かの原因で微少変
位、すなわち磁束の移動を起こすと、移動の仕事(熱)
が発生し、その部分の超電導線が温度上昇し超電導状態
から常電導状態に転移し、コイルの持つ電磁エネルギー
の一部が熱に変換されて超電導線を溶断する等、超電導
マグネットコイルを破壊するようになる。A superconducting magnet coil is formed by winding superconducting wire around a winding frame and impregnating it with resin. 5 It is usually cooled to an extremely low temperature with liquid helium, and by reducing the electrical resistance of the superconducting wire to zero, it is possible to conduct large currents. generates a strong magnetic field. However, when electricity is applied, a large electromagnetic force is generated in the superconducting wire, and if this large electromagnetic force causes a slight displacement of the superconducting wire, that is, a movement of magnetic flux, the work of movement (heat) is generated.
occurs, the temperature of the superconducting wire in that part rises, and the superconducting state transitions from the superconducting state to the normal conducting state, and a part of the electromagnetic energy of the coil is converted into heat, which melts the superconducting wire and destroys the superconducting magnet coil. It becomes like this.
このような超電導線が移動すると超電導マグネットコイ
ルに大きな影響を与える。例えば最大磁束B ll&!
5 、9 Te5laで電流I=800Aでの試算値
では、超電導線の温度をT(k)、ヘリウム温度をro
(k) 、銅のデバイ温度をH(k)、ギャップをG(
m)、銅Igr中の原子数をN、単位長線材の重量をρ
(gr)、ボルツマン定数をKとすると、次式
からギャップG(移動量)が6μm相当以上になると常
電導転移領域に入り、常電導破壊(クエンチ)するよう
になる。If such superconducting wire moves, it will have a significant effect on the superconducting magnet coil. For example, maximum magnetic flux B ll&!
5,9 In the estimated value at Te5la and current I = 800 A, the temperature of the superconducting wire is T(k), and the helium temperature is ro.
(k), the Debye temperature of copper as H(k), and the gap as G(
m), the number of atoms in copper Igr is N, and the weight of the unit length wire is ρ
(gr), and the Boltzmann constant is K, then from the following equation, when the gap G (movement amount) becomes equal to or more than 6 μm, it enters the normal conduction transition region and normal conduction breakdown (quench) occurs.
これらのことから従来、超電導マグネットコイルの製造
では超電導線間に移動空間(ボイド、剥離、クランクな
ど)が生じないように、超電導線の巻枠への巻付張力、
導体の位置関係、バランスのすぐれた巻き方2樹脂によ
る含浸固定など種々検討されている。For these reasons, conventionally, in manufacturing superconducting magnet coils, the winding tension of the superconducting wire on the winding frame,
Various methods are being considered, including the positional relationship of the conductors, a well-balanced winding method, and impregnating and fixing with resin.
すなわち従来は第6図に示されているように、後から取
り除かれる巻枠1に超電導[2を多段。That is, conventionally, as shown in FIG. 6, superconductors [2] were placed in multiple stages on a winding frame 1 that was later removed.
多層に、超電導線2の幅ピツチで整列巻きし、次いでこ
のようにして巻回製作したコイルを樹脂含浸器3にセッ
トし、樹脂4を含浸硬化して超電導マグネットコイル5
を製造していた。The superconducting wire 2 is wound in multiple layers in alignment with the width pitch of the superconducting wire 2, and then the coil thus wound is set in a resin impregnator 3, and the resin 4 is impregnated and hardened to form a superconducting magnet coil 5.
was manufacturing.
上記従来技術は超電導マグネットコイルとじての巻き重
ね方向(積段、積層方向)の剛性が充分でなく、大電流
通電時の電磁力に対して超電導線間に剪断力差による変
位が生じたり、あるいは超電導線間に含浸した樹脂の充
填量に差異が生じたりして、製作初期あるいは所定試験
後に第7図に示されているように、超電導線2間の樹脂
充填部6に剥離aやクラックbが発生する問題があった
。The above-mentioned conventional technology does not have sufficient rigidity in the winding direction (stacking, stacking direction) of the superconducting magnet coil, and displacement occurs due to the shear force difference between the superconducting wires due to the electromagnetic force when a large current is applied. Alternatively, a difference may occur in the amount of resin impregnated between the superconducting wires, and as shown in FIG. There was a problem that b occurred.
このように剥離aやクラックbが発生すると5超電導マ
グネツトコイルの特性に悪影響を及ぼし、逐にはクエン
チするようになる。なお同図において28は超電導線2
を絶縁被覆する絶縁被覆材である。If peeling a or crack b occurs in this way, it will adversely affect the characteristics of the 5 superconducting magnet coil, and it will eventually quench. In addition, in the same figure, 28 is the superconducting wire 2
It is an insulating coating material that insulates the
本発明は以上の点に鑑みなされたものであり、クエンチ
の発生防止を可能とした超電導マグネットコイルの製造
方法を提供することを目的とするものである。The present invention has been made in view of the above points, and it is an object of the present invention to provide a method for manufacturing a superconducting magnet coil that makes it possible to prevent the occurrence of quench.
上記目的は、コイルを、巻枠に超電導線を一層毎の繰返
しで巻回方向に超電導線幅の1/2ピツチずつずらし、
かつ巻回方向の巻回始めと巻回終りに交互に圧縮弾性率
が2,000〜40,000kg/rrn2のスペーサ
を挿入しながら巻付は形成することにより、達成される
。The above purpose is to shift the coil by 1/2 pitch of the superconducting wire width in the winding direction by repeating each layer of superconducting wire on the winding frame.
The winding is achieved by alternately inserting spacers having a compressive elastic modulus of 2,000 to 40,000 kg/rrn2 at the beginning and end of the winding in the winding direction.
上記手段を設けたので、コイルの巻き重ね方向の剛性が
従来に比べて大きくなって、超電導線間に含浸される樹
脂量が従来に比べて少なく樹脂充填部の剥離やクランク
の発生が防止されるようになる。By providing the above means, the rigidity of the coil in the winding direction is greater than before, and the amount of resin impregnated between the superconducting wires is smaller than before, preventing peeling of the resin-filled portion and occurrence of cranks. Become so.
どのようにすればクエンチ発生の原因となる注入樹脂の
剥離やクランクの発生が防止されるかを検討した。製作
初期の超電導線間の樹脂に剥離やクランクが発生するの
は、超電導線間に樹脂充填部が集中し、樹脂充填量が多
くなるためであることが確かめられた。すなわち樹脂充
填量が多くなると、樹脂の全収縮による内部残留応力等
に基づいて注入樹脂に剥離やクラックが発生するのであ
る。従って注入樹脂の剥離やクランクの発生を防止する
には、超電導線間に樹脂充填部が集中しないようにし、
かつコイルの巻き重ね方向の剛性を太きくして樹脂の充
填量を少なくしてやればよし1ことが判った。そこで本
発明ではコイルを、巻枠に超電6線を一層毎の繰返しで
巻回方向に超電導線幅の172ピンチずつずらし、かつ
巻回方向の巻回始めと巻回線りに交互に圧縮弾性率が2
,000〜40,000kg/m+2のスペーサを挿入
しながら巻付は形成した。このようにすることによりク
エンチの発生防止を可能とした超電導マグネットコイル
の製造方法を得ることを可能としたものである。We investigated how to prevent the peeling of the injected resin and the occurrence of cranks, which cause quenching. It was confirmed that peeling and cracking occur in the resin between superconducting wires in the early stages of production because the resin filled areas concentrate between the superconducting wires and the amount of resin filled increases. That is, when the amount of resin filled increases, peeling or cracking occurs in the injected resin due to internal residual stress caused by total contraction of the resin. Therefore, in order to prevent the injected resin from peeling off and causing cranks, the resin filled portion should not be concentrated between the superconducting wires.
In addition, it was found that it would be better to increase the rigidity of the coil in the winding direction and reduce the amount of resin filled. Therefore, in the present invention, in the coil, six superconducting wires are placed on a winding frame, and each layer is shifted by 172 pinches of the superconducting wire width in the winding direction, and compressive elasticity is applied alternately at the beginning of winding and at the end of the winding. rate is 2
,000 to 40,000 kg/m+2 while inserting a spacer. By doing so, it is possible to obtain a method for manufacturing a superconducting magnet coil that makes it possible to prevent the occurrence of quenching.
以下、図示した実施例に基づいて本発明を説明する。第
1図から第3図には本発明の一実施例が示されている。The present invention will be explained below based on the illustrated embodiments. An embodiment of the present invention is shown in FIGS. 1-3.
なお、従来と同じ部品には同じ符号を付したので説明を
省略する。本実施例ではコイルを、巻枠1に超電導線2
を一層毎の繰返しで巻回方向に超電導線幅の1/2ピツ
チずつずらし、かつ巻回方向の巻回始めと巻回線りに交
互に圧縮弾性率が2,000−40,000kg/mm
2のスペーサ7を挿入しながら巻付は形成した。このよ
うにすることによりコイルの巻き重ね方向の剛性が従来
に比へて大きくなって、超電導線間に含浸される樹脂量
が従来に比へて少なく樹脂充填部6の剥離やクラックの
発生が防止されるようになり、クエンチの発生防止を可
能とした超電導マグネットコイルの製造方法を得ること
ができる。It should be noted that the same parts as in the prior art have been given the same reference numerals, so their explanation will be omitted. In this embodiment, a coil is placed on a winding frame 1 with a superconducting wire 2
is repeated for each layer by 1/2 pitch of the superconducting wire width in the winding direction, and the compressive elastic modulus is 2,000-40,000 kg/mm alternately at the beginning of winding and at the winding wire.
The winding was formed while inserting the spacer 7 of No. 2. By doing this, the rigidity of the coil in the winding direction is increased compared to the conventional method, and the amount of resin impregnated between the superconducting wires is reduced compared to the conventional method. Thus, it is possible to obtain a method for manufacturing a superconducting magnet coil that makes it possible to prevent the occurrence of quench.
すなわち巻枠1に超電導線(ポリビニルホルマール被覆
NbT+)2を所定回数、第1図に示すように超電導線
幅の172ピンチずつずらし、巻回方向の巻回始めと巻
回線りに交互に圧縮弾性率が4.000kg/mm2の
GFRPのスペーサ7を挿入しながら巻付ける。この時
の超電導線2の巻付張力は1〜60kg10n2(10
〜600MPa)に調整した。これは後述の含浸した樹
脂4の全収縮後の内部残留応力80〜90kg/cJ(
8〜9MPa)以上の巻締応力を付与し、樹脂4の収縮
に伴う剥離、クランク発生防止を図るためである。That is, the superconducting wire (polyvinyl formal coated NbT+) 2 is placed on the winding frame 1 a predetermined number of times, as shown in Fig. 1, by shifting the width of the superconducting wire by 172 pinches, and compressive elasticity is applied alternately to the beginning of the winding and the end of the winding in the winding direction. A GFRP spacer 7 having a rate of 4.000 kg/mm2 is inserted and wound. The winding tension of the superconducting wire 2 at this time is 1 to 60 kg10n2 (10
~600MPa). This is the internal residual stress of 80 to 90 kg/cJ (
This is to apply a winding stress of 8 to 9 MPa or more to prevent peeling and cranking caused by shrinkage of the resin 4.
このようにして巻枠1に巻回して作ったコイルを巻枠共
々第3図に示す真空加圧含浸タンク8内に収納し、酸無
水物硬化型エポキシ系の樹脂4を真空度0 、1 mm
Hg以下で注入口9より真空含浸する。The coil thus wound around the winding frame 1 is housed together with the winding frame in a vacuum pressurized impregnation tank 8 shown in FIG. mm
Vacuum impregnation is carried out through the injection port 9 at a temperature below Hg.
含浸完了後は真空排気系1oを止め、高圧ポンプ11で
含浸タンク8内に不活性ガス(NZガス)を封入し、加
圧圧力を100 kg/ cx& (]、 OM P
a)とし、この加圧状態で含浸タンク8に備え付けの蒸
気ヒータ12を用いて含浸タンク8全体を加熱し、含浸
した樹脂4を硬化させる。硬化後は巻枠1を取外し、超
電導マグネットコイル5aを完成させる。このマグネッ
トコイル5aは第2図に示されているように、樹脂充填
部6に剥離やクラックの発生が認められなかった。After completion of impregnation, stop the vacuum evacuation system 1o, fill the impregnation tank 8 with inert gas (NZ gas) using the high-pressure pump 11, and increase the pressure to 100 kg/cx& (], OM P
a), and in this pressurized state, the entire impregnation tank 8 is heated using the steam heater 12 attached to the impregnation tank 8, and the impregnated resin 4 is cured. After curing, the winding frame 1 is removed to complete the superconducting magnet coil 5a. As shown in FIG. 2, no peeling or cracking was observed in the resin-filled portion 6 of this magnet coil 5a.
このようにして製作した超電導マグネットコイル5aに
励磁電流を印加し、所定電流印加可能に至るまでの繰返
しクエンチ回数で評価する励磁試験を行い、超電導特性
を確認した。その結果、所定電流100%に至るクエン
チ回数は1回で、2回目では所定電流の105%でもク
エンチしなかった。これは従来例の整列巻付けで製作し
た超電導マグネットコイルでは所定電流通電に至るり工
ンチ回数が3〜4回以上に及んでいるのに比べ、格段と
特性が向上している。An excitation test was conducted in which an excitation current was applied to the superconducting magnet coil 5a manufactured in this manner, and the number of repeated quenching cycles until a predetermined current could be applied was evaluated to confirm the superconducting properties. As a result, the number of times of quenching to reach 100% of the predetermined current was once, and the quenching did not occur the second time even at 105% of the predetermined current. This is a marked improvement in characteristics compared to conventional superconducting magnet coils manufactured by aligned winding, which require three to four or more machining cycles to reach a predetermined current flow.
このように本実施例によれば超電導線を一層毎の繰返し
で巻回方向に超電導線幅の1/2ピツチずつずらし1巻
回方向の巻回始めと巻回線りに交互に圧縮弾性率が超電
導マグネットコイルとしての同方向等価圧縮弾性率より
大きいスペーサを挿入して巻き付けすることにより、超
電導マグネットコイルとしての積層および積段方向の圧
縮弾性率を高めて一体剛性化を図ることができた。さら
に超電導線間の樹脂充填量が少ない構造としたので、超
電導マグネットコイル内部の超電導線間に剥離やクラッ
クのないコイルが得られる。また超電導線材の崩れによ
る超電導線間角部のかじりが発生し難く、レアーショー
ト発生の防止に有効で、超電導マグネットコイルが受け
る不均一磁場1例えば対向させて使用する場合の捩れに
対して強い(剪断方向にずれない)超電導マグネットコ
イルが得られる。このように剥離やクランクのない、捩
れに対して強いコイルが得られるので、大電流印加時で
も極低温下でクエンチ発生を防止した。In this way, according to this embodiment, the superconducting wire is repeatedly shifted by 1/2 pitch of the superconducting wire width in the winding direction, and the compressive elastic modulus is alternately changed at the beginning of the winding and at the end of the winding in the winding direction. By inserting and winding a spacer that has a higher equivalent compressive elastic modulus in the same direction as the superconducting magnet coil, it was possible to increase the compressive elastic modulus in the stacking and stacking direction of the superconducting magnet coil and achieve integral rigidity. Furthermore, since the structure is such that the amount of resin filled between the superconducting wires is small, a coil without peeling or cracking between the superconducting wires inside the superconducting magnet coil can be obtained. In addition, galling at the corners between the superconducting wires due to collapse of the superconducting wires is difficult to occur, and it is effective in preventing the occurrence of layer shorts. A superconducting magnet coil (which does not shift in the shear direction) is obtained. In this way, a coil that is resistant to torsion without peeling or cranking can be obtained, thereby preventing the occurrence of quenching at extremely low temperatures even when a large current is applied.
極めて超電導特性のすぐれた超電導マグネットコイルを
得ることができる。A superconducting magnet coil with extremely excellent superconducting properties can be obtained.
第4図および第5図には本発明の夫々異なる他の実施例
が示されている。第4図は樹脂充填部6に無機質あるい
は有機質の充填補助材13を超電導線2の巻回時に挿入
配置した場合であり、第5図は超電導線2および絶縁被
覆材2aの四隅角部の曲率を極力小さくして樹脂充填部
6の占有率を小さくした場合である。これらいずれの場
合も注入樹脂の含浸量が前述の場合よりも少なくなって
、前述の場合以上に超電導特性を向上させることができ
る。すなわちこれら実施例は充填補助材13を巻線時に
配置するとか、超電導線2および絶縁被覆材2aの四隅
角部の曲率を極力小さくして樹脂充填部6の占有率を小
、すなわち超電導線2のコイル内充填率を大きくするな
ど必要に応じて調整することができる。FIGS. 4 and 5 show other different embodiments of the present invention. FIG. 4 shows the case where an inorganic or organic filling auxiliary material 13 is inserted into the resin filling part 6 when the superconducting wire 2 is wound, and FIG. 5 shows the curvature of the four corners of the superconducting wire 2 and the insulating coating 2a This is a case where the occupancy rate of the resin filling part 6 is made small by making it as small as possible. In any of these cases, the amount of injected resin impregnated is smaller than in the above case, and the superconducting properties can be improved more than in the above case. In other words, in these embodiments, the filling auxiliary material 13 is placed during winding, or the curvature of the four corners of the superconducting wire 2 and the insulating coating material 2a is minimized to minimize the occupation rate of the resin filling portion 6, that is, the superconducting wire 2 It can be adjusted as necessary, such as by increasing the filling rate inside the coil.
なお、スペーサの圧縮弾性率を2,000〜40.00
0kg/mm2に選定したのは、次に述べるような理由
からである。これまでの経験的知見から積層した超電導
線の等価弾性率(超電導線の絶縁被覆を含めた弾性率)
は最低部で約2,000kg/ rm2(2x 10’
rvi Pa)であるので、圧縮弾性率が2,000k
g/」2(2X I O’〜1Pa)未満だと超電導線
から外枠(巻枠ケース等)への力が伝えられないおそれ
があるためであり、40,000kg/r@2としたの
は2,000kg/an2よりも大きければ大きいほど
よく、現に40,000kg/nu2の圧縮弾性率を有
する材料が実用に供し得る段階にあるからである。また
、樹脂の真空含浸後の加熱硬化時には、樹脂の全収縮時
の内部残留応力以上の加圧力を加えることが、超電導線
の一体剛性化により有効である。In addition, the compressive elastic modulus of the spacer is 2,000 to 40.00.
The reason for selecting 0 kg/mm2 is as follows. Equivalent modulus of elasticity of laminated superconducting wires (modulus of elasticity including insulation coating of superconducting wires) based on past empirical knowledge
is approximately 2,000 kg/rm2 (2x 10'
rvi Pa), so the compression modulus is 2,000k
This is because if it is less than 2X I O'~1Pa, the force from the superconducting wire to the outer frame (winding frame case, etc.) may not be transmitted. The larger the value is than 2,000 kg/an2, the better. This is because materials having a compressive modulus of elasticity of 40,000 kg/nu2 are currently at a stage where they can be put to practical use. In addition, during heat curing after vacuum impregnation of the resin, it is effective to apply a pressure greater than the internal residual stress at the time of full contraction of the resin to increase the integral rigidity of the superconducting wire.
また、樹脂は熱硬化樹脂でエポキシ樹脂、シリコーン樹
脂、ポリイミド樹脂、ポリウレタン樹脂あるいは全収縮
時の内部残留応力低減のために可撓性付与の変性樹脂等
が有効である。Further, the resin is a thermosetting resin such as epoxy resin, silicone resin, polyimide resin, polyurethane resin, or a modified resin that imparts flexibility to reduce internal residual stress at the time of full contraction.
また、スペーサは上述のように圧縮弾性率が2.000
kg/w+2以上の材質のものを選定することが必要で
、エポキシ樹脂、シリコーン樹脂、ボッイミド樹脂、ポ
リウレタン樹脂、変性樹脂を炭化ケイ素繊維、カーボン
繊維、ガラス繊維、アラミド繊維、ボロン繊維、アルミ
ナ繊維等の有機あるいは無機繊維に含浸硬化させた複合
材、あるいは炭化ケイ素、アルミナ、チン化ケイ素等の
セラミックス材料等を単独に、あるいは上記樹脂を適切
に配合して硬化させたものなどを必要に応じて使用すれ
ばよい。In addition, the spacer has a compression modulus of 2.000 as described above.
It is necessary to select materials of kg/w+2 or more, such as epoxy resin, silicone resin, boimide resin, polyurethane resin, modified resin, silicon carbide fiber, carbon fiber, glass fiber, aramid fiber, boron fiber, alumina fiber, etc. Composite materials impregnated and cured with organic or inorganic fibers, or ceramic materials such as silicon carbide, alumina, silicon tinide, etc. alone, or cured by appropriately blending the above resins, etc. can be used as necessary. Just use it.
また、本実施例では超電導線幅の1/2ピツチずつずら
して超電導線を巻回した場合について説明したが、超電
導線幅の1/3.1/4ピツチずつずらして超電導線を
巻回しても同様な作用効果を奏することができる。In addition, in this example, the case where the superconducting wire is wound by shifting 1/2 pitch of the superconducting wire width, but the superconducting wire is wound by shifting 1/3 and 1/4 pitch of the superconducting wire width. can also produce similar effects.
上述のように本発明は超電導マグネットコイルのクエン
チの発生が防止されるようになって、クエンチの発生防
止を可能とした超電導マグネットコイルの製造方法を得
ることができる。As described above, the present invention prevents the occurrence of quenching in the superconducting magnet coil, thereby providing a method for manufacturing a superconducting magnet coil that can prevent the occurrence of quenching.
第1図は本発明の超電導マグネットコイルの製造方法の
一実施例による縦断側面図、第2図は第1図のB枠部の
拡大縦断側面図、第3図は同じく一実施例による真空加
圧含浸タンクの縦断側面図、第4図および第5図は本発
明の超電導マグネットコイルの製造方法の夫々異なる実
施例によるマグネットコイル要部の拡大縦断側面図、第
6図は従来の超電導マグネットコイルの製造方法による
縦断側面図、第7図は第6図のA枠部の拡大縦断側面図
である。
1・・巻枠、2・・・超電導線、4 ・樹脂、5a 超
電導マグネットコイル、7・・スペーサ、13・・・充
填補助材。FIG. 1 is a longitudinal sectional side view of an embodiment of the method for manufacturing a superconducting magnet coil of the present invention, FIG. 2 is an enlarged longitudinal sectional side view of the B frame portion of FIG. 1, and FIG. 4 and 5 are enlarged longitudinal sectional side views of main parts of magnet coils according to different embodiments of the method of manufacturing a superconducting magnet coil of the present invention, and FIG. 6 is a longitudinal sectional side view of a pressure impregnation tank, and FIG. 6 is a conventional superconducting magnet coil. FIG. 7 is an enlarged vertical side view of the A-frame portion of FIG. 6. 1. Winding frame, 2. Superconducting wire, 4. Resin, 5a superconducting magnet coil, 7. Spacer, 13. Filling auxiliary material.
Claims (5)
段に巻付けて形成されるコイルに樹脂を含浸硬化してな
る超電導マグネットコイルの製造方法において、前記コ
イルを、前記巻枠に前記超電導線を一層毎の繰返しで巻
回方向に前記超電導線幅の1/2ピツチずつずらし、か
つ前記巻回方向の巻回始めと巻回終りに交互に圧縮弾性
率が2,000〜40,000kg/mm^2のスペー
サを挿入しながら巻付け形成したことを特徴とする超電
導マグネットコイルの製造方法。1. A method for manufacturing a superconducting magnet coil in which a coil formed by winding a superconducting wire in multiple layers and stages around a winding frame that is later removed is impregnated with a resin and hardened. is repeatedly shifted by 1/2 pitch of the superconducting wire width in the winding direction, and the compressive elastic modulus is alternately 2,000 to 40,000 kg/at the beginning and end of the winding in the winding direction. A method for manufacturing a superconducting magnet coil, characterized in that the coil is formed by winding it while inserting a spacer of mm^2.
されたものである請求項1記載の超電導マグネットコイ
ルの製造方法。2. 2. The method of manufacturing a superconducting magnet coil according to claim 1, wherein the coil has a filling auxiliary material filled between the superconducting wires.
^2の巻付張力で巻付けられたものである請求項1記載
の超電導マグネットコイルの製造方法。3. The coil carries the superconducting wire at a weight of 1 to 60 kg/mm.
2. The method of manufacturing a superconducting magnet coil according to claim 1, wherein the superconducting magnet coil is wound with a winding tension of ^2.
^2の圧力下で加熱硬化されるものである請求項1記載
の超電導マグネットコイルの製造方法。4. The coil has a weight of 2 to 500 kg/cm after being impregnated with resin.
2. The method of manufacturing a superconducting magnet coil according to claim 1, wherein the superconducting magnet coil is hardened by heating under a pressure of ^2.
段に巻付けて形成されるコイルに樹脂を含浸硬化してな
る超電導マグネットコイルの製造方法において、前記コ
イルを、前記巻枠に前記超電導線を一層毎の繰返しで巻
回方向に前記超電導線幅の1/3または1/4ピツチず
つずらし、かつ前記巻回方向の所定位置に圧縮弾性率が
2,000〜40,000kg/mm^2のスペーサを
挿入しながら巻付け形成したことを特徴とする超電導マ
グネットコイルの製造方法。5. A method for manufacturing a superconducting magnet coil in which a coil formed by winding a superconducting wire in multiple layers and stages around a winding frame that is later removed is impregnated with a resin and hardened. is repeated for each layer by 1/3 or 1/4 pitch of the superconducting wire width in the winding direction, and the compressive elastic modulus is 2,000 to 40,000 kg/mm^2 at a predetermined position in the winding direction. A method for manufacturing a superconducting magnet coil, characterized in that the coil is formed by winding it while inserting a spacer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19968090A JP2978215B2 (en) | 1990-07-28 | 1990-07-28 | Manufacturing method of superconducting magnet coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19968090A JP2978215B2 (en) | 1990-07-28 | 1990-07-28 | Manufacturing method of superconducting magnet coil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0485903A true JPH0485903A (en) | 1992-03-18 |
JP2978215B2 JP2978215B2 (en) | 1999-11-15 |
Family
ID=16411830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19968090A Expired - Fee Related JP2978215B2 (en) | 1990-07-28 | 1990-07-28 | Manufacturing method of superconducting magnet coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2978215B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008085375A (en) * | 2007-12-20 | 2008-04-10 | Mitsubishi Electric Corp | Method of manufacturing superconducting magnet device |
CN113758794A (en) * | 2021-09-19 | 2021-12-07 | 松山湖材料实验室 | Densely wound superconducting coil push-out interlayer shear performance testing device and method |
-
1990
- 1990-07-28 JP JP19968090A patent/JP2978215B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008085375A (en) * | 2007-12-20 | 2008-04-10 | Mitsubishi Electric Corp | Method of manufacturing superconducting magnet device |
CN113758794A (en) * | 2021-09-19 | 2021-12-07 | 松山湖材料实验室 | Densely wound superconducting coil push-out interlayer shear performance testing device and method |
Also Published As
Publication number | Publication date |
---|---|
JP2978215B2 (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8316528B2 (en) | Method for making electrical windings for transformers and electrical apparatus | |
US11101066B2 (en) | Electromagnetic coil | |
JP5895015B2 (en) | Reinforced magnet | |
EP3090436A1 (en) | Method and design for stabilizing conductors in a coil winding | |
JP7123828B2 (en) | Superconducting coil conductor and method for manufacturing superconducting coil conductor | |
JP2007282410A (en) | Rotating electric machine, stator coil thereof, its manufacturing method, and semiconductive sheet, semiconductive tape | |
JPH0485903A (en) | Manufacture of superconducting magnet coil | |
Chichili et al. | Fabrication of the shell-type Nb/sub 3/Sn dipole magnet at Fermilab | |
JP2014013877A (en) | Superconductive pancake coil, and method of manufacturing the same | |
JPH10188692A (en) | Forced cooling superconductor, its manufacture, and manufacture of forced cooling type superconductive coil | |
Andreev et al. | Development and test of single-bore cos-/spl thetav/Nb/sub 3/Sn dipole models with cold iron yoke | |
JP2023092752A (en) | Prepreg mica tape, rotary electric machine, and manufacturing method for rotary electric machine | |
Devred et al. | Development of a Nb/sub 3/Sn quadrupole magnet model | |
Larbalestier et al. | Multifilamentary niobium tin solenoids | |
JPH03250704A (en) | Manufacture of superconducting coil | |
JP3060547B2 (en) | Superconducting coil manufacturing method | |
JP2656381B2 (en) | Manufacturing method of coil for electromagnet | |
Bursikov et al. | R&D of insulating and vacuum pressure impregnation equipment for PF1 coil double pancakes | |
Dell'Orco et al. | Fabrication and component testing results for a Nb/sub 3/Sn dipole magnet | |
JPS6022304A (en) | Superconductive wire for winding | |
Heremans et al. | High performance coils for pulsed magnets | |
KR100415564B1 (en) | A Method for Impregnation High Voltage in Fly Back Transformer | |
Caspi | LBNL Cos-theta Nb 3 Sn Dipole Magnet D20 | |
Karppinen et al. | The Development of the Inner Triplet Dipole Corrector (MCBX) for LHC | |
JPH0442510A (en) | Manufacture of superconductive magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |