JPH048486B2 - - Google Patents
Info
- Publication number
- JPH048486B2 JPH048486B2 JP18007587A JP18007587A JPH048486B2 JP H048486 B2 JPH048486 B2 JP H048486B2 JP 18007587 A JP18007587 A JP 18007587A JP 18007587 A JP18007587 A JP 18007587A JP H048486 B2 JPH048486 B2 JP H048486B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- toughness
- steel
- temperature
- sec
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 36
- 239000010959 steel Substances 0.000 claims description 36
- 238000005096 rolling process Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 19
- 238000001816 cooling Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 229910001563 bainite Inorganic materials 0.000 claims description 12
- 229910000859 α-Fe Inorganic materials 0.000 claims description 9
- 229910001294 Reinforcing steel Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 6
- 230000001186 cumulative effect Effects 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 description 10
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910000734 martensite Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- -1 chlorine ions Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004154 testing of material Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
(産業上の利用分野)
本発明は低温靭性の優れた鉄筋棒鋼の製造方法
に関するものである。
(従来の技術)
液化天然ガスの貯蔵容器としては安全性が重視
されるため、外側をコンクリートで覆つた構造の
ものが指向されている。
コンクリート補強用鉄筋棒鋼に要求される主た
る材質特性は、降伏強度42Kgf/mm2以上、−120℃
におけるシヤルピー衝撃値が10Kgfm/cm2以上で、
さらに耐食性に優れている等である。−120℃付近
で使用される低温用鋼材は主として厚板でNi系
の合金鋼、例えば3.5%Niや6%Ni鋼を焼ならし
や焼入焼戻等の熱処理を施して用いられている。
しかし細長い鉄筋棒鋼に適用することは曲りが避
けられず別途矯直工程を必要とするほか、製造コ
ストが著しく高くなる。
このような鉄筋棒鋼の簡便な熱処理方法のひと
つとして、例えば特開昭49−135413に示されるよ
うに熱間圧延直後のオーステナイト組織の温度範
囲にある赤熱鋼材を急冷し、表層部のみを焼入硬
化する方法が提案されている。この方法は熱処理
による曲りも少なく、コストも比較的安い製造方
法である。しかしこの方法では内部が焼入され
ず、このためC量を高めて強度の改善を図つてい
たため十分な靭性が得られなかつた。
(発明が解決しようとする問題点)
従来の表面部のみを焼入硬化する方法により製
造された棒鋼組織は表面部がマルテンサイトで内
部はフエライト・パーライト組織である。表面部
のマルテンサイト部で10Kgfm/cm2以上のシヤル
ピー衝撃値を得ようとすれば高価なNiの添加に
よつて可能であるが内部のフエライト・パーライ
ト部では十分な靭性が得られなかつた。
本発明は低コストで十分な靭性を有する低温靭
性の優れた鉄筋棒鋼の製造方法を提供するもので
ある。すなわち本発明者らは通常の低炭素鋼につ
いて、この表面焼入による方法を種々検討した結
果、ベーナイトを主体とし、これに若干のフエラ
イト組織の混入したベーナイト+フエライト鋼が
全断面にわたつて十分な強度と靭性を示すことが
判明した。
本発明は以上の知見に基づいて、低温靭性の著
しく優れた鉄筋棒鋼の製造方法を提供するもので
ある。
(問題点を解決するための手段および作用)
すなわち本発明の要旨は、
(1) C:0.02〜0.10%、Si:0.5%以下、Mn:
1.50〜2.00%、P:0.010%以下、S:0.010
%以下、Al:0.010〜0.080%、N:0.0020〜
0.0070%を含有し残部がFeおよび不可避的不
純物からなる鋼材を用いて、仕上圧延過程で
の圧延を加工間隔5sec以下、累積圧下率30%
以上および温度750℃〜650℃の範囲で終了す
る。その後直ちに鋼材表面部を30℃/sec以
上、150℃/sec以下の冷却速度で冷却して、
ベーナイト組織を20%以上含有させたベーナ
イト+フエライト組織を有する低温靭性に優
れた鉄筋棒鋼の製造方法であり、又、
(2) C:0.02〜0.10%、Si:0.5%以下、Mn:
1.50〜2.00%、P:0.010%以下、S:0.010%
以下、Al:0.010〜0.080%、N:0.0020〜
0.0070%を含有し、更に0.01〜0.30%のNbまた
はVの1種以上を含有し残部がFeおよび不可
避的不純物からなる鋼材を用いて、仕上圧延過
程での圧延を加工間隔5sec以下、累積圧下率30
%以上および温度750℃〜650℃の範囲で終了す
る。その後直ちに鋼材表面部を30℃/sec以上、
150℃/sec以下の冷却速度で冷却して、ベーナ
イト組織を20%以上含有させたベーナイト+フ
エライト組織を有する低温靭性に優れた鉄筋棒
鋼の製造方法にある。
本発明において前述のように成分範囲および製
造方法等を定めた理由について述べる。
C:0.02〜0.10%としたのは、Cは焼入性が
高く強度上昇に有効な元素であるが0.02%以下
では圧延後の急冷によつてもベーナイト組織が
得られず強度および靭性が低下する。また0.10
%を超えるとマルテンサイト組織および多量の
炭化物が析出し靭性が劣化する。
Siは脱酸剤として使用する。しかし耐食性を
考慮した場合少ない方が望ましい。Siは鋼の表
面で四価の+イオンとなり、酸素の−イオンと
結合し易く、その結果表面層の酸化鉄が還元さ
れ鉄がイオン化し、これが塩素イオンと反応し
コンクリート層に浸透してきた酸素で酸化さ
れ、連鎖的に錆層が生成する。このため脱酸を
Alにより行なう場合は錆層の生成抑制上出来
るだけ少なくするのが望ましい。
MnはCと同様に鋼材の焼入性を上げる元素
で強度上昇に有効であると同時に、Ar3変態温
度を低下させるため細粒化を通じて強度および
靭性を改善する。しかし1.5%以下では急冷に
よつてもベーナイト組織が得られず強度および
靭性共劣化する。また2.00%を超えるとマルテ
ンサイト組織が出現して靭性が劣化し、さらに
コストも高くなる。
PおよびSは結晶粒界に偏析し、低温靭性を
著しく阻害する。特にSは鋼中でMnSとなり
錆発生の起点と成りやすい。このためこれら元
素の上限をいずれも0.010%とした。
Alは脱酸元素として利用すると共に、AlN
を析出させ再結晶粒の成長を抑制し結晶粒の微
細化作用を有し低温靭性を改善する。このため
には最低0.010%以上必要であり、また0.080%
を超えるとト増に加えてアルミナ系の介在物が
増加し材質を劣化させるので上限を0.080%と
した。
Nは鋼材を時効させ特に圧延後急冷した鋼材
に対してこの作用が大きく、鉄筋の曲げ加工性
および靭性を劣化させるため低い方が望まし
い。しかしAlN生成のため最低0.0020%以上必
要であり、0.0070%を越えると曲げ加工性およ
び靭性が著しく劣化する。
Nbは鋼材の再結晶温度を高める作用を有す
る。このため未再結晶温度域での加工量を増加
し結晶粒を微細化し、靭性を改善させるため使
用する。Vはフエライト相および粒界に炭窒化
物を析出し、強化および細粒化を通じて強度と
靭性の両方を改善する。これらのためNbおよ
びVは共に0.01%以上必要である。また0.30%
を越えると効果の割りにコスト高になるため上
限を0.30%とした。
次に圧延条件を制限した理由について述べ
る。
仕上圧延温度は低い方が結晶粒が微細化し強
度および靭性が向上する。このため目標とする
シヤルピー衝撃値vE-120≧10Kgfmを得るため
に上限温度を750℃とした。しかし650℃以下で
は圧延機の負荷が大となり、さらに加工硬化を
おこし靭性が劣化する。
靭性はさらに仕上げ圧延過程での圧下率に大
きく影響する。目標の靭性を得るためには少な
くとも30%以上の圧下率が必要である。この30
%以上の圧下率は1パスで達成してもよいが、
数パスで行う場合は加工間隔5sec以下とする。
これを超すと累積効果が少くなる。
圧延後の鋼材の冷却は所望の組織および結晶
粒微細化のために必要である。目標の強度およ
び靭性確保上必要な20%以上のベーナイト組織
を得るためには少なくとも30℃/sec以上の冷
速が必要であり、また150℃/sec以上では靭性
に有害なマルテンサイト組織が出現する。冷却
は長時間行なつて水冷ままの状態にしても良い
し、数秒間で冷却を中止し中心部からの復熱に
よつて焼戻をしてもよい。
(実施例)
次に本発明の実施例について述べる。
第1表に供試材の種類および化学成分を示す。
供試材として本発明鋼a,b,cの他に比較鋼と
して本発明鋼と成分の異なる2鋼種d,eを用い
た。
各試験片は転炉または試験炉で溶製して分塊ま
たは鍛造により120mm角に成形し、これらを互い
に溶接接合し6本のビレツトを用意して980〜
1020℃に加熱した。つぎに第2表に示すように本
発明鋼の場合には本発明および本発明以外の製造
条件で、また比較鋼の場合には本発明による製造
条件のみで、それぞれ異径鉄筋D25に圧延した。
すなわち本発明鋼の仕上温度は850および720℃に
加熱し圧下率を15%(1パスで)および45%(3
パスで)とし、45%の場合の加工間隔を
(Industrial Application Field) The present invention relates to a method for producing a reinforced steel bar with excellent low-temperature toughness. (Prior Art) Since safety is important as a storage container for liquefied natural gas, containers with a structure covered with concrete on the outside are preferred. The main material properties required for reinforced steel bars for concrete reinforcement are yield strength of 42Kgf/ mm2 or higher, -120℃
Shyalpy impact value is 10Kgfm/ cm2 or more,
Furthermore, it has excellent corrosion resistance. Low-temperature steel materials used at around -120℃ are mainly thick plates made of Ni-based alloy steel, such as 3.5% Ni or 6% Ni steel, which are heat-treated by normalizing, quenching and tempering. .
However, when applied to long and slender reinforcing steel bars, bending is inevitable, requiring a separate straightening process, and the manufacturing cost increases significantly. One of the simple heat treatment methods for such reinforcing steel bars is to rapidly cool red-hot steel material in the temperature range of the austenitic structure immediately after hot rolling, and quench only the surface layer, as shown in Japanese Patent Application Laid-Open No. 135413/1983. A method of curing has been proposed. This method causes less bending due to heat treatment and is a relatively inexpensive manufacturing method. However, with this method, the inside was not hardened, and therefore sufficient toughness could not be obtained because the amount of C was increased to improve strength. (Problems to be Solved by the Invention) A steel bar structure produced by the conventional method of quench hardening only the surface portion has a martensite structure on the surface and a ferrite/pearlite structure inside. It is possible to obtain a sharpy impact value of 10 Kgfm/cm 2 or higher in the martensite part of the surface by adding expensive Ni, but sufficient toughness cannot be obtained in the ferrite/pearlite part inside. The present invention provides a method for manufacturing a reinforcing steel bar having sufficient toughness and excellent low-temperature toughness at low cost. In other words, the present inventors investigated various surface hardening methods for ordinary low carbon steel, and found that bainite + ferrite steel consisting mainly of bainite with some ferrite structure mixed in is sufficient over the entire cross section. It was found that it exhibits excellent strength and toughness. Based on the above findings, the present invention provides a method for producing a reinforcing steel bar with extremely excellent low-temperature toughness. (Means and effects for solving the problems) That is, the gist of the present invention is as follows: (1) C: 0.02 to 0.10%, Si: 0.5% or less, Mn:
1.50-2.00%, P: 0.010% or less, S: 0.010
% or less, Al: 0.010~0.080%, N: 0.0020~
Using a steel material containing 0.0070% Fe and the remainder consisting of Fe and unavoidable impurities, rolling in the finish rolling process was performed at a processing interval of 5 seconds or less and a cumulative reduction rate of 30%.
or more and the temperature ranges from 750°C to 650°C. Immediately thereafter, the surface of the steel material is cooled at a cooling rate of 30°C/sec or more and 150°C/sec or less,
A method for producing a reinforced steel bar with excellent low-temperature toughness having a bainite + ferrite structure containing 20% or more of bainite structure, and (2) C: 0.02 to 0.10%, Si: 0.5% or less, Mn:
1.50-2.00%, P: 0.010% or less, S: 0.010%
Below, Al: 0.010~0.080%, N: 0.0020~
Using a steel material containing 0.0070% and further containing 0.01 to 0.30% of one or more of Nb or V, with the remainder consisting of Fe and unavoidable impurities, rolling in the finish rolling process is performed at a processing interval of 5 seconds or less and with a cumulative reduction. rate 30
% or more and end at a temperature range of 750℃~650℃. Immediately after that, the surface of the steel material is heated at 30℃/sec or more.
The present invention provides a method for producing a reinforcing steel bar having excellent low-temperature toughness and having a bainite + ferrite structure containing 20% or more of bainite structure by cooling at a cooling rate of 150° C./sec or less. The reason why the component range, manufacturing method, etc. were determined as described above in the present invention will be described. C: 0.02 to 0.10% is because C is an element with high hardenability and is effective in increasing strength, but if it is less than 0.02%, a bainitic structure cannot be obtained even by rapid cooling after rolling, resulting in a decrease in strength and toughness. do. Also 0.10
%, a martensitic structure and a large amount of carbides will precipitate and the toughness will deteriorate. Si is used as a deoxidizing agent. However, in consideration of corrosion resistance, it is desirable to have a smaller amount. Si becomes a tetravalent + ion on the steel surface and easily combines with - oxygen ions. As a result, the iron oxide on the surface layer is reduced and the iron is ionized, which reacts with chlorine ions and the oxygen that has penetrated into the concrete layer. It is oxidized and a rust layer is formed in a chain reaction. For this reason, deoxidizing
When using Al, it is desirable to reduce the amount as much as possible in order to suppress the formation of a rust layer. Like C, Mn is an element that increases the hardenability of steel materials and is effective in increasing strength.At the same time, Mn improves strength and toughness through grain refinement because it lowers the Ar 3 transformation temperature. However, if it is less than 1.5%, a bainitic structure cannot be obtained even by rapid cooling, and the strength and toughness co-deteriorate. Moreover, if it exceeds 2.00%, a martensitic structure will appear and the toughness will deteriorate, further increasing the cost. P and S segregate at grain boundaries and significantly impede low-temperature toughness. In particular, S becomes MnS in steel and tends to become a starting point for rust. Therefore, the upper limit of these elements was set at 0.010%. Al is used as a deoxidizing element, and AlN
It precipitates, suppresses the growth of recrystallized grains, has the effect of refining crystal grains, and improves low-temperature toughness. For this, a minimum of 0.010% or more is required, and 0.080%
If it exceeds 0.0%, alumina-based inclusions will increase in addition to increasing the content, degrading the material, so the upper limit was set at 0.080%. N has a large effect on steel materials that have been aged, especially on steel materials that have been rapidly cooled after rolling, and deteriorates the bending workability and toughness of reinforcing bars, so a lower N content is desirable. However, a minimum content of 0.0020% or more is required for AlN formation, and if it exceeds 0.0070%, bending workability and toughness will significantly deteriorate. Nb has the effect of increasing the recrystallization temperature of steel. Therefore, it is used to increase the amount of processing in the non-recrystallized temperature range, refine the crystal grains, and improve toughness. V precipitates carbonitrides in the ferrite phase and grain boundaries, improving both strength and toughness through strengthening and grain refinement. For these reasons, both Nb and V are required to be at least 0.01%. Also 0.30%
If it exceeds this, the cost becomes high compared to the effectiveness, so the upper limit was set at 0.30%. Next, the reason for limiting the rolling conditions will be described. The lower the finish rolling temperature, the finer the crystal grains and the better the strength and toughness. Therefore, the upper limit temperature was set to 750°C in order to obtain the target Shalpy impact value vE -120 ≧10Kgfm. However, below 650°C, the load on the rolling mill increases, further causing work hardening and deterioration of toughness. Toughness also greatly affects the rolling reduction during the finish rolling process. In order to obtain the target toughness, a reduction ratio of at least 30% is required. This 30
A reduction rate of % or more may be achieved in one pass, but
When performing several passes, the processing interval should be 5 seconds or less.
Exceeding this will reduce the cumulative effect. Cooling of the steel after rolling is necessary to achieve the desired structure and grain refinement. In order to obtain the 20% or more bainitic structure necessary to ensure the target strength and toughness, a cooling rate of at least 30°C/sec or higher is required, and at a cooling rate of 150°C/sec or higher, a martensitic structure that is harmful to toughness appears. do. The cooling may be carried out for a long period of time and the material may be kept in a water-cooled state, or the cooling may be stopped after several seconds and tempering may be performed by recuperating heat from the center. (Example) Next, an example of the present invention will be described. Table 1 shows the types and chemical components of the test materials.
In addition to the present invention steels a, b, and c as test materials, two steel types d and e having different compositions from the present invention steel were used as comparison steels. Each test piece was melted in a converter or test furnace, formed into a 120 mm square by blooming or forging, and then welded together to prepare six billets.
Heated to 1020°C. Next, as shown in Table 2, the steel of the present invention was rolled into a reinforcing bar of different diameter D25 under manufacturing conditions according to the invention and those other than the invention, and the comparative steel was rolled under manufacturing conditions according to the invention only. .
In other words, the finishing temperature of the steel of the present invention is heated to 850 and 720°C, and the reduction rate is 15% (in 1 pass) and 45% (in 3 passes).
), and the machining interval for 45% is
【表】【table】
【表】
1.5および6.3secの2水準で行なつた。さらに圧延
終了後表層部を280℃から150℃まで冷却した。こ
の場合ベーナイト変態が終了する500℃までの冷
却速度は15、134、および210℃/secの3水準で
行なつた。これに対して比較鋼の場合は圧下率45
%、加工間隔1.5secおよび冷却速度134℃で行な
い、720℃で圧延を終了した。材質試験は異径形
状のままで引張試験を行ない、シヤルピー衝撃試
験は中間部からJIS4号(2mmVノツチ)試験片を
切出し−120℃で行なつた。さらに20×40×2mm
厚さの試験片を切出しPH値を12.5に調整した0.2
%NaClを含有するCa(OH)2水溶液中で電圧を加
え、腐食電流の発生する印加電圧の大小で耐塩性
を評価した。
第2表に材質試験結果を示す。
本発明鋼を用いても仕上圧延温度が750℃を越
えると他の製造条件が本発明の範中にあつても特
に靭性が低くなり、目標を満足出来なくなる(製
造法:A1、B1、C1)。また仕上圧延温度が750℃
以下で本発明の範中にあつても圧下率が本発明外
(A2)または加工間隔が本発明外(A6、B5、C5)
の場合も靭性不足となる。さらに圧延温度、圧下
率、および加工間隔が本発明の範中にあつても冷
却速度が小さい場合(A3、B2、C2)はベイナイ
ト組織が得られず強度不足に加え靭性も不足す
る。冷却速度が大きい場合(A5、B4、C4)はマ
ルテンサイト組織が生成し、鉄筋は強化するが靭
性不足になる。これに対して本発明の方法で製造
した鉄筋棒鋼の強度、靭性は目標値を十分満足出
来、特に低温における靭性が優れている。
一方比較鋼では本発明の方法により製造しても
靭性が著しく不足する。
耐食性は成分の影響が大で本発明鋼の場合、い
ずれの方法によつて製造しても良好な耐食性を示
す。比較鋼では少ない電圧でも腐食電流が流れ耐
食性は劣る。
(発明の効果)
以上のように本発明は低コストで従来にない低
温靭性および耐食性の両方に優れた、高強度鉄筋
棒鋼の製造方法を提供するものであり、従来行な
われていた表面焼入法の欠点を補うものであり極
めて有用な発明である。[Table] Tests were conducted at two levels: 1.5 and 6.3 seconds. Furthermore, after the rolling was completed, the surface layer portion was cooled from 280°C to 150°C. In this case, the cooling rate up to 500°C, at which the bainite transformation was completed, was carried out at three levels: 15, 134°C, and 210°C/sec. On the other hand, in the case of comparative steel, the reduction rate was 45
%, a processing interval of 1.5 sec, and a cooling rate of 134°C, and the rolling was completed at 720°C. For material testing, a tensile test was conducted with the different diameter shape intact, and for a Charpy impact test, a JIS No. 4 (2 mm V notch) test piece was cut from the middle portion and conducted at -120°C. Furthermore 20×40×2mm
Cut out a test piece with a thickness of 0.2 and adjust the PH value to 12.5.
A voltage was applied in a Ca(OH) 2 aqueous solution containing % NaCl, and salt resistance was evaluated based on the magnitude of the applied voltage at which corrosion current was generated. Table 2 shows the material test results. Even if the steel of the present invention is used, if the finish rolling temperature exceeds 750°C, the toughness will be particularly low even if other manufacturing conditions are within the range of the present invention, making it impossible to satisfy the target (manufacturing method: A 1 , B 1 , C1 ). Also, the finish rolling temperature is 750℃
Even if the following is within the scope of the present invention, the rolling reduction rate is outside the scope of the present invention (A 2 ) or the processing interval is outside the scope of the present invention (A 6 , B 5 , C 5 )
In this case, toughness is also insufficient. Furthermore, even if the rolling temperature, reduction rate, and working interval are within the range of the present invention, if the cooling rate is low (A 3 , B 2 , C 2 ), a bainite structure cannot be obtained, resulting in insufficient strength and toughness. . When the cooling rate is high (A 5 , B 4 , C 4 ), a martensitic structure is generated, which strengthens the reinforcing steel but lacks toughness. On the other hand, the strength and toughness of the reinforced steel bar manufactured by the method of the present invention fully satisfy the target values, and the toughness is particularly excellent at low temperatures. On the other hand, comparative steels are significantly lacking in toughness even when produced by the method of the present invention. Corrosion resistance is greatly influenced by the ingredients, and the steel of the present invention exhibits good corrosion resistance no matter which method it is produced. Comparative steel has inferior corrosion resistance because corrosion current flows even at a low voltage. (Effects of the Invention) As described above, the present invention provides a method for producing high-strength steel bars that are low-cost and have unprecedented low-temperature toughness and corrosion resistance. It is an extremely useful invention that compensates for the deficiencies of the law.
Claims (1)
る鋼材を用いて、仕上圧延過程での圧延を加工間
隔5sec以下、累積圧下率30%以上および温度750
℃から650℃の範囲で終了する。その後直ちに鋼
材表面部を30℃/sec以上、150℃/sec以下の冷
却速度で冷却して、ベーナイト組織を20%以上含
有させたベーナイト+フエライト組織を有する低
温靭性に優れた鉄筋棒鋼の製造方法。 2 C:0.02〜0.10% Si:0.5%以下 Mn:1.50〜2.00% P:0.010%以下 S:0.010%以下 Al:0.010〜0.080% N:0.0020〜0.0070% を含有し、更に0.01〜0.30%のNbまたはVの1種
以上を含有し残部がFeおよび不可避的不純物か
らなる鋼材を用いて、仕上圧延過程での圧延を加
工間隔5sec以下、累積圧下率30%以上および温度
750℃から650℃の範囲で終了する。その後直ちに
鋼材表面部を30℃/sec以上、150℃/sec以下の
冷却速度で冷却して、ベーナイト組織を20%以上
含有させたベーナイト+フエライト組織を有する
低温靭性に優れた鉄筋棒鋼の製造方法。[Claims] 1 Contains C: 0.02 to 0.10% Si: 0.5% or less Mn: 1.50 to 2.00% P: 0.010% or less S: 0.010% or less Al: 0.010 to 0.080% N: 0.0020 to 0.0070% with the remainder Using a steel material consisting of Fe and unavoidable impurities, the finishing rolling process is carried out at a processing interval of 5 seconds or less, a cumulative reduction rate of 30% or more, and a temperature of 750°C.
Termination ranges from ℃ to 650℃. A method for producing a reinforcing steel bar with excellent low-temperature toughness and having a bainite + ferrite structure containing 20% or more of bainite structure, by immediately cooling the surface of the steel material at a cooling rate of 30°C/sec or more and 150°C/sec or less. . 2 Contains C: 0.02-0.10% Si: 0.5% or less Mn: 1.50-2.00% P: 0.010% or less S: 0.010% or less Al: 0.010-0.080% N: 0.0020-0.0070%, and further contains 0.01-0.30% Using a steel material containing at least one type of Nb or V, with the remainder consisting of Fe and unavoidable impurities, rolling in the finish rolling process is carried out at a processing interval of 5 seconds or less, a cumulative reduction rate of 30% or more, and a temperature of 30% or more.
Finishes in the range of 750℃ to 650℃. A method for producing a reinforcing steel bar with excellent low-temperature toughness and having a bainite + ferrite structure containing 20% or more of bainite structure, by immediately cooling the surface of the steel material at a cooling rate of 30°C/sec or more and 150°C/sec or less. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18007587A JPS6425918A (en) | 1987-07-21 | 1987-07-21 | Manufacture of reinforcing steel bar excellent in toughness at low temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18007587A JPS6425918A (en) | 1987-07-21 | 1987-07-21 | Manufacture of reinforcing steel bar excellent in toughness at low temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6425918A JPS6425918A (en) | 1989-01-27 |
JPH048486B2 true JPH048486B2 (en) | 1992-02-17 |
Family
ID=16077021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18007587A Granted JPS6425918A (en) | 1987-07-21 | 1987-07-21 | Manufacture of reinforcing steel bar excellent in toughness at low temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6425918A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4435954B2 (en) | 1999-12-24 | 2010-03-24 | 新日本製鐵株式会社 | Bar wire for cold forging and its manufacturing method |
JP4882259B2 (en) * | 2005-03-30 | 2012-02-22 | Jfeスチール株式会社 | Hydrated hardened body with rebar having excellent salt resistance |
JP2007320484A (en) * | 2006-06-02 | 2007-12-13 | Fuji Heavy Ind Ltd | Door sash molding mounting structure |
JP2008114725A (en) * | 2006-11-06 | 2008-05-22 | Fuji Heavy Ind Ltd | Vehicle door sash structure |
CN101831586A (en) * | 2010-04-30 | 2010-09-15 | 南京钢铁股份有限公司 | Low-carbon equivalent weight high-strength thick steel plate with excellent low-temperature toughness and manufacture method |
CN104480410A (en) * | 2014-12-13 | 2015-04-01 | 广西科技大学 | Formula of half grouting type high-strength thick reinforcing bar |
-
1987
- 1987-07-21 JP JP18007587A patent/JPS6425918A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6425918A (en) | 1989-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3707289B1 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
EP2484792A1 (en) | Steel plate with low yield ratio, high strength, and high toughness and process for producing same | |
KR100920536B1 (en) | High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof | |
CN112236539B (en) | High-tensile thick steel plate for extremely low temperature and method for producing same | |
KR102289520B1 (en) | Steel reinforcement and method of manufacturing the same | |
JPH04268016A (en) | Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic | |
JPH07278656A (en) | Method of manufacturing low yield ratio high strength steel | |
JPH05105957A (en) | Production of heat resistant high strength bolt | |
WO2007080645A1 (en) | Cryogenic steel excelling in ctod performance of weld heat-affected zone | |
JP3422865B2 (en) | Method for producing high-strength martensitic stainless steel member | |
JP3422864B2 (en) | Stainless steel with excellent workability and method for producing the same | |
JPH048486B2 (en) | ||
JPH06128631A (en) | Method for producing high manganese ultra high strength steel with excellent low temperature toughness | |
JP7493138B2 (en) | Ultra-low yield ratio high tensile steel plate and its manufacturing method | |
JP3077567B2 (en) | Method of manufacturing steel for low-temperature rebar | |
JPH01319629A (en) | Production of cr-mo steel sheet having excellent toughness | |
JPH0219175B2 (en) | ||
JP2582147B2 (en) | Method for producing low temperature nickel steel sheet with excellent weld toughness | |
JP2756535B2 (en) | Manufacturing method for strong steel bars | |
JPS63183123A (en) | Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating | |
KR910003883B1 (en) | Making process for high tension steel | |
JP2706159B2 (en) | Method for producing low yield ratio high strength steel with good weldability | |
JPH06240406A (en) | Steel plate with high strength and high toughness | |
KR100311791B1 (en) | METHOD FOR MANUFACTURING QUENCHED AND TEMPERED STEEL WITH SUPERIOR TENSILE STRENGTH OF AROUND 600MPa AND IMPROVED TOUGHNESS IN WELDED PART | |
EP4450663A1 (en) | Steel having excellent hydrogen-induced craking resistance and low-temperature impact toughness, and method for manufacturing same |