JPH0484486A - Ultraviolet area semiconductor laser and semiconductor element and those manufacture - Google Patents
Ultraviolet area semiconductor laser and semiconductor element and those manufactureInfo
- Publication number
- JPH0484486A JPH0484486A JP2200428A JP20042890A JPH0484486A JP H0484486 A JPH0484486 A JP H0484486A JP 2200428 A JP2200428 A JP 2200428A JP 20042890 A JP20042890 A JP 20042890A JP H0484486 A JPH0484486 A JP H0484486A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- crystal layer
- compound semiconductor
- semiconductor crystal
- ultraviolet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 86
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000013078 crystal Substances 0.000 claims abstract description 81
- 150000001875 compounds Chemical class 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000000463 material Substances 0.000 claims abstract description 31
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical group [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 20
- 230000000737 periodic effect Effects 0.000 claims description 13
- 230000010355 oscillation Effects 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 7
- WGPCGCOKHWGKJJ-UHFFFAOYSA-N sulfanylidenezinc Chemical compound [Zn]=S WGPCGCOKHWGKJJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 229910052951 chalcopyrite Inorganic materials 0.000 claims description 5
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 5
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 description 16
- 238000005253 cladding Methods 0.000 description 14
- 239000002994 raw material Substances 0.000 description 11
- 230000004888 barrier function Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 230000005284 excitation Effects 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- LTGFPOASROGREL-UHFFFAOYSA-N beryllium;carbanide Chemical compound [Be+2].[CH3-].[CH3-] LTGFPOASROGREL-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 150000002910 rare earth metals Chemical group 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- LALRXNPLTWZJIJ-UHFFFAOYSA-N triethylborane Chemical compound CCB(CC)CC LALRXNPLTWZJIJ-UHFFFAOYSA-N 0.000 description 2
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 229910013178 LiBO2 Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- ZOCHARZZJNPSEU-UHFFFAOYSA-N diboron Chemical compound B#B ZOCHARZZJNPSEU-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/0004—Devices characterised by their operation
- H01L33/002—Devices characterised by their operation having heterojunctions or graded gap
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的コ
(産業上の利用分野)
本発明は、新規な化合物半導体材料を用いた半導体素子
に係り、とくに紫外域までの発光が可能な半導体レーザ
およびその製造方法に関する。[Detailed Description of the Invention] [Purpose of the Invention (Field of Industrial Application) The present invention relates to a semiconductor device using a novel compound semiconductor material, and in particular to a semiconductor laser capable of emitting light up to the ultraviolet region and its manufacture. Regarding the method.
(従来の技術)
高速度かつ高密度の情報処理システムの構築のために、
短波長半導体レーザの実現が望まれている。短波長半導
体レーザの実現ために半導体材料に要求される条件とし
ては、
1)直接遷移型であること、
2)pn接合が形成できること、
3)ヘテロ接合が形成できること、
の3項目があげられる。これらの条件をすべて満足する
、従来より知られている半導体材料としては、InGa
ARPがある。このInGaAjJP系材料を用いれば
、580 nmまでのレーザ発振の可能性がある。(Conventional technology) In order to construct a high-speed and high-density information processing system,
The realization of short wavelength semiconductor lasers is desired. The following three conditions are required for a semiconductor material to realize a short wavelength semiconductor laser: 1) It must be a direct transition type, 2) It can form a pn junction, and 3) It can form a heterojunction. A conventionally known semiconductor material that satisfies all of these conditions is InGa.
There is ARP. If this InGaAjJP-based material is used, laser oscillation up to 580 nm is possible.
より短波長の半導体レーザを得るためには、3eV以上
のバンドギャップをもち、直接遷移型であるU−Vl族
窒化物等が有望なものとして検討されている。しかしこ
れまでのところ、II−Vl族窒化物では導電性制御が
達成されていないことから成功例はない。特に、各種螢
光体の励起光源、光化学反応用光源、等の用途に応用可
能性の高い、300nmより短波長の紫外域にて発振す
る半導体レーザ用材料は、その強い要望にもかかわらず
ほとんど検討されていない。In order to obtain a semiconductor laser with a shorter wavelength, U-Vl group nitrides, which have a band gap of 3 eV or more and are direct transition type, are being considered as promising materials. However, so far, there has been no success with II-Vl group nitrides because conductivity control has not been achieved. In particular, despite strong demand, materials for semiconductor lasers that oscillate in the ultraviolet region with wavelengths shorter than 300 nm have high potential for application as excitation light sources for various phosphors, light sources for photochemical reactions, etc. Not considered.
紫外半導体レーザ用材料としては、その発光エネルギー
が5eV以上であり、化学結合のエネルギーに近いこと
から、これまでの近赤外から可視域のレーザ用材料とは
異なった特性が要求される。Materials for ultraviolet semiconductor lasers are required to have different characteristics from conventional materials for lasers in the near-infrared to visible range because their emission energy is 5 eV or more, which is close to the energy of chemical bonds.
すなわち、発光の光子エネルギーにより自らの結晶構造
に損傷を受けないことが必要である。このためには、バ
ンドギャップが広いことの他に、イオン性の小さい丈夫
な格子をもつ結晶であることが望まれる。このことの重
要性は、バンドギャップの広いイオン性結晶であるアル
カリノーライドが紫外光照射により色中心と呼ばれる欠
陥を生成して着色する現象がしばしば観測されることか
らも明らかである。That is, it is necessary that its crystal structure is not damaged by the photon energy of emitted light. For this purpose, in addition to having a wide bandgap, it is desirable that the crystal have a small ionicity and a strong lattice. The importance of this is evident from the fact that it is often observed that alkaline nolides, which are ionic crystals with a wide band gap, are colored by producing defects called color centers when irradiated with ultraviolet light.
バンドギャップ値が5eV以上であり、かつ導電性制御
の可能性のある半導体材料は、GaA、pN系、立方晶
c−BN、ダイヤモンド等の極く少数に限定される。こ
れらの内、c−BNとダイヤモンドは、6eV以上のバ
ンドギャップを有しているものの、SP2配位をもつグ
ラファイト様の物質となりやすく合成が極めて困難であ
ること、間接遷移型であること、さらにこれと組み合わ
せてヘテロ接合を構成するための他の適当な材料が見出
されていないこと、が問題である。GaA11N系は直
接遷移型ではあるが、八Ωの組成がかなり大きい混晶に
限定され、バンドギャップに比して結合の弱いイオン性
の高い結晶であることから、結晶欠陥が生じやすく、導
電性制御は極めて困難である。また、高エネルギーの発
光により自ら欠陥を生成する可能性が高い。Semiconductor materials that have a band gap value of 5 eV or more and that have the possibility of controlling conductivity are limited to a very small number of materials such as GaA, pN system, cubic c-BN, and diamond. Among these, although c-BN and diamond have a band gap of 6 eV or more, they tend to become graphite-like substances with SP2 coordination, which is extremely difficult to synthesize, and they are indirect transition types. The problem is that no other suitable material has been found to combine with this to form a heterojunction. Although the GaA11N system is a direct transition type, it is limited to mixed crystals with a fairly large 8Ω composition, and is a highly ionic crystal with weak bonds compared to the band gap, so crystal defects are likely to occur and the conductivity is poor. Control is extremely difficult. Furthermore, there is a high possibility that defects will be generated by the high-energy light emission.
(発明が解決しようとする課題)
以上のように、紫外域にて発光する半導体レーザを実現
するために必要である、バンドギャップが例えば4〜5
eVと十分大きく、pn制御も可能で、発光波長のエネ
ルギーに対しても十分に強固で損傷をうけない、という
条件を満たす半導体材料は、その可能性についての示唆
も、これまでほとんどなかった。(Problems to be Solved by the Invention) As described above, the band gap required to realize a semiconductor laser that emits light in the ultraviolet region is, for example, 4 to 5.
Until now, there has been little suggestion of the possibility of a semiconductor material that satisfies the conditions of being sufficiently large eV, capable of pn control, and sufficiently strong and undamaged even with the energy of the emission wavelength.
本発明は上記した点に鑑みなされたもので、新規な化合
物半導体材料を用いて構成されたヘテロ接合を持つ半導
体素子とその製造方法を提供することを目的とする。The present invention was made in view of the above points, and an object of the present invention is to provide a semiconductor element having a heterojunction constructed using a novel compound semiconductor material, and a method for manufacturing the same.
本発明はまた、その様な新規の化合物半導体材料を用い
て構成された紫外域半導体レーザとその製造方法を提供
することを目的とする。Another object of the present invention is to provide an ultraviolet semiconductor laser constructed using such a new compound semiconductor material and a method for manufacturing the same.
[発明の構成]
(課題を解決するための手段)
本発明に係る半導体素子および紫外域半導体レーザは、
周期律表第2周期から選ばれた複数の元素の組み合わせ
からなる第1の化合物半導体結晶層と、周期律表第2周
期から選ばれた複数の元素の組み合わせからなる第2の
化合物半導体結晶層とのヘテロ接合を有することを特徴
とする。[Structure of the Invention] (Means for Solving the Problems) The semiconductor element and ultraviolet semiconductor laser according to the present invention include:
A first compound semiconductor crystal layer made of a combination of a plurality of elements selected from the second period of the periodic table, and a second compound semiconductor crystal layer made of a combination of a plurality of elements selected from the second period of the periodic table. It is characterized by having a heterojunction with.
また本発明はこの様な半導体素子および紫外域半導体レ
ーザを製造するに当たって、BNやBeCN2の様な、
本来SP3配位をとりにくい第1.第2の化合物半導体
結晶層を、BP等の安定なSP3配位を有する基板また
はバッファ層上に、SP3軌道を有する原料化合物を用
いた化学気相成長法により形成してヘテロ接合を形成す
る工程を有することを特徴とする。Furthermore, in manufacturing such a semiconductor element and an ultraviolet semiconductor laser, the present invention uses materials such as BN and BeCN2.
The first, which is originally difficult to take SP3 coordination. A step of forming a second compound semiconductor crystal layer on a substrate or buffer layer having a stable SP3 coordination such as BP by chemical vapor deposition using a raw material compound having an SP3 orbital to form a heterojunction. It is characterized by having the following.
(作用)
従来、BNを始めとする周規率表第2周期の元素からな
る物質は、SP2配位をとりグラアアイト様の層状物質
となりやすく、望ましいSP3配位の結晶となるのは、
極端な高温、高圧下でのみであるとされてきた。しかし
、本発明者らの研究によれば一従来極めて困難とされて
きたSP3配位を有するc−BNのエピタキシャル成長
が基板及び成長法を適切に選ぶことにより可能であるこ
とが判明した。(Function) Conventionally, substances composed of elements in the second period of the periodic table, such as BN, tend to take SP2 coordination and become glaite-like layered substances, and the desirable SP3 coordination crystals are:
It has been thought that this occurs only at extremely high temperatures and pressures. However, according to research conducted by the present inventors, it has been found that epitaxial growth of c-BN having SP3 coordination, which has been considered extremely difficult in the past, is possible by appropriately selecting a substrate and a growth method.
すなわち、基板が一部でもSP2配位を有する場合、表
面がπ電子様となっており、この上には必然的にSP2
配位の特徴であるπ結合を形成しやすく、結局全体がS
P2配位となってしまう。In other words, if even a part of the substrate has SP2 coordination, the surface has a π-electron-like structure, and there is inevitably SP2 on this surface.
It is easy to form π bonds, which is a characteristic of coordination, and in the end the whole becomes S.
This results in P2 coordination.
ところが、基板にBPのように安定なSP3配位を有す
る閃亜鉛鉱(ZB)型結晶を用いた場合には、表面の強
い結合力をもつσ結合手のために、本来σ結合が不安定
な条件下でも強固なσ結合がB又はNとの間で形成され
、これが次々と繰り返されることによりSP3配位を有
するZB型結晶が成長する。この現象は特に、成長手法
が表面反応が重要な役割りを演じる化学気相成長法であ
り、原料自体がSP3配位となっている水素化物又は有
機金属である場合に顕著である。この手法は、SP2配
位をとりやすい第1列の元素(Be、B。However, when a zinc blende (ZB) type crystal with stable SP3 coordination like BP is used as a substrate, the σ bonds are inherently unstable due to the strong bonding force of the σ bonds on the surface. A strong σ bond is formed between B or N even under such conditions, and by repeating this one after another, a ZB type crystal having SP3 coordination grows. This phenomenon is particularly noticeable when the growth method is a chemical vapor deposition method in which surface reactions play an important role, and when the raw material itself is a hydride or organometallic with SP3 coordination. This method uses elements in the first row (Be, B) that tend to take SP2 coordination.
C,N)を含む結晶の成長に同様に適用可能である。It is similarly applicable to the growth of crystals containing C, N).
次に、この様にして得られるSP3配位を持つBN層と
ヘテロ接合を形成する組み合わせ材料が必要である。B
Nは、全ての物質中にて最も格子定数が短かい物質に属
するので、格子整合かとれるのは同じく第2周期の元素
よりなるBeOとダイヤモンドに限定される。この内、
BeOはイオン性が極めて大きいので導電性制御の可能
性はほとんどない。またダイヤモンドは、BNとほとん
ど同じバンドギャップを持ちしかも間接遷移型である。Next, a combination material is required that forms a heterojunction with the BN layer having SP3 coordination obtained in this way. B
Since N has the shortest lattice constant among all substances, lattice matching is limited to BeO and diamond, which are also elements in the second period. Of these,
Since BeO is extremely ionic, there is almost no possibility of controlling the conductivity. Furthermore, diamond has almost the same band gap as BN and is of indirect transition type.
しかるに、ヘテロ接合形成に重要なのは接合界面での2
次元的な格子形及び格子定数の一致であり、バルクとし
ての格子定数と格子形の一致は必ずしも必要ないと考え
られる。したがってヘテロ界面と垂直方向への格子の自
由度は残されている。この様な結晶型として、正方晶の
一種であるカルコパイライト型結晶がある。第1周期目
の元素からなるカルコパライト型の化合物結晶はこれま
で報告されていない。これは、本来SP2配位をとりや
すくグラファイト様の層状物質となってしまうか、高温
・高圧下では、立方晶の混晶となってしまうからだと考
えられる。しかし、前述したBN成長と同様の手法によ
れば、極端な高温高圧の条件下でなくともSP3配位を
有する第2周期の元素よりなるカルコパイライト型化合
物の合成が可能なはずである。実際本発明者の実験によ
れば、BeCN2なる組成の物質が合成され、これがX
線回折及び反射スペクトル測定により、BNと同し電子
配位を有するカルコパイライト型結晶であることか確認
された。しかもこの物質のバンドギャップはC軸方向の
摂動によりBNよりわずかに小さく、BNとヘテロ接合
を形成することができる。However, what is important for the formation of a heterojunction is the
It is considered that the dimensional lattice shape and lattice constant match, and that the bulk lattice constant and lattice shape match is not necessarily required. Therefore, the degree of freedom of the lattice in the direction perpendicular to the heterointerface remains. As such a crystal type, there is a chalcopyrite type crystal, which is a type of tetragonal crystal. A chalcopalite-type compound crystal consisting of elements in the first period has not been reported so far. This is thought to be because it naturally tends to take SP2 coordination and becomes a graphite-like layered material, or because it becomes a cubic mixed crystal under high temperature and high pressure. However, according to a method similar to the above-mentioned BN growth, it should be possible to synthesize a chalcopyrite-type compound composed of a second period element having SP3 coordination even under extremely high temperature and high pressure conditions. In fact, according to the inventor's experiments, a substance with the composition BeCN2 was synthesized, and this
It was confirmed by line diffraction and reflection spectrum measurements that it was a chalcopyrite type crystal having the same electronic configuration as BN. Moreover, the bandgap of this material is slightly smaller than that of BN due to perturbation in the C-axis direction, and a heterojunction can be formed with BN.
次に、BeCN2結晶層を活性層として用いるためには
、これが間接遷移型であることが必要である。これにつ
いても、本発明によれば以下の様に解決される。まず本
発明の手法により合成されたBeCN2はカルコパイラ
イト型であるために、本来BNと同じX点に存在するは
ずの伝導帯の谷が、折りかえされてFに重なっている。Next, in order to use the BeCN2 crystal layer as an active layer, it is necessary that it be of indirect transition type. According to the present invention, this problem can also be solved as follows. First, since BeCN2 synthesized by the method of the present invention is of chalcopyrite type, the conduction band valley, which should originally exist at the same point X as BN, is folded back and overlaps with F.
このことは反射測定により確認された。ただ、このバン
ド構造は準直接遷移型と呼ばれる型に属し、本来禁制遷
移である。このため振動子強度が小さく活性層に用いた
場合、低い発振しきい値が得られない。This was confirmed by reflection measurements. However, this band structure belongs to a type called a quasi-direct transition type, and is essentially a forbidden transition. Therefore, when the vibrator has low strength and is used in an active layer, a low oscillation threshold cannot be obtained.
しかしこの問題は例えば、量子井戸構造を採用すること
によって解決される。しきい値低減の手法として量子井
戸を活性層に応用することは、これまでにもGaAlA
s系赤外半導体レーザにて試みられてきた。なかでも励
起子の束縛エネルギーか最大4倍になることによるキャ
リアの励起子化の効果が期待されてきた。しかし、通常
のm−V族生導体では励起子の束縛エネルギーが511
1e■程度であり、室温では、その効果は疑問視されて
いる。ところが本発明に係る第2周期の元素からなる半
導体では原子のポテンシャルの性質から他の周期の元素
からなる■−v族半導体より電子の有効質量が極端に重
く、その値は正孔と同程度に達する。このため、電子と
正孔の換算質量に略比例する励起子の束縛エネルギーが
GaAs等の約6 g+eVから、約10倍の60se
V程度大きくなる。However, this problem can be solved, for example, by employing a quantum well structure. The application of quantum wells to the active layer as a method of threshold reduction has been reported in the GaAlA
Attempts have been made using s-based infrared semiconductor lasers. Among these, the effect of converting carriers into excitons by increasing the binding energy of excitons by up to four times has been expected. However, in ordinary m-V group bioconductors, the exciton binding energy is 511
1e■, and its effectiveness at room temperature is questionable. However, in the semiconductor made of elements in the second period according to the present invention, due to the nature of atomic potential, the effective mass of electrons is extremely heavier than in the ■-V group semiconductor made of elements in other periods, and its value is about the same as that of holes. reach. For this reason, the binding energy of excitons, which is approximately proportional to the converted masses of electrons and holes, has increased from about 6 g+eV in GaAs to 60 se, which is about 10 times
It becomes larger by about V.
特に量子井戸の井戸層に使用した場合は量子効果により
4倍の200 meVに達し、室温にても十分安定に励
起子が存在する。In particular, when used in the well layer of a quantum well, the quantum effect reaches four times as high as 200 meV, and excitons exist in a sufficiently stable manner even at room temperature.
発光素子の発光効率の向上は一般に、発光層への希土類
元素や遷移金属元素の添加によって可能である。しかし
、−船釣に希土類元素や遷移金属元素は内核での遷移に
より発光するために、バンド間遷移である電子・正孔の
注入では励起効率が著しく低いことが、GaAsやIn
P系での研究から判明している。ところが、本発明に係
る第2周期元素より成る物質では、バンド間遷移のエネ
ルギーが極めて高効率で内核電子に伝達されることが判
明した。希土類は周期律表の下部に位置し、電子を引き
つける力を表す電子親和力が小さい。Generally, the luminous efficiency of a light emitting device can be improved by adding a rare earth element or a transition metal element to the light emitting layer. However, since rare earth elements and transition metal elements emit light through transition in the inner core, excitation efficiency is extremely low when injecting electrons and holes, which are interband transitions.
This has been revealed from research on the P system. However, it has been found that in the material made of the second period element according to the present invention, the energy of interband transition is transferred to the core electrons with extremely high efficiency. Rare earths are located at the bottom of the periodic table and have low electron affinity, which is the ability to attract electrons.
ところが、第2周期の元素は他の周期の元素に比して電
子親和力が極端に大きく、この差により、注入されたキ
ャリアが希土類原子に束縛された励起子を形成する。束
縛励起子は局在化しているため非常に大きな振動子強度
を有し高い効率にて励起子のエネルギーが希土類原子の
内核電子に伝達される。このため、従来のGaAs、I
nP系の材料に希土類元素を添加した場合と異なり、高
い効率の発光が実現される。However, the elements in the second period have extremely large electron affinities compared to the elements in other periods, and due to this difference, the injected carriers form excitons bound to the rare earth atoms. Because the bound excitons are localized, they have a very large oscillator strength, and the energy of the excitons is transferred to the core electrons of rare earth atoms with high efficiency. For this reason, conventional GaAs, I
Unlike the case where a rare earth element is added to an nP-based material, highly efficient light emission is achieved.
これらの効果は、Ceの様にr核とd核の間の遷移にて
発光し、まわりとの相互作用が他のr核内での遷移にて
発光する場合よりも大きい元素では特に顕著である。These effects are particularly noticeable in elements such as Ce, which emit light at the transition between the r and d nuclei, and whose interactions with the surroundings are larger than those that emit light at the transition within other r nuclei. be.
以上のように本発明によれば、新しい材料を用いて紫外
域半導体レーザを実現することができる。As described above, according to the present invention, an ultraviolet semiconductor laser can be realized using a new material.
また本発明の材料は、半導体レーザに限らず、ペテロ接
合トランジスタ等の各種ヘテロ接合素子に適用して、例
えば高温でも安定に動作する素子が得られる。Furthermore, the material of the present invention can be applied not only to semiconductor lasers but also to various heterojunction devices such as petrojunction transistors to obtain devices that operate stably even at high temperatures.
(実施例) 以下、本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
第1図は、本発明の一実施例による
B e CN 2 / B Nのヘテロ接合を有する半
導体ウェハである。この実施例では、β−5iC基板1
1上にバッファ層としてBP層12が形成され、この上
に第1の化合物半導体結晶層としてBN層13が形成さ
れ、この上に第2の化合物半導体結晶層としてBeCN
2層14層が順次形成されている。FIG. 1 is a semiconductor wafer having a B e CN 2 /BN heterojunction according to an embodiment of the present invention. In this example, β-5iC substrate 1
1, a BP layer 12 is formed as a buffer layer, a BN layer 13 is formed as a first compound semiconductor crystal layer, and a BeCN layer 13 is formed as a second compound semiconductor crystal layer.
Two layers and 14 layers are sequentially formed.
第2図は、このヘテロ接合半導体ウェハを製造するため
に用いた有機金属気相成長(MOCVD)装置である。FIG. 2 shows a metal organic chemical vapor deposition (MOCVD) apparatus used to manufacture this heterojunction semiconductor wafer.
図において21は石英製の反応容器であり、上部に必要
な原料ガスを導入するガス導入管22 (221〜22
4)が設けられている。In the figure, 21 is a reaction vessel made of quartz, and gas introduction pipes 22 (221 to 22
4) is provided.
容器2]内部には、グラファイト製サセプタ23か配置
され、この上に基板24が載置される。容器2]の外周
には基板加熱用の高周波コイル25が設けられている。A graphite susceptor 23 is placed inside the container 2, and a substrate 24 is placed thereon. A high frequency coil 25 for heating the substrate is provided on the outer periphery of the container 2.
各原料ガス導入管22の吹き出し口にはそれぞれフィラ
メント状のヒーター26 (261〜264)が設けら
れている。容器21の下部には排気口27があり、図示
しないロータリーポンプにより排気され、中間に設けら
れたスロットリングバルブにより反応容器内圧力は所定
の値に保持されるようになっている。A filament-shaped heater 26 (261 to 264) is provided at the outlet of each source gas introduction pipe 22, respectively. There is an exhaust port 27 in the lower part of the container 21, which is evacuated by a rotary pump (not shown), and the pressure inside the reaction container is maintained at a predetermined value by a throttling valve provided in the middle.
この様なMOCVD装置を用いて、収納した基板24を
高周波コイル25によって加熱し、必要な原料ガスを導
入してこれを基板26上に吹き付けることにより、所望
の結晶成長が行われる。このとき導入される原料ガスは
、必要に応じてヒータ26によって加熱され、予備分解
される。Using such an MOCVD apparatus, desired crystal growth is performed by heating the housed substrate 24 with the high-frequency coil 25, introducing necessary raw material gas, and spraying it onto the substrate 26. The raw material gas introduced at this time is heated by the heater 26 and preliminarily decomposed as necessary.
具体的成長条件と手順を以下に説明する。用いた原料ガ
スは、ジメチルベリリウム(DMBe)。Specific growth conditions and procedures will be explained below. The raw material gas used was dimethyl beryllium (DMBe).
トリエチル硼素(TEB)またはジボラン(B2H6)
、トリメチルガリウム(TMGa)、 ホスフィン(P
H3)、アンモニア(NH3)、四塩化炭素(CCρ4
)またはメタン(CH4)である。基板温度は850〜
1150℃、圧力は0.3気圧、原料ガス総流量は10
w1nであり、成長速度か1μm/hとなるようにガス
流量を設定した。Triethyl boron (TEB) or diborane (B2H6)
, trimethyl gallium (TMGa), phosphine (P
H3), ammonia (NH3), carbon tetrachloride (CCρ4
) or methane (CH4). The substrate temperature is 850~
1150℃, pressure 0.3 atm, total flow rate of raw material gas 10
w1n, and the gas flow rate was set so that the growth rate was 1 μm/h.
原料ガス流量は例えば、DMBe、TMGが1×10−
6sol/win 、 CC94が5 X 10−5m
ol/sin 。For example, the raw material gas flow rate is 1×10− for DMBe and TMG.
6sol/win, CC94 is 5 x 10-5m
ol/sin.
CH4が1 x 10−’mol/win 、 P H
3が5 X 10−’l1lol/win 、 NH
,がI X 10−3mol/winである。CH4 is 1 x 10-'mol/win, P H
3 is 5 X 10-'l1lol/win, NH
, is I x 10-3 mol/win.
CH4を炭素原料に使用したときには、フィラメントに
通電し、約2000°Cに加熱して用いた。When CH4 was used as a carbon raw material, the filament was energized and heated to about 2000°C.
得られた各層をX線回折により調べたところ、ZB構造
のBN結晶と、カルコパイライト構造のB e CN
2結晶に対応する反射が得られた。また、作製したBe
CN2結晶層は、ホール測定の結果、キャリア濃度I
X 10 ”ayn−3程度のn型伝導を示し、Beと
Cの化学量論比からのずれは非常に少なく良質の結晶と
して成長していることが明らかとなった。BN結晶につ
いては、DEBeとシランガスを原料に混合して成長す
ることにより、それぞれp型、n型の伝導制御が可能で
あった。When each layer obtained was examined by X-ray diffraction, it was found that BN crystal has a ZB structure and B e CN has a chalcopyrite structure.
Reflections corresponding to two crystals were obtained. In addition, the prepared Be
As a result of Hall measurement, the CN2 crystal layer has a carrier concentration I
It was revealed that the crystal showed n-type conductivity of about By mixing and growing silane gas as raw materials, it was possible to control p-type and n-type conduction, respectively.
B e CN 2結晶層について光吸収測定を行ったと
ころ、光エネルギーが5.3 ev付近から吸収が生じ
出し、吸収係数の平方根が光エネルギーに比例した。こ
の関係から、この結晶が約5.5eVの直接遷移ギャッ
プをもつことがわかった。しかし、その吸収係数の値は
、103〜10’cm−’程度(通常の約1/10)の
値であり、真性の直接遷移型ではないことがわかる。波
長225n−のKrFレーザによる励起により、波長2
40n■の発光か観測されたが、その強度は比較的弱く
、半値幅も200 meVと広かった。格子定数はC軸
と垂直方向については、a〜3.6人であり、BNの(
111)面とほぼ格子整合する。しかし、C軸方向につ
いては、C〜7.0λであり、aの倍よりわずかに小さ
い。When optical absorption measurements were performed on the B e CN 2 crystal layer, absorption began to occur when the optical energy was around 5.3 ev, and the square root of the absorption coefficient was proportional to the optical energy. From this relationship, it was found that this crystal has a direct transition gap of about 5.5 eV. However, the value of its absorption coefficient is about 10 3 to 10'cm-' (about 1/10 of the normal value), indicating that it is not a true direct transition type. By excitation by a KrF laser with a wavelength of 225n-,
Emission of 40 n■ was observed, but its intensity was relatively weak and its half-width was as wide as 200 meV. The lattice constant is a~3.6 in the direction perpendicular to the C axis, and the (
111) surface and is almost lattice matched. However, in the C-axis direction, it is C~7.0λ, which is slightly smaller than twice a.
以上のようにして第1図のヘテロ接合ウェハを用いるこ
とにより、紫外域の半導体レーザはもちろん、ヘテロ接
合トランジスタ等の素子を形成することができる。By using the heterojunction wafer shown in FIG. 1 in the manner described above, it is possible to form not only semiconductor lasers in the ultraviolet region but also elements such as heterojunction transistors.
第3図は、発光効率向上を目的として、量子井戸を形成
した実施例である。β−5iC基板31上に、BPバッ
ファ層(0,5μgo)32.BN障壁層(0,5um
)33. B e CN2井戸層(2OA)34、B
N障壁層(0,5μ)35を順次形成してある。結晶成
長法は先の実施例と同様である。FIG. 3 shows an example in which quantum wells are formed for the purpose of improving luminous efficiency. On the β-5iC substrate 31, a BP buffer layer (0.5 μgo) 32. BN barrier layer (0.5um
)33. B e CN2 well layer (2OA) 34, B
N barrier layers (0,5μ) 35 are sequentially formed. The crystal growth method is the same as in the previous example.
ArFレーザ(193nm)励起により紫外域の発光が
観測された。Emission in the ultraviolet region was observed by excitation with an ArF laser (193 nm).
第4図および第5図に、井戸層34の厚さと発光波長と
強度の関係を示す。井戸層厚が50人より薄くなると波
長の短波長化が認められ、10人のときに約21.5n
層の発光が得られた。発光強度は、井戸層厚が50人よ
り薄くなる点から急激に増加し、15〜25人のとき最
大となり、それ以下の膜厚では急激に減少した。発光波
長の短波長化と強度の増加は量子効果によるが、従来の
材料の場合と比べてかなり薄い井戸層厚でのみ、この現
象が生じているのは、BN層とBeCN2層の重い電子
有効質量を反映したものと考えられる。4 and 5 show the relationship between the thickness of the well layer 34, the emission wavelength, and the intensity. When the well layer thickness becomes thinner than 50 nm, the wavelength becomes shorter, and when the well layer thickness is 10 nm, it is approximately 21.5 nm.
Luminescence of the layer was obtained. The luminescence intensity increased rapidly when the well layer thickness became thinner than 50 layers, reached a maximum when the well layer thickness was 15 to 25 layers, and rapidly decreased when the layer thickness was less than that. The shortening of the emission wavelength and the increase in the intensity are due to quantum effects, but this phenomenon occurs only at well layer thicknesses that are considerably thinner than in the case of conventional materials. This is thought to reflect the mass.
井戸層34が15人より薄くなると急激に発光強度が低
下するのは、量子井戸幅のゆらぎが無視できなくなるた
めであると思われる。The reason why the emission intensity suddenly decreases when the well layer 34 becomes thinner than 15 layers is considered to be because fluctuations in the quantum well width can no longer be ignored.
第6図は、井戸層厚と発光の半値全幅の関係を示す。1
5〜25人の井戸層厚のときに、スペクトルの著しい尖
鋭化が認められる。この現象は、GaA、QAs系など
の従来材料では液体窒素温度程度の低温下でのみ観測さ
れるものである。このことは、B e CN 2 /
B N系では室温にても安定な励起子が存在することを
示している。FIG. 6 shows the relationship between the well layer thickness and the full width at half maximum of light emission. 1
When the well layer thickness is 5 to 25 people, a significant sharpening of the spectrum is observed. This phenomenon is observed only at temperatures as low as liquid nitrogen in conventional materials such as GaA and QAs. This means that B e CN 2 /
This shows that excitons are stable even at room temperature in the BN system.
第7図は、本発明の別の実施例の半導体ウニノ\である
。この実施例では、β−5iC基板7ユ上にBPバッフ
ァ層72を介して、BN層73が0.5 am 、
B e CN2層74が0.5μm成長されている。B
e CN2層74には希土類元素であるCeか添加さ
れている。ArFレーザ(193t+m)の励起により
、325r+am付近の強い発光か観測され、この手法
によっても高発光効率化か可能であることがわかる。FIG. 7 shows a semiconductor unit according to another embodiment of the present invention. In this example, a BN layer 73 is formed on the β-5iC substrate 7 through a BP buffer layer 72 with a thickness of 0.5 am,
A B e CN2 layer 74 is grown to a thickness of 0.5 μm. B
e The CN2 layer 74 is doped with Ce, which is a rare earth element. By excitation with an ArF laser (193t+m), strong light emission near 325r+am was observed, indicating that high light emission efficiency is also possible with this method.
このようにして、これらの実施例によって、バンドギャ
ップか十分に大きく、紫外光により損傷をうけない紫外
半導体レーザ用として好ましいヘテロ接合構造か得られ
る。In this manner, these embodiments provide a heterojunction structure which has a sufficiently large bandgap and is suitable for use in ultraviolet semiconductor lasers that are not damaged by ultraviolet light.
次に、本発明を具体的な素子に適用した実施例を説明す
る。Next, an example in which the present invention is applied to a specific element will be described.
第8図は、Be CN 2結晶層を発光層として用いた
LEDの実施例である。Siドープのn型β−5iC基
板81に、S1ドープのn型BPバッファ層82を約2
μl成長させ、この上にSiドープのn型BN2971
層(キャリア濃度1×10 ”am−’) 83を約3
μ麿、発光層としてノンドープのBeCN2層84を約
0.5utn、Beドープのp型BNクラッド層(キャ
リア濃度IX10 ”cs−3) 85を約2μl順次
成長させている。FIG. 8 shows an example of an LED using a Be CN 2 crystal layer as a light emitting layer. A Si-doped n-type β-5iC substrate 81 is coated with an S1-doped n-type BP buffer layer 82 of about 2 layers.
μl of Si-doped n-type BN2971 is grown on top of this.
layer (carrier concentration 1 x 10 "am-') 83 to approx. 3
As a light emitting layer, about 0.5 utn of non-doped BeCN2 layer 84 and about 2 µl of Be-doped p-type BN cladding layer (carrier concentration IX10''cs-3) 85 are sequentially grown.
結晶成長はtJ2図に示したMOCVD装置により行っ
た。素子ウェハ両面にはそれぞれIn電極36.87を
設けている。Crystal growth was performed using a MOCVD apparatus shown in the tJ2 diagram. In electrodes 36 and 87 are provided on both sides of the element wafer, respectively.
形成されたウェハから0.3+am角のチップを切り出
し、通電したところ、約8Vの印加電圧にて70−^の
電流が流れ、波長225n■の発光が観測された。When a chip of 0.3+ am square was cut out from the formed wafer and energized, a current of 70-^ flowed at an applied voltage of about 8 V, and light emission with a wavelength of 225 nm was observed.
第9図は、発光層に発光中心をドーピングして発光効率
の向上を図った実施例のLEDである。FIG. 9 shows an LED of an embodiment in which the light emitting layer is doped with the light emitting center to improve the light emitting efficiency.
第8図の実施例とほぼ同様に、n型β−5iC基板91
に、Siドープのn型BPバッファ層92、この上にS
iドープのn型BN2971層(キャリア濃度lXl0
17■−3)93、発光層としてB e CN2層94
.Beドープのp型BNクラッド層(キャリア濃度I
X 1017cm−3) 95を順次成長させて、両面
にIn電極96.97を形成している。発光層であるB
e CN 2層94には、発光中心としてCeをドー
ピングしている。Ce原料としてはトリスンクロペンタ
ジエニルセリウムCe (C5Hs ) 3を用いた。Almost similar to the embodiment shown in FIG. 8, an n-type β-5iC substrate 91
, a Si-doped n-type BP buffer layer 92, and an S
i-doped n-type BN2971 layer (carrier concentration lXl0
17■-3) 93, B e CN2 layer 94 as a light emitting layer
.. Be-doped p-type BN cladding layer (carrier concentration I
In electrodes 96.97 are formed on both surfaces by sequentially growing In electrodes 96.95. B which is a light emitting layer
The e CN 2 layer 94 is doped with Ce as a luminescent center. Trisunclopentadienylcerium Ce (C5Hs) 3 was used as the Ce raw material.
この実施例のLED素子では、3V、70wAの通電条
件にて325r+mの発光か得られた。なおこの構造に
おいて、やや発光強度が低下するが、BN層にCeをド
ーピングして発光層としてもよい。In the LED element of this example, light emission of 325 r+m was obtained under the current conditions of 3 V and 70 wA. Note that in this structure, although the emission intensity is slightly lowered, the BN layer may be doped with Ce to serve as a light emitting layer.
第10図は、発光層に量子井戸を利用した実施例のLE
Dである。n型β−5iC基板101に、Siドープの
n型BPバッファ層102、この上にSiドープのn型
BN2971層(キャリア濃度I X 10”am−’
) 103を形成し、この上に、ノンドープ厚さ100
人の(BN)。5(B e CN2 ) o、s混晶か
らなる障壁層104、ノンドープ厚さ20人のBeCN
2結晶層による量子井戸層105、ノンドープ厚さ10
0人の(BN)0.(BeCN2 )0.5混晶からな
る障壁層106を順次形成している。さらにこの上にp
型BNクラッド層(キャリア濃度I X I Q 17
cm−3)107を成長させて、両面にIn電極108
.109を形成している。この素子も、第2図のMOC
VD装置を用いて形成される。Figure 10 shows an example LE using quantum wells in the light emitting layer.
It is D. An n-type β-5iC substrate 101, a Si-doped n-type BP buffer layer 102, and a Si-doped n-type BN2971 layer (carrier concentration I
) 103, and on top of this, a non-doped layer with a thickness of 100
People (BN). 5(B e CN2 ) o, s barrier layer 104 made of mixed crystal, non-doped BeCN with a thickness of 20 people
Quantum well layer 105 with two crystal layers, non-doped thickness 10
0 people (BN) 0. A barrier layer 106 made of (BeCN2)0.5 mixed crystal is successively formed. Furthermore, p on top of this
Type BN cladding layer (carrier concentration I
cm-3) 107 and In electrodes 108 on both sides.
.. 109 is formed. This element also has the MOC shown in Fig. 2.
It is formed using a VD device.
この実施例の構造により、波長220人のかなり強い発
光が8V、7mAの通電条件下にて得られた。この実施
例の構造においても、井戸層にCeをドーピングするこ
とが考えられる。With the structure of this example, fairly strong light emission with a wavelength of 220 nm was obtained under current conditions of 8V and 7mA. In the structure of this embodiment as well, it is conceivable to dope the well layer with Ce.
第11図は、DBレーザの実施例である。前記実施例と
同様に、第2図のMOCVD装置を用いて作られる。n
型SiC基板111上に、n型BPバッファ層(Siド
ープ、 I X 1017cm−3)]]2を0.5
μ口、この上にn型BNクラ・ンド層(Siドープ、
2X 10”cm−’) 11 Bを1.0μm2次
いてアンドープのB e CN2活性層114を0.1
μ口、更にこの上にp型BNクラッド層(Beドープ、
2X1017(!Il+−’) 115を1μ目成
長した。p型クラッド層115上には、中央の幅5μ■
のストライブ状部分を除いて5i02膜よりなる電流阻
止層116がCVD法により形成され、さらにこの上に
p側電極としてA u / B e電極118が、反対
側のn基板111にはn側電極としてA u / G
e電極10が被着されている。FIG. 11 shows an example of a DB laser. As in the previous embodiment, the MOCVD apparatus shown in FIG. 2 is used. n
On the type SiC substrate 111, an n-type BP buffer layer (Si doped, I x 1017 cm-3)]]2 of 0.5
On top of this is an n-type BN clad layer (Si-doped,
2X 10"cm-')
μ port, further on top of this is a p-type BN cladding layer (Be-doped,
2X1017(!Il+-') 115 was grown to 1μ. On the p-type cladding layer 115, there is a central width of 5μ
A current blocking layer 116 made of a 5i02 film is formed by the CVD method except for the striped portion of the current blocking layer 116. Further, an A u / B e electrode 118 is formed as a p-side electrode on this layer, and an n-side electrode is formed on the n-substrate 111 on the opposite side. A u/G as electrode
An e-electrode 10 is deposited.
得られたウェハをへき関して共振器長500μIのレー
ザ素子を作成した。液体窒素温度でノくルス幅10μS
ee 、デユーティ比10−3にて駆動したところ、ピ
ーク電流値5A以上にて指数関数的な発光出力の増大が
観測され、レーザ発振か確認された。なお発振波長は約
220 nmであった。The obtained wafer was separated to produce a laser device with a cavity length of 500 μI. Nox width 10 μS at liquid nitrogen temperature
When driven at a duty ratio of 10-3, an exponential increase in light emission output was observed at a peak current value of 5 A or more, confirming laser oscillation. Note that the oscillation wavelength was approximately 220 nm.
第12図は、第11図の活性層部分に量子井戸構造を導
入した実施例である。量子井戸構造及び成長法は第10
図のLEDの実施例と同様である。すなわち発光層部分
に、ノンドープ厚さ100人の(BN) 0.5 (
B e CN2 ) 0.混晶からなる障壁層1141
ノンドープ厚さ20λのBeCN2結晶層による量子
井戸層114□、ノンドープ厚さ100人の(BN)
0.5 (B e CN2)。、混晶からなる障壁層
1143を順次形成している。FIG. 12 shows an embodiment in which a quantum well structure is introduced into the active layer portion of FIG. 11. Quantum well structure and growth method is the 10th
This is similar to the LED embodiment shown in the figure. That is, in the light emitting layer part, the non-doped thickness is 100 nm (BN) 0.5 (
B e CN2 ) 0. Barrier layer 1141 made of mixed crystal
Quantum well layer 114□ made of BeCN2 crystal layer with non-doped thickness of 20λ, non-doped thickness of 100 people (BN)
0.5 (B e CN2). , a barrier layer 1143 made of a mixed crystal is sequentially formed.
この実施例では、LEDの場合と同様に量子効果が表わ
れ、上記実施例と同様のパルス駆動条件で液体窒素温度
下にて、2Aの通電時に21Or+mのレーザ光が観測
された。特に、室温にてもレーザ動作が可能であり、パ
ルスピーク値5Aにて220nωのレーザ発振が観測さ
れた。In this example, a quantum effect appeared as in the case of the LED, and a laser beam of 21 Or+m was observed when a current of 2 A was applied under the same pulse drive conditions as in the above example at a liquid nitrogen temperature. In particular, laser operation was possible even at room temperature, and laser oscillation of 220 nω was observed at a pulse peak value of 5 A.
第13図も、第11図の変形例であり、その活性層11
4の部分に希土類元素であるCeをドーピングしたもの
である。Ce濃度は約I×1010l80’であり、成
長法は第9図の実施例と同様である。この例では、Ce
厚子の内部遷移による3 25 nmのレーザ発振が室
温にて観測され、このときの動作電流はピーク値約IA
であった。FIG. 13 is also a modification of FIG. 11, in which the active layer 11
The portion 4 is doped with Ce, which is a rare earth element. The Ce concentration was about I×1010l80', and the growth method was the same as the embodiment shown in FIG. In this example, Ce
Laser oscillation of 325 nm due to internal transition of Atsuko was observed at room temperature, and the operating current at this time was a peak value of approximately IA.
Met.
ところで、本発明によるB e CN 2 / B N
系量子井戸では室温にても安定に励起子が存在する。By the way, B e CN 2 /BN according to the present invention
In the system quantum well, excitons exist stably even at room temperature.
励起子は電気的に中性の整数スピンをもつ準粒子として
ふるまうため、比較的長距離を移動でき、特別な工夫を
しなくても高密度に凝集させることができる。この特徴
を利用した新しいレーザ構造が考えられる。Because excitons behave as quasiparticles with electrically neutral integer spin, they can travel relatively long distances and can be aggregated at high densities without special efforts. A new laser structure can be considered that takes advantage of this feature.
第14図は、その様な特徴を利用して発振部と電流注入
部を分離した実施例の半導体レーザである。n型SiC
基板141上にn型BPバッファ層142(Siドープ
、 I X 10 ”cm−’)を0.5utb、n
型BNクラッド層143(Siドープ、2X10”■−
3)を1μ劇、p型(BN) 0.5 (B e C
N2 ) 0.5障壁層144(B eドープ、 I
X 10 l8cm−3)を100人、アンドープB
eCN2量子井戸層145を20人、n型(BN) 0
.5 (B e CN2 ) 0.5障壁層146(
Siドープ、 I X 1018cm−3)を100
人、ノンドープのBNクラッド層147を1μロ順次成
長しである。この上に幅10μmのストライブ状の51
02膜149を形成し、これをマスクとしてMgを選択
拡散して、p型クラッド層148を形成している。p側
のA u / B e電極151は、n型クラッド層1
48にコンタクトして形成され、n側には全面にAu/
Ge電極150が形成されている。FIG. 14 shows an example of a semiconductor laser in which the oscillation section and the current injection section are separated by utilizing such characteristics. n-type SiC
An n-type BP buffer layer 142 (Si-doped, I x 10 "cm-') is formed on the substrate 141 by 0.5 utb, n
Type BN cladding layer 143 (Si doped, 2X10"■-
3) for 1μ play, p type (BN) 0.5 (B e C
N2) 0.5 barrier layer 144 (Be doped, I
x 10 l8cm-3) for 100 people, undoped B
20 eCN2 quantum well layers 145, n-type (BN) 0
.. 5 (B e CN2 ) 0.5 barrier layer 146 (
Si-doped, I x 1018 cm-3) at 100
Then, a non-doped BN cladding layer 147 of 1 μm was sequentially grown. On top of this, 51 stripes with a width of 10 μm are placed.
A p-type cladding layer 148 is formed by forming a 02 film 149 and selectively diffusing Mg using this as a mask. The p-side A u / B e electrode 151 is connected to the n-type cladding layer 1
48, and the n-side is entirely covered with Au/
A Ge electrode 150 is formed.
このウェハから、共振器長500μ層のチップを切り出
し、通電したところ、中央のストライプ部から225n
gのレーザ光が観測された。When a chip with a resonator length of 500μ layer was cut out from this wafer and energized, 225nm from the central stripe part was cut out.
g laser light was observed.
この実施例の構造での電流注入部と発振部の分離は、次
のように説明される。通電時、n型クラッド層148か
ら正孔が、n型クラッド層143から電子がそれぞれM
gが拡散されたクラッド層直下の井戸層に注入され、結
合して励起子が形成される。一方井戸層145には、不
純物ドーピングされた障壁層144,146の空間電荷
により強い内部電界が形成され、このため実効的な井戸
層145のバンドギャップは小さくなっている。The separation of the current injection section and the oscillation section in the structure of this embodiment is explained as follows. When electricity is applied, holes are released from the n-type cladding layer 148 and electrons are released from the n-type cladding layer 143, respectively.
g is injected into the well layer immediately below the diffused cladding layer and combines to form excitons. On the other hand, a strong internal electric field is formed in the well layer 145 due to the space charges of the impurity-doped barrier layers 144 and 146, so that the effective band gap of the well layer 145 is reduced.
電子、正孔が注入されている通電部分ては、この空間電
荷が遮蔽されるため、バンドギャップの縮小効果は弱め
られている。この結果、井戸層145の実効的なバンド
ギャップは中央のストライプ状のSiO2膜149の下
の部分の方が周辺より小さくなっている。したがって、
周辺にて形成された励起子は、急速に中央のストライプ
状の部分に凝集する。この励起子か凝集したストライプ
状の部分では光吸収の原因となる自由キャリアが存在し
ないため、極めて高効率の光増幅が行われる。ここでは
、n型クラッド層の自由電子による吸収は一般にp型に
比して小さいので考慮していない。Since this space charge is shielded from the current-carrying portion where electrons and holes are injected, the band gap reduction effect is weakened. As a result, the effective bandgap of the well layer 145 is smaller in the portion under the central striped SiO2 film 149 than in the periphery. therefore,
Excitons formed at the periphery rapidly condense into the striped area at the center. Since there are no free carriers that cause light absorption in the striped portion where excitons are aggregated, extremely highly efficient light amplification is performed. Absorption by free electrons in the n-type cladding layer is generally smaller than that in the p-type, so it is not considered here.
この実施例では、n型クラッド層143については−様
なドーピングとしたが、例えば光照射下での成長や、イ
オンビーム、分子ビーム等を使用した選択ドーピングに
より発光部面下のストライプ状部を除いて、n型ドーピ
ングすることも考えられる。同様の手法をp型りラッド
層部に用いてよいのはもちろんである。また発光部と通
電部のバンドギャップを変化させるために、両者の組成
または膜厚を変化させてもよい。さらに、複数の電極の
駆動電流を変化させることによって、発光部の位置を大
幅に変化させることができる。この変化幅は励起子の長
い移動距離を反映して、非常に大幅なものであり、多方
面の応用が期待できる。In this embodiment, the n-type cladding layer 143 is doped in a --like manner, but the striped portion under the surface of the light emitting part is formed by, for example, growth under light irradiation or selective doping using an ion beam, molecular beam, etc. It is also conceivable to do n-type doping. Of course, a similar method may be used for the p-type rad layer portion. Furthermore, in order to change the band gap between the light-emitting part and the current-carrying part, the composition or film thickness of both may be changed. Furthermore, by changing the drive currents of the plurality of electrodes, the position of the light emitting part can be changed significantly. This variation is extremely large, reflecting the long distance that excitons travel, and is expected to have many applications.
以上、詳述してきた各実施例のレーザは、パルス動作下
にて1000時間以上にわたって安定に動作している。The lasers of each of the embodiments described above have operated stably for more than 1000 hours under pulsed operation.
LED動作にては、2000時間を越えて安定に発光し
、輝度低下は20%以下であった。長時間通電した後、
発光部の発光パターンを観察すると、暗黒点が多数認め
られたが、成長後のエビ層の貫通転位に対応する濃度で
ある。したがって、本発明による材料では、従来のGa
A11As系等の材料と異なり、動作中に転位等の移動
、増殖は生じないと思われる。この事実は、第2周期の
元素間の強いσ結合によると考えられる。In LED operation, light was stably emitted for more than 2000 hours, and the decrease in brightness was less than 20%. After being energized for a long time,
When observing the light emission pattern of the light emitting part, many dark spots were observed, but the concentration corresponded to threading dislocations in the shrimp layer after growth. Therefore, in the material according to the present invention, the conventional Ga
Unlike materials such as A11As-based materials, it is thought that dislocations and the like do not move or multiply during operation. This fact is considered to be due to strong σ bonds between elements in the second period.
第15図は、本発明をヘテロ接合トランジスタに適用し
た実施例である。n型SiC基板151上にn型BPバ
ッファ層152を介して、n型BNコレクタ層153、
p型B e CN 2ベ一ス層154、n型BNエミッ
タ層155が順次形成されている。これらの結晶層成長
は、先の各実施例と同様に第2図のMOCVD装置によ
り行われる。FIG. 15 shows an embodiment in which the present invention is applied to a heterojunction transistor. An n-type BN collector layer 153 is formed on the n-type SiC substrate 151 via the n-type BP buffer layer 152.
A p-type B e CN 2 base layer 154 and an n-type BN emitter layer 155 are sequentially formed. The growth of these crystal layers is performed using the MOCVD apparatus shown in FIG. 2, as in the previous embodiments.
BNエミッタ層155にエミッタ電極156が、エツチ
ングにより露出させたBe CN2ベース層154にベ
ース電極157か、基板裏面にコレクタ電極158がそ
れぞれ形成されている。An emitter electrode 156 is formed on the BN emitter layer 155, a base electrode 157 is formed on the Be CN2 base layer 154 exposed by etching, and a collector electrode 158 is formed on the back surface of the substrate.
この実施例によるヘテロ接合トランジスタは、特にバン
ドギャップの大きい材料を用いていることから、高温で
も安定に動作する。Since the heterojunction transistor according to this embodiment uses a material with a particularly large band gap, it operates stably even at high temperatures.
本発明は上記実施例に限られない。実施例では、専らB
N/BeCN2のヘテロ接合を用いたが、同様に周期律
表第2周期の元素の他の組み合わせ例えば、ダイヤモン
ド/LiBO2のヘテロ接合を利用する事もできる。基
板としてもSiCのほか、例えばGaP等か用い得る。The present invention is not limited to the above embodiments. In the embodiment, exclusively B
Although a N/BeCN2 heterojunction is used, other combinations of elements in the second period of the periodic table, such as a diamond/LiBO2 heterojunction, may also be used. As the substrate, for example, GaP or the like can be used in addition to SiC.
基板にGaPを使用し、必要な結晶成長後に基板を除去
した場合には格子不整合による歪みか除去されるためよ
り長寿命が期待できる。またバッファ層としても、BP
層の他、平均組成を変化させたBNとBPの超格子層ま
たは(BN) (BP)l−a混晶層等を用いるこ
とか可能である。If GaP is used as the substrate and the substrate is removed after the necessary crystal growth, a longer life can be expected because the distortion due to lattice mismatch is removed. Also, as a buffer layer, BP
In addition to this layer, it is possible to use a superlattice layer of BN and BP with a different average composition, a (BN) (BP)la mixed crystal layer, or the like.
[発明の効果]
以上述べたように本発明によれば、第2周期の元素より
成るZB構造の結晶層とカルコパイライト構造の結晶層
からなるヘテロ接合構造を利用して、従来にない紫外域
半導体レーザやLEDその他の各種半導体素子を得るこ
とができる。[Effects of the Invention] As described above, according to the present invention, by utilizing a heterojunction structure consisting of a ZB structure crystal layer made of second-period elements and a chalcopyrite structure crystal layer, ultraviolet region Various semiconductor devices such as semiconductor lasers and LEDs can be obtained.
第1図は本発明の一実施例の化合物半導体ウェハを示す
図、
第2図はそのウェハを製造するためのMOCVD装置を
示す図、
第3図は他の実施例の化合物半導体ウェハを示す図、
第4図は実施例により得られる量子井戸の発光波長特性
を示す図、
第5図は同じく発光強度特性を示す図、第6図は同しく
発光の半値幅特性を示す図、第7図は他の実施例の化合
物半導体ウェハを示す図、
第8図は本発明をLEDに適用した実施例を示す図、
第9図は発光層にCeをドーピングしたLEDの実施例
を示す図、
第10図は発光層に量子井戸を応用したLEDの実施例
を示す図、
第11図は本発明をDBレレーに適用した実施例を示す
図、
第12図は活性層に量子井戸構造を用いたDHレーザの
実施例を示す図、
第13図は活性層にCeをドーピングしたDHレーザの
実施例を示す図、
第14図は電流注入部と発振部を分離したDHレーザの
実施例を示す図、
第15図は本発明をヘテロ接合トランジスタに適用した
実施例を示す図である。
11.31,71,81,91,101、l ユ 1
、 14 ユ 、15 ユ ・・ SiC基 板、
コ 232.72,82,92,102.11214
2.152・・・BPバッファ層、13,3335.7
3・・・BN結晶層、]、4.3474・・・BeCN
2結晶層、21・−・反応容器、22・・原料ガス導入
管、23・・・サセプタ、24・・・基板、25・・・
RFコイル、26・・・ヒータ、27・・・排気口、8
3.93,103.113 143・・・n型BN結晶
層、84,94,114,145・・・BeCN2結晶
層、85,95,107,115゜147・・・p型B
N結晶層、104.105114+ 、 I 143
”−(BN) (BeCN2)混晶障壁層、] 05,
1142 ”−BeCN2ii子井戸層、]53・・・
n型BNコレクタ層、154・・・p型BeCN2ベー
ス層、155− n型BNエミッタ層。
第1図
出願人代理人 弁理士 鈴江武彦
第2図
井戸層Q厚守
第6
図
第7図
第14
図
鄭)LOぐFIG. 1 is a diagram showing a compound semiconductor wafer according to one embodiment of the present invention, FIG. 2 is a diagram showing an MOCVD apparatus for manufacturing the wafer, and FIG. 3 is a diagram showing a compound semiconductor wafer according to another embodiment. , FIG. 4 is a diagram showing the emission wavelength characteristics of the quantum well obtained in the example, FIG. 5 is a diagram also showing the emission intensity characteristics, FIG. 8 is a diagram showing an example in which the present invention is applied to an LED. FIG. 9 is a diagram showing an example of an LED in which the light emitting layer is doped with Ce. Figure 10 shows an example of an LED in which a quantum well is applied to the light emitting layer, Figure 11 shows an example in which the present invention is applied to a DB relay, and Figure 12 shows an example in which a quantum well structure is used in the active layer. Figure 13 shows an example of a DH laser in which the active layer is doped with Ce. Figure 14 shows an example of a DH laser in which the current injection part and the oscillation part are separated. , FIG. 15 is a diagram showing an embodiment in which the present invention is applied to a heterojunction transistor. 11.31,71,81,91,101,l Yu 1
, 14 Yu, 15 Yu...SiC substrate,
Ko 232.72, 82, 92, 102.11214
2.152...BP buffer layer, 13,3335.7
3...BN crystal layer, ], 4.3474...BeCN
2 crystal layer, 21... Reaction vessel, 22... Raw material gas introduction pipe, 23... Susceptor, 24... Substrate, 25...
RF coil, 26... Heater, 27... Exhaust port, 8
3.93,103.113 143...n-type BN crystal layer, 84,94,114,145...BeCN2 crystal layer, 85,95,107,115°147...p-type B
N crystal layer, 104.105114+, I 143
”-(BN) (BeCN2) mixed crystal barrier layer,] 05,
1142”-BeCN2ii child well layer, ]53...
n-type BN collector layer, 154... p-type BeCN2 base layer, 155- n-type BN emitter layer. Figure 1 Applicant's representative Patent attorney Takehiko Suzue Figure 2 Well layer Q Atsumori Figure 7 Figure 14 Figure Zheng) LOgu
Claims (12)
合わせからなる第1の化合物半導体結晶層と、周期律表
第2周期から選ばれた複数の元素の組み合わせからなる
第2の化合物半導体結晶層とのヘテロ接合を有すること
を特徴とすることを特徴とする紫外域半導体レーザ。(1) A first compound semiconductor crystal layer made of a combination of multiple elements selected from the second period of the periodic table, and a second compound made of a combination of multiple elements selected from the second period of the periodic table. An ultraviolet semiconductor laser characterized by having a heterojunction with a semiconductor crystal layer.
記第2の化合物半導体結晶層がBeCN_2であること
を特徴とする請求項1記載の紫外域半導体レーザ。(2) The ultraviolet semiconductor laser according to claim 1, wherein the first compound semiconductor crystal layer is BN, and the second compound semiconductor crystal layer is BeCN_2.
eCN_2がカルコパイライト型結晶構造を有すること
を特徴とする請求項2記載の紫外域半導体レーザ。(3) The BN has a zincblende crystal structure, and the B
3. The ultraviolet semiconductor laser according to claim 2, wherein eCN_2 has a chalcopyrite crystal structure.
P^3配位を持つ基板またはバッファ層上に形成されて
いることを特徴とする請求項1記載の紫外域半導体レー
ザ。(4) The first and second compound semiconductor crystal layers include S
2. The ultraviolet semiconductor laser according to claim 1, wherein the ultraviolet semiconductor laser is formed on a substrate or a buffer layer having P^3 coordination.
たBNとBPの超格子層または(BN)_a(BP)_
1_−_a混晶層であることを特徴とする請求項4記載
の紫外域半導体レーザ。(5) The buffer layer may be a BP layer, a superlattice layer of BN and BP with a changed average composition, or (BN)_a(BP)_
5. The ultraviolet semiconductor laser according to claim 4, wherein the ultraviolet semiconductor laser is a 1_-_a mixed crystal layer.
2周期から選ばれた複数の元素の組み合わせからなる第
1の化合物半導体結晶層と、この結晶層上に形成されて
量子井戸層となる、周期律表第2周期から選ばれた複数
の元素の組み合わせからなる第2の化合物半導体結晶層
と、この結晶層上に形成された前記第1の化合物半導体
結晶と同じ材料の第3の化合物半導体結晶層と、 を有することを特徴とする紫外域半導体レーザ。(6) a substrate; a first compound semiconductor crystal layer made of a combination of a plurality of elements selected from the second period of the periodic table formed on this substrate via a buffer layer; and a first compound semiconductor crystal layer formed on this crystal layer a second compound semiconductor crystal layer made of a combination of a plurality of elements selected from the second period of the periodic table, which becomes a quantum well layer; and the first compound semiconductor crystal formed on this crystal layer. An ultraviolet semiconductor laser comprising: a third compound semiconductor crystal layer made of the same material; and a third compound semiconductor crystal layer made of the same material.
あることを特徴とする請求項6記載の半導体レーザ。(7) The semiconductor laser according to claim 6, wherein the substrate is a semiconductor crystal substrate having SP^3 coordination.
BNとBPの超格子層または(BN)_a(BP)_1
_−_a混晶層であることを特徴とする請求項6記載の
紫外域半導体レーザ。(8) The buffer layer is a BP layer, a superlattice layer of BN and BP with a changed average composition, or (BN)_a(BP)_1
7. The ultraviolet semiconductor laser according to claim 6, wherein the ultraviolet semiconductor laser is a ___a mixed crystal layer.
鉛鉱型のBNであり、前記第2の化合物半導体結晶層は
カルコパイライト型のBeCN_2であることを特徴と
する請求項6記載の紫外域半導体レーザ。(9) The first and third compound semiconductor crystal layers are zinc blende type BN, and the second compound semiconductor crystal layer is chalcopyrite type BeCN_2. Ultraviolet semiconductor laser.
されているいることを特徴とする請求項6記載の紫外半
導体レーザ。(10) The ultraviolet semiconductor laser according to claim 6, wherein the current injection section and the oscillation section are formed spatially separated.
み合わせからなる第1の化合物半導体結晶層と、周期律
表第2周期から選ばれた複数の元素の他の組み合わせか
らなる第2の化合物半導体結晶層とのヘテロ接合を有す
ることを特徴とすることを特徴とする半導体素子。(11) A first compound semiconductor crystal layer made of a combination of a plurality of elements selected from the second period of the periodic table, and a second compound semiconductor crystal layer made of another combination of a plurality of elements selected from the second period of the periodic table. 1. A semiconductor device characterized by having a heterojunction with a compound semiconductor crystal layer.
結晶層からなるヘテロ接合を有する半導体素子を製造す
る方法であって、 SP^3配位を有する基板またはバッファ層上に、化学
気相成長法により周期律表第2周期から選ばれた複数の
元素の組み合わせからなるSP^3配位を有する第1の
化合物半導体結晶層を形成する工程と、 前記第1の化合物半導体結晶層上に、化学気相成長法に
より周期律表第2周期から選ばれた複数の元素の組み合
わせからなるSP^3配位を有する第2の化合物半導体
結晶層を形成する工程と、を有することを特徴とする半
導体素子の製造方法。(12) A method for manufacturing a semiconductor device having a heterojunction consisting of a first compound semiconductor crystal layer and a second compound semiconductor crystal layer, the method comprising: depositing a chemical vapor phase on a substrate or a buffer layer having SP^3 coordination; forming a first compound semiconductor crystal layer having an SP^3 coordination made of a combination of a plurality of elements selected from the second period of the periodic table by a growth method; and on the first compound semiconductor crystal layer. , forming a second compound semiconductor crystal layer having an SP^3 coordination made of a combination of a plurality of elements selected from the second period of the periodic table by a chemical vapor deposition method. A method for manufacturing a semiconductor device.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02200428A JP3104979B2 (en) | 1990-07-27 | 1990-07-27 | Ultraviolet semiconductor laser, semiconductor device, and manufacturing method thereof |
US07/735,279 US5228044A (en) | 1990-07-27 | 1991-07-24 | Ultraviolet semiconductor laser and method of manufacturing the same |
EP91306860A EP0468814B1 (en) | 1990-07-27 | 1991-07-26 | Ultraviolet semiconductor laser and method of manufacturing the same |
DE69104300T DE69104300T2 (en) | 1990-07-27 | 1991-07-26 | Ultraviolet semiconductor laser and method of manufacturing the same. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02200428A JP3104979B2 (en) | 1990-07-27 | 1990-07-27 | Ultraviolet semiconductor laser, semiconductor device, and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0484486A true JPH0484486A (en) | 1992-03-17 |
JP3104979B2 JP3104979B2 (en) | 2000-10-30 |
Family
ID=16424137
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02200428A Expired - Lifetime JP3104979B2 (en) | 1990-07-27 | 1990-07-27 | Ultraviolet semiconductor laser, semiconductor device, and manufacturing method thereof |
Country Status (4)
Country | Link |
---|---|
US (1) | US5228044A (en) |
EP (1) | EP0468814B1 (en) |
JP (1) | JP3104979B2 (en) |
DE (1) | DE69104300T2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6846754B2 (en) | 2002-02-22 | 2005-01-25 | Showa Denko Kabushiki Kaisha | Boron phosphide-based semiconductor layer and vapor phase growth method thereof |
DE112006002403T5 (en) | 2005-09-07 | 2008-07-10 | Showa Denko K.K. | Compound semiconductor device |
US7573075B2 (en) | 2004-03-30 | 2009-08-11 | Showa Denko K.K. | Compound semiconductor device, production method of compound semiconductor device and diode |
US8084781B2 (en) | 2005-09-07 | 2011-12-27 | Showa Denko K.K. | Compound semiconductor device |
US8299451B2 (en) | 2005-11-07 | 2012-10-30 | Showa Denko K.K. | Semiconductor light-emitting diode |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100264424B1 (en) * | 1995-06-21 | 2000-08-16 | 사토 게니치로 | Light-emitting diode chip and light-emitting diode using the same |
JP3398638B2 (en) * | 2000-01-28 | 2003-04-21 | 科学技術振興事業団 | LIGHT EMITTING DIODE, SEMICONDUCTOR LASER AND METHOD FOR MANUFACTURING THE SAME |
JP3866540B2 (en) * | 2001-07-06 | 2007-01-10 | 株式会社東芝 | Nitride semiconductor device and manufacturing method thereof |
EP1459362A2 (en) * | 2001-12-21 | 2004-09-22 | Aixtron AG | Method for depositing iii-v semiconductor layers on a non-iii-v substrate |
JP2003273397A (en) * | 2002-03-19 | 2003-09-26 | Fuji Xerox Co Ltd | Semiconductor light emitting device, semiconductor compound device, and method of manufacturing semiconductor light emitting device |
JP4677629B2 (en) * | 2004-12-22 | 2011-04-27 | 独立行政法人物質・材料研究機構 | Boron nitride thin film emitter having a pointed crystal on the surface of boron nitride film and exhibiting self-similar fractal pattern and two-dimensional distribution with density suitable for electron emission |
US10446705B2 (en) * | 2014-08-28 | 2019-10-15 | Konica Minolta Laboratory U.S.A., Inc. | Two-dimensional layered material quantum well junction devices |
JP7266843B2 (en) | 2018-12-07 | 2023-05-01 | 日本圧着端子製造株式会社 | connector |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4980730A (en) * | 1987-05-01 | 1990-12-25 | National Institute For Research In Organic Materials | Light emitting element of cubic boron nitride |
JPH079998B2 (en) * | 1988-01-07 | 1995-02-01 | 科学技術庁無機材質研究所長 | Cubic boron nitride P-n junction light emitting device |
JPH02192494A (en) * | 1989-01-20 | 1990-07-30 | Sumitomo Electric Ind Ltd | Composite material |
-
1990
- 1990-07-27 JP JP02200428A patent/JP3104979B2/en not_active Expired - Lifetime
-
1991
- 1991-07-24 US US07/735,279 patent/US5228044A/en not_active Expired - Lifetime
- 1991-07-26 DE DE69104300T patent/DE69104300T2/en not_active Expired - Lifetime
- 1991-07-26 EP EP91306860A patent/EP0468814B1/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6846754B2 (en) | 2002-02-22 | 2005-01-25 | Showa Denko Kabushiki Kaisha | Boron phosphide-based semiconductor layer and vapor phase growth method thereof |
US7573075B2 (en) | 2004-03-30 | 2009-08-11 | Showa Denko K.K. | Compound semiconductor device, production method of compound semiconductor device and diode |
DE112006002403T5 (en) | 2005-09-07 | 2008-07-10 | Showa Denko K.K. | Compound semiconductor device |
US8084781B2 (en) | 2005-09-07 | 2011-12-27 | Showa Denko K.K. | Compound semiconductor device |
US8299451B2 (en) | 2005-11-07 | 2012-10-30 | Showa Denko K.K. | Semiconductor light-emitting diode |
Also Published As
Publication number | Publication date |
---|---|
EP0468814A2 (en) | 1992-01-29 |
EP0468814A3 (en) | 1992-08-26 |
DE69104300T2 (en) | 1995-02-23 |
JP3104979B2 (en) | 2000-10-30 |
EP0468814B1 (en) | 1994-09-28 |
US5228044A (en) | 1993-07-13 |
DE69104300D1 (en) | 1994-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5317167A (en) | Semiconductor light-emitting device with InGaAlp | |
KR100406201B1 (en) | Light-emitting gallium nitride-based compound semiconductor device | |
KR100568701B1 (en) | Semiconductor Light-Emitting Device | |
US8120012B2 (en) | Group III nitride white light emitting diode | |
JP3719613B2 (en) | Semiconductor light emitting device | |
KR100274521B1 (en) | Single Quantum Well II-VI Laser Diode Without Cladding Layer | |
JPH0484486A (en) | Ultraviolet area semiconductor laser and semiconductor element and those manufacture | |
CN115050870B (en) | GaN-based light emitting diode epitaxial wafer and preparation method thereof | |
CN101522942B (en) | Filming method for III-group nitride semiconductor laminated structure | |
CN115714155A (en) | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet light emitting diode | |
JP3509260B2 (en) | Group 3-5 compound semiconductor and light emitting device | |
CN115911207A (en) | Deep ultraviolet light emitting diode epitaxial wafer, preparation method thereof and deep ultraviolet LED | |
JPH08506694A (en) | Graded composition ohmic contacts for p-type II-VI semiconductors | |
JP3399216B2 (en) | Semiconductor light emitting device | |
KR20000065567A (en) | GaN-based Semiconductor Light Emitting Devices of Quantum Well Electronic Structures Resonating with Two-dimensional Electron Gas | |
KR20010068216A (en) | GaN Semiconductor White Light Emitting Device | |
CN113422293B (en) | InGaN/GaN quantum well laser with stepped upper waveguide and preparation method thereof | |
JPH09266327A (en) | Group iii nitride chemical compound semiconductor light emitting element | |
US5235194A (en) | Semiconductor light-emitting device with InGaAlP | |
JPH06260682A (en) | Blue light-emitting element | |
Jang et al. | Formation mechanism of CdTe self-assembled quantum dots embedded into ZnTe barriers | |
JP4277363B2 (en) | Group III nitride semiconductor light emitting device | |
Amini et al. | High throughput quantum dot based LEDs | |
JP3562518B2 (en) | Semiconductor light emitting device | |
CN110364595A (en) | Light emitting diode epitaxial structure and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070901 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080901 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090901 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100901 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |