JPH0484475A - Hermetically sealed package structure of semiconductor laser pump mojule - Google Patents
Hermetically sealed package structure of semiconductor laser pump mojuleInfo
- Publication number
- JPH0484475A JPH0484475A JP2197652A JP19765290A JPH0484475A JP H0484475 A JPH0484475 A JP H0484475A JP 2197652 A JP2197652 A JP 2197652A JP 19765290 A JP19765290 A JP 19765290A JP H0484475 A JPH0484475 A JP H0484475A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor laser
- window glass
- package structure
- package
- box
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 53
- 239000005357 flat glass Substances 0.000 claims abstract description 26
- 239000013307 optical fiber Substances 0.000 claims description 20
- 238000005086 pumping Methods 0.000 claims description 12
- 239000005304 optical glass Substances 0.000 claims description 6
- 238000000151 deposition Methods 0.000 claims description 4
- 239000011521 glass Substances 0.000 abstract description 3
- 239000007769 metal material Substances 0.000 abstract description 2
- 238000005476 soldering Methods 0.000 abstract 1
- 230000005284 excitation Effects 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 229910000679 solder Inorganic materials 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052691 Erbium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
- H01S5/02216—Butterfly-type, i.e. with electrode pins extending horizontally from the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/023—Mount members, e.g. sub-mount members
- H01S5/02325—Mechanically integrated components on mount members or optical micro-benches
Landscapes
- Semiconductor Lasers (AREA)
- Optical Couplings Of Light Guides (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、希土類金属であるエルビウム(Er3+)を
ドープした光ファイバアンプの励起光源に関し、特にそ
の励起光源に高出力の半導体レーザを使用した半導体レ
ーザポンプモジュールの気密パッケージ構造に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pumping light source for an optical fiber amplifier doped with erbium (Er3+), which is a rare earth metal, and particularly to a pumping light source using a high-output semiconductor laser as the pumping light source. This invention relates to an airtight package structure for a semiconductor laser pump module.
光信号を電気回路によらず、直接増幅できる光増幅器と
して、光ファイバアンプが注目されている。この光ファ
イバアンプとして、エルビウム(Er”)をドープした
光ファイバアンプがあるが、信号光を増幅するには励起
光が必要とされる。Optical fiber amplifiers are attracting attention as optical amplifiers that can directly amplify optical signals without using electrical circuits. As this optical fiber amplifier, there is an optical fiber amplifier doped with erbium (Er''), but pumping light is required to amplify the signal light.
この励起光源として従来は色素レーザや固体レーザが使
用されていたが、光通信システムとして商用化されるに
は小形な半導体レーザの適用が条件とされていた。Conventionally, dye lasers and solid-state lasers have been used as excitation light sources, but the application of small semiconductor lasers was a prerequisite for commercialization as optical communication systems.
一方、半導体レーザへの要求条件に、特定の波長、高出
力、高信頼度が求められているが、この条件を満たす半
導体レーザとして約1490nm波長のレーザが考えら
れている。On the other hand, requirements for semiconductor lasers include a specific wavelength, high output, and high reliability, and a laser with a wavelength of approximately 1490 nm is considered as a semiconductor laser that satisfies these requirements.
従来の光ファイバアンプ構成例を第8図に示す。An example of the configuration of a conventional optical fiber amplifier is shown in FIG.
同図はエルビウムドープ光ファイバlの入射端に波長合
成カブラ2を設け、信号用半導体レーザモジュール3か
らの信号光と励起用半導体レーザモジュール4からの励
起光を合成してエルビウムドープ光ファイバ1に入射し
、増幅された信号光が幹線ケーブル5に送出されること
を表わしたものである。In the figure, a wavelength combining coupler 2 is provided at the input end of an erbium-doped optical fiber 1, and the signal light from a signal semiconductor laser module 3 and the pumping light from a pumping semiconductor laser module 4 are combined into an erbium-doped optical fiber 1. This shows that the incident and amplified signal light is sent out to the trunk cable 5.
一方、この増幅光を安定に出力させるためには励起用半
導体レーザモジュール4の励起光を制御させる必要があ
る。この制御手段の一例として、エルビウムドープ光フ
ァイバ1の出射端に励起用半導体レーザモジュール4か
らの励起光、例えば1490nmの波長以下を遮断する
短波長フィルタ6と1:10程度の分岐比をもつカブラ
7を設け、例えば1530nmの信号光のみをわずかに
反射させてこの反射光をモニタ用ホトダイオードモジュ
ール8に取り込才せる。これにより、出力されるホトカ
レントから、差動増幅器9やLD電流制御回路10等か
らなるAPC回路11を動作させ、励起用半導体レーザ
モジュール4を駆動制御させる手段が提案されていた。On the other hand, in order to stably output this amplified light, it is necessary to control the pumping light of the pumping semiconductor laser module 4. As an example of this control means, a short wavelength filter 6 that blocks excitation light from the excitation semiconductor laser module 4, for example, wavelengths below 1490 nm, and a coupler having a branching ratio of about 1:10 are provided at the output end of the erbium-doped optical fiber 1. 7 is provided to slightly reflect only the signal light of, for example, 1530 nm, and this reflected light is taken into the monitoring photodiode module 8. Accordingly, a method has been proposed in which the APC circuit 11 consisting of the differential amplifier 9, the LD current control circuit 10, etc. is operated from the output photocurrent, and the excitation semiconductor laser module 4 is driven and controlled.
しかしその一方で、光通信装置の小形化や低コスト化が
要求されている現状に対し、本構成例で示すように励起
光源とモニタ用受光器とが分離されているため、励起用
半導体レーザモジュール4とモニタ用ホトダイオードモ
ジュール8が各1台づつ必要であった。すなわち、この
モニタ用ホトダイオードモジュール8の大きさは、通常
、励起用半導体レーザモジュール4と同程度の大きさを
有することから、実質励起用半導体レーザモジュール4
の2台分の取付面積をパネルに確保する必要があり、小
形化への障害となっていた。また、モニタ用ホトダイオ
ードモジュール8そのものの部品点数や細立工数も励起
用半導体レーザモジュール4とほぼ同程度必要とされて
いるため、その分のコスト増も低コスト化の障害となっ
ていた。On the other hand, in response to the current demand for downsizing and cost reduction of optical communication devices, the excitation light source and monitoring receiver are separated as shown in this configuration example, so the excitation semiconductor laser One module 4 and one monitor photodiode module 8 were required. That is, since the size of this monitor photodiode module 8 is usually about the same size as the excitation semiconductor laser module 4, it is substantially the same as the excitation semiconductor laser module 4.
It was necessary to secure a mounting area for two units on the panel, which was an obstacle to downsizing. Further, since the monitor photodiode module 8 itself requires approximately the same number of parts and the number of manufacturing steps as the excitation semiconductor laser module 4, the corresponding increase in cost has also been an obstacle to cost reduction.
したがって、本発明は光ファイバアンプの構成に不可欠
な励起光源とその駆動制御を目的としたモニタとを一体
化することにより、前記欠点を解消することを目的とし
たものである。Therefore, it is an object of the present invention to solve the above-mentioned drawbacks by integrating a pumping light source, which is essential to the configuration of an optical fiber amplifier, and a monitor for driving and controlling the pumping light source.
前記した目的を達成するために、本発明に係る半導体レ
ーザポンプモジュールの気密パッケージ構造は、エルビ
ウムドープ光ファイバアンプの励起光源に用いられる半
導体レーザポンプモジュールの気密パッケージ構造にお
いて、気密パッケージの形状を箱型とし、この箱型の対
向側面の一方に半導体レーザ光を透過する窓ガラスを設
け、かつ対向側面の他方に半導体レーザ光を遮断する窓
ガラスを設けた構成としたものである。In order to achieve the above object, the airtight package structure of a semiconductor laser pump module according to the present invention is a hermetic package structure of a semiconductor laser pump module used as a pumping light source of an erbium-doped optical fiber amplifier. A window glass that transmits the semiconductor laser light is provided on one of the opposing side surfaces of the box shape, and a window glass that blocks the semiconductor laser light is provided on the other opposing side surface.
このように本発明によれば、従来のモニタ用ホトダイオ
ードモジュールを削除して1台の半導体レーザポンプモ
ジコールに統合できることから、パネルの小形化と、低
コスト化を図ることが可能となる。As described above, according to the present invention, the conventional monitor photodiode module can be removed and integrated into one semiconductor laser pump module, making it possible to downsize the panel and reduce costs.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明に係る半導体レーザポンプモジニールの
気密パッケージ構造の一実施例を示す横断面図、第2図
は同気密パッケージ構造の斜視図である。本実施例では
、熱膨張率の小さい金属材料で作られた箱形パッケージ
12の対向側面12a、12bのうち一方の側面12a
に励起光源用の半導体レーザ光を透過する窓ガラス13
を設け、かつ他方の側面12bに励起用の半導体レーザ
光を遮断し、信号光を透過可能な窓ガラス14を設けた
構成としたものである。なお、本実施例では窓ガラス1
3および14をバイブ15に取り付けた構造をしている
が、箱形パッケージ12の対向側面12a、12bに直
接取り付けた構成としてもよい。FIG. 1 is a cross-sectional view showing an embodiment of an airtight package structure for a semiconductor laser pump module according to the present invention, and FIG. 2 is a perspective view of the same airtight package structure. In this embodiment, one side 12a of the opposing sides 12a and 12b of the box-shaped package 12 made of a metal material with a small coefficient of thermal expansion is used.
A window glass 13 that transmits the semiconductor laser light for the excitation light source
In addition, a window glass 14 is provided on the other side surface 12b to block excitation semiconductor laser light and to transmit signal light. Note that in this embodiment, the window glass 1
3 and 14 are attached to the vibrator 15, but they may be attached directly to the opposing sides 12a, 12b of the box-shaped package 12.
また、気密パッケージとしての機能を果たすため、箱形
パッケージ12の対向側面以外の側面12C112dに
はパッケージ内外を電気的に接続する中継端子16がガ
ラス半田等で気密に組み込まれている。さらに、前記2
個の窓ガラス13.14の内、励起用半導体レーザ光を
遮断し、信号光を透過する窓ガラス14を説明するため
の拡大図を第3図(A)、(B)、(C)に示す。窓ガ
ラス14は、BK7やサファイヤガラス等の光学ガラス
14aを円板状に加工し、一方の側面に8102等の誘
電体を蒸着して反射防止膜14bを設け、他方の側面に
同様な誘電体材料を蒸着して短波長遮断膜14Cを設け
た構成としたものである。この短波長遮断膜14Cと反
射防止膜14bを蒸着した後の波長特性は第3図(C)
に示すように励起用光源の波長である1490nmを含
む短波長域を大きく減衰させ、かつ信号光の波長である
1530nm以上の長波長域を極力透過させるようにな
っている。この特性を得るには光学ガラス14aの材質
特性や誘電体材料の特性を考慮して計算し、蒸着条件が
設定されるもので、通常、誘電体材料を数種組み合わせ
てかつ何層にも蒸着される。Further, in order to function as an airtight package, a relay terminal 16 for electrically connecting the inside and outside of the package is hermetically assembled with glass solder or the like on the side surface 12C112d of the box-shaped package 12 other than the opposing side surface. Furthermore, the above 2
3 (A), (B), and (C) are enlarged views for explaining the window glass 14 that blocks the excitation semiconductor laser light and transmits the signal light among the window glasses 13 and 14. show. The window glass 14 is made by processing an optical glass 14a such as BK7 or sapphire glass into a disk shape, and providing an anti-reflection film 14b by depositing a dielectric material such as 8102 on one side surface, and applying a similar dielectric material on the other side surface. The short wavelength blocking film 14C is provided by vapor-depositing a material. The wavelength characteristics after the short wavelength blocking film 14C and the antireflection film 14b are deposited are shown in FIG. 3(C).
As shown in the figure, the short wavelength range including 1490 nm, which is the wavelength of the excitation light source, is greatly attenuated, and the long wavelength range, which is 1530 nm or more, which is the wavelength of the signal light, is transmitted as much as possible. To obtain this characteristic, calculations are made taking into consideration the material characteristics of the optical glass 14a and the characteristics of the dielectric material, and the deposition conditions are set. Usually, several types of dielectric materials are combined and deposited in many layers. be done.
また、光学ガラス14aの一方の面(本例では反射防止
膜14bの面)の周囲には、パッケージに取り付けられ
るように金属膜14dを蒸着している。Furthermore, a metal film 14d is deposited around one surface of the optical glass 14a (in this example, the surface of the antireflection film 14b) so that it can be attached to a package.
このようにして作られた窓ガラス14を、気密パッケー
ジに組み込んだ状態を説明するための部分拡大図を第4
図に示す。同図に示すように、光学ガラス14aに反射
防止膜14b、短波長遮断膜14C1金属膜14(lを
蒸着した窓ガラス14は、気密パッケージ12に銀ロー
付は等で気密に取り付けられたバイブ15の窓ガラス取
付座17に、金・スズ半田等の半田材料18でもって気
密に貼り付けられている。このような構造を採用するこ
とにより、気密パッケージ12の内外は完全にシールさ
れた構造となる。The fourth enlarged view is a partial enlarged view for explaining the state in which the window glass 14 made in this way is assembled into an airtight package.
As shown in the figure. As shown in the figure, a window glass 14 in which an anti-reflection film 14b, a short wavelength blocking film 14C, and a metal film 14 (l) are deposited on an optical glass 14a is attached to a vibrator which is airtightly attached to an airtight package 12 by silver brazing or the like. It is airtightly attached to the window glass mounting seat 17 of No. 15 with a solder material 18 such as gold/tin solder. By adopting such a structure, the inside and outside of the airtight package 12 are completely sealed. becomes.
一方、第1図に示す窓ガラス13は窓ガラス14に蒸着
した短波長遮断膜14cのみを削除したものであり、反
射防止膜14bや金属膜14dは同様に蒸着されており
、第4図に示す取付方法にして組み込まれている。ただ
し、本例では、金・スズ半田でもって貼り付けるとした
が、低融点ガラス等のガラス半田を用いてもよく、この
場合、金属膜14dは不要となる。On the other hand, the window glass 13 shown in FIG. 1 is obtained by removing only the short wavelength blocking film 14c deposited on the window glass 14, and the antireflection film 14b and metal film 14d are similarly deposited. It is incorporated using the mounting method shown. However, in this example, it is attached using gold/tin solder, but glass solder such as low melting point glass may also be used, and in this case, the metal film 14d becomes unnecessary.
以上本発明のパッケージ構造とすることにより、本発明
の目的である半導体レーザ素子とモニタ用のホトダイオ
ード素子を一体化させた組合わせ素子が実装可能となる
。この実装例を第5図に示す。By adopting the package structure of the present invention as described above, it becomes possible to mount a combination element that integrates a semiconductor laser element and a monitoring photodiode element, which is an object of the present invention. An example of this implementation is shown in FIG.
すなわち、一体化基板19に半導体レーザ素子20とモ
ニタホトダイオード素子21をお互いに反対向きに取り
付けた一体化素子を作製することにより可能となるもの
であり、逆にこのような一体化素子の設計が可能な半導
体レーザポンプモジュール22を実現できる。つまり、
半導体レーザ素子20からの励起光を窓ガラス13を透
過させて、光ファイバ23に入射させ、エルビウムドー
プ光ファイバアンプからの分岐光を光ファイバ24を介
して導く。そして、窓ガラス14にて半導体レーザ素子
20の励起光成分を除去し、信号光成分のみを透過させ
てモニタホトダイオード素子21に照射させるものであ
る。That is, this is possible by manufacturing an integrated element in which the semiconductor laser element 20 and the monitor photodiode element 21 are attached to the integrated substrate 19 in opposite directions; conversely, the design of such an integrated element is A possible semiconductor laser pump module 22 can be realized. In other words,
The excitation light from the semiconductor laser element 20 is transmitted through the window glass 13 and input into the optical fiber 23, and the branched light from the erbium-doped optical fiber amplifier is guided through the optical fiber 24. Then, the excitation light component of the semiconductor laser element 20 is removed by the window glass 14, and only the signal light component is transmitted and irradiated onto the monitor photodiode element 21.
したがって、従来、励起用半導体レーザモジコールとモ
ニタ用ホトダイオードモジュールとを1台づつ必要であ
ったのに対し本発明の気密パッケージを使用することに
より、1台に統合した半導体レーザポンプモジニールが
実現できる。特に、その大きさも従来の励起用半導体レ
ーザモジニールと同程度の大きさで実現できる。Therefore, whereas conventionally one semiconductor laser module for excitation and one photodiode module for monitoring were required, by using the airtight package of the present invention, it is possible to realize a semiconductor laser pump module that is integrated into one module. can. In particular, it can be realized with a size comparable to that of conventional excitation semiconductor laser modules.
また、本発明の気密パッケージを用いて実現させた半導
体レーザアンプモジュールの適用例を第6図と第7図に
示す。エルビウムドープ光ファイバ25の出射端のカブ
ラ26または融着カブラ27からの分岐光を、モニタ用
光ファイバ28と29にて半導体レーザポンプモジュー
ル30のモニタホトダイオード素子30aに導くだけで
よく、従来構成例で使用していたモニタ用ホトダイオー
ドモジュールを削除することができる。なお、モニタ用
光ファイバ28.29は通常のシングルモードファイバ
かマルチモードファイバが使用される。また、第6図、
第7図において、符号30bは半導体レーザ素子、31
は信号用半導体レーザモジュール、32は波長合成カプ
ラ、33は幹線光ケーブルをそれぞれ示している。Further, an application example of a semiconductor laser amplifier module realized using the airtight package of the present invention is shown in FIGS. 6 and 7. It is only necessary to guide the branched light from the coupler 26 or the fusion coupler 27 at the output end of the erbium-doped optical fiber 25 to the monitor photodiode element 30a of the semiconductor laser pump module 30 through the monitor optical fibers 28 and 29, which is a conventional configuration example. You can remove the monitor photodiode module used in the . Note that the monitoring optical fibers 28 and 29 are normal single mode fibers or multimode fibers. Also, Figure 6,
In FIG. 7, reference numeral 30b denotes a semiconductor laser element, 31
Reference numeral 32 indicates a signal semiconductor laser module, 32 a wavelength combining coupler, and 33 a trunk optical cable.
なお、上述した実施例ではパッケージ構造を箱形でかつ
その材質を金属としたが、変形した箱形形状やセラミッ
ク等の材料で組み合わせたりした場合においても本発明
が適用されるものである。In the above-described embodiments, the package structure is box-shaped and made of metal, but the present invention is also applicable to cases where the package structure is a modified box shape or a combination of materials such as ceramics.
以上の如く、本発明の気密パッケージ構造を採用するこ
とにより、従来のモニタ用ホトダイオードモジュールを
削除して1台の半導体レーザポンプモジニールに統合で
きるのでパネルの小形化と、低コスト化に貢献できると
いう優れた効果を奏する。As described above, by adopting the airtight package structure of the present invention, the conventional monitor photodiode module can be removed and integrated into one semiconductor laser pump module, contributing to panel miniaturization and cost reduction. It has this excellent effect.
第1図は本発明に係る半導体レーザポンプモジニールの
気密パッケージ構造を示す横断面図、第2図は同気密パ
ッケージ構造の斜視図、第3図(A)〜(C)は窓ガラ
スの断面図、正面図および蒸着膜の波長特性図、第4図
は窓ガラスの取り付は方法を説明するための部分拡大図
、第5図は本発明の気密パッケージを使用して組み立て
た半導体レーザポンプモジュールの断面図、第6図と第
7図はこの半導体レーザポンプモジュールの適用例を示
す光ファイバアンプの構成図、第8図は従来の光ファイ
バアンプの構成図である。
12・・・・・・箱形パッケージ、
12a、12b・・・・・・対向側面、13.14・・
・・・・窓ガラス、
14a・・・・・・光学ガラス、
14b・・・・・・反射防止 膜、
14C・・・・・・短波長遮断膜、
14d・・・・・・金属膜、
25・・・・・・エルビウムドーフ光ファイバ、30・
・・・・・半導体レーザポンプモジニール。
出 願 人 日本電気株式会社代 理 人
弁理士 山内梅雄第1図
第3図(A)
第3図CB)
14a 第3図(C)
第2図
1550 (7LTL)
浪畏
第4図
第5図
第6図FIG. 1 is a cross-sectional view showing the airtight package structure of the semiconductor laser pump Modineal according to the present invention, FIG. 2 is a perspective view of the same airtight package structure, and FIGS. 3 (A) to (C) are cross sections of window glass. Figure 4 is a partially enlarged view for explaining the method of installing the window glass, Figure 5 is a semiconductor laser pump assembled using the airtight package of the present invention. A sectional view of the module, FIGS. 6 and 7 are block diagrams of an optical fiber amplifier showing an application example of this semiconductor laser pump module, and FIG. 8 is a block diagram of a conventional optical fiber amplifier. 12... Box-shaped package, 12a, 12b... Opposite side, 13.14...
... Window glass, 14a ... Optical glass, 14b ... Antireflection film, 14C ... Short wavelength blocking film, 14d ... Metal film, 25... Erbium Dorff optical fiber, 30.
... Semiconductor laser pump Modinir. Applicant: NEC Corporation Agent
Patent Attorney Umeo Yamauchi Figure 1 Figure 3 (A) Figure 3 CB) 14a Figure 3 (C) Figure 2 1550 (7LTL) Naoki Figure 4 Figure 5 Figure 6
Claims (1)
いられる半導体レーザポンプモジュールの気密パッケー
ジ構造において、前記気密パッケージの形状を箱型とし
、この箱型の対向側面の一方に前記半導体レーザ光を透
過する窓ガラスを設け、かつ対向側面の他方に前記半導
体レーザ光を遮断する窓ガラスを設けたことを特徴とす
る半導体レーザポンプモジュールの気密パッケージ構造
。 2、前記半導体レーザ光を遮断する窓ガラスは、光学ガ
ラス板に誘電体多層膜を蒸着して前記半導体レーザ光の
波長を含む短波長を遮断し、前記半導体レーザ光の波長
を含まない長波長を透過させるように構成したことを特
徴とする請求項1記載の半導体レーザポンプモジュール
の気密パッケージ構造。[Claims] 1. In an airtight package structure of a semiconductor laser pump module used as a pumping light source for an erbium-doped optical fiber amplifier, the airtight package has a box shape, and the semiconductor is attached to one of the opposite sides of the box shape. 1. An airtight package structure for a semiconductor laser pump module, characterized in that a window glass that transmits laser light is provided, and a window glass that blocks the semiconductor laser light is provided on the other opposing side surface. 2. The window glass that blocks the semiconductor laser light is made by depositing a dielectric multilayer film on an optical glass plate to block short wavelengths that include the wavelength of the semiconductor laser light, and blocks long wavelengths that do not include the wavelength of the semiconductor laser light. 2. The airtight package structure for a semiconductor laser pump module according to claim 1, wherein the airtight package structure is configured to transmit the light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2197652A JP2586190B2 (en) | 1990-07-27 | 1990-07-27 | Airtight package structure of semiconductor laser pump module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2197652A JP2586190B2 (en) | 1990-07-27 | 1990-07-27 | Airtight package structure of semiconductor laser pump module |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0484475A true JPH0484475A (en) | 1992-03-17 |
JP2586190B2 JP2586190B2 (en) | 1997-02-26 |
Family
ID=16378064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2197652A Expired - Lifetime JP2586190B2 (en) | 1990-07-27 | 1990-07-27 | Airtight package structure of semiconductor laser pump module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2586190B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10177528B1 (en) | 2017-07-10 | 2019-01-08 | Ngk Spark Plug Co., Ltd. | Package for mounting light-emitting device |
DE102018211802A1 (en) | 2017-07-17 | 2019-01-17 | Ngk Spark Plug Co., Ltd. | Fastening arrangement for light-emitting elements and method for producing the same |
-
1990
- 1990-07-27 JP JP2197652A patent/JP2586190B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10177528B1 (en) | 2017-07-10 | 2019-01-08 | Ngk Spark Plug Co., Ltd. | Package for mounting light-emitting device |
DE102018211294A1 (en) | 2017-07-10 | 2019-01-10 | Ngk Spark Plug Co., Ltd. | Unit for mounting a light-emitting device |
DE102018211802A1 (en) | 2017-07-17 | 2019-01-17 | Ngk Spark Plug Co., Ltd. | Fastening arrangement for light-emitting elements and method for producing the same |
US10333037B2 (en) | 2017-07-17 | 2019-06-25 | Ngk Spark Plug Co., Ltd. | Light-emitting-element mounting package and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2586190B2 (en) | 1997-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7130121B2 (en) | Erbium-doped fiber amplifier and integrated module components | |
US5661835A (en) | Optical composite module and method of assembling the same | |
JP3616229B2 (en) | Single-port optical modulation device, integrated circuit including the device, and method of operating an optical modulator | |
Matthews et al. | Optical components-the new challenge in packaging | |
US4997252A (en) | Optical fiber communication connection device | |
JP6857127B2 (en) | Optical amplifier module | |
US5491582A (en) | Light-receiving module | |
JPH041614A (en) | Optical amplifying device | |
JPH10215017A (en) | Light source device, optical amplifier, and optical communication system | |
KR950006317B1 (en) | Semiconductor laser amplifier | |
KR100407346B1 (en) | Semiconductor optical amplifier with monitoring device | |
CN111338034B (en) | Light emission sub-assembly with laser diode driver circuit mounted in feedthrough means of light emission sub-assembly housing | |
JP3269540B2 (en) | Optical amplifier | |
US20060001949A1 (en) | Fibre optic amplifier module | |
JP2586190B2 (en) | Airtight package structure of semiconductor laser pump module | |
JPH0484480A (en) | Chip carrier type composite optical element | |
JPH05107573A (en) | Optical amplifier | |
JPH05341233A (en) | Optical module for optical amplifier | |
JP5240537B2 (en) | Optical module | |
JP3011735B2 (en) | Optical module | |
JP3116900B2 (en) | Electronic cooler and optical component module using the same | |
JPH10206678A (en) | Light semiconductor element module | |
JPH04355705A (en) | Semiconductor laser module | |
JP2871325B2 (en) | Light receiving module | |
JPH04350603A (en) | Semiconductor laser module |