[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0483516A - Removal of nitrogen oxide - Google Patents

Removal of nitrogen oxide

Info

Publication number
JPH0483516A
JPH0483516A JP2189352A JP18935290A JPH0483516A JP H0483516 A JPH0483516 A JP H0483516A JP 2189352 A JP2189352 A JP 2189352A JP 18935290 A JP18935290 A JP 18935290A JP H0483516 A JPH0483516 A JP H0483516A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
catalyst layer
hydrocarbons
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2189352A
Other languages
Japanese (ja)
Other versions
JPH0661427B2 (en
Inventor
Satoru Inui
哲 乾
Koichi Saito
斉藤 皓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2189352A priority Critical patent/JPH0661427B2/en
Publication of JPH0483516A publication Critical patent/JPH0483516A/en
Publication of JPH0661427B2 publication Critical patent/JPH0661427B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To efficiently remove nitrogen oxide by decomposing and removing NOx in the presence of 2-4C unsaturated hydrocarbon. CONSTITUTION:Exhaust gas and fuel are introduced into the first catalyst bed composed of alumina or titania and the fuel is subjected to decomposition reaction herein to be converted to hydrocarbon mainly composed of 2-4C unsaturated hydrocarbon. Continuously, the above-mentioned exhaust gas is introduced into the second catalyst bed 7 (e.g. a catalyst wherein Ni or Pt is supported on zeolite or non-aluminosilicate) along with said hydrocarbon and nitrogen oxide in the exhaust gas is decomposed and removed in the presence of said hydrocarbon in an oxidative atmosphere. That is, the exhaust gas is treated under the above-mentioned conditions to make it possible to efficiently remove NOx.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は窒素酸化物の除去方法に関し、詳しくは自動車
などの内燃機関、例えばガソリンエンジンおよびディー
ゼルエンジン、さらにボイラー工業用プラントなどから
排出される排ガス中の窒素酸化物を効率よく除去する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for removing nitrogen oxides, and more specifically, the present invention relates to a method for removing nitrogen oxides, which are emitted from internal combustion engines such as automobiles, such as gasoline engines and diesel engines, and boiler industrial plants. The present invention relates to a method for efficiently removing nitrogen oxides from exhaust gas.

(従来の技術) 近年、自動車などの内燃機関、ボイラー、工業プラント
から排出される排ガス中には、窒素酸化物(以下、NO
xという場合もある)の有害成分が含まれ、大気汚染の
原因となっている。このため、この排ガス中のNOxの
除去が種々の方面から検討されている。
(Prior art) In recent years, nitrogen oxides (hereinafter referred to as NO
It contains harmful ingredients (sometimes referred to as x) and causes air pollution. For this reason, removal of NOx from this exhaust gas is being studied from various perspectives.

従来、例えば自動車の排ガスの場合、三元触媒を用いて
排ガスを処理し炭化水素(以下、排ガス中の炭化水素を
rHcJで表す)および−酸化炭素(CO)とともにN
Oxを除去する方法が用いられている。この方法は、燃
料が完全燃焼できる量だけの空気を導入する条件下で行
われる。しかし、燃料に対する空気の割合(空燃比=空
気/燃料)が大きくなると、排ガス中のHC,COなと
の未燃焼成分を完全燃焼させるのに必要な量より過剰な
wi業が存在することになり、このような酸化雰囲気下
においては、三元触媒によってNOxを還元除去するこ
とはできない。
Conventionally, for example, in the case of automobile exhaust gas, a three-way catalyst is used to treat the exhaust gas and convert it into hydrocarbons (hereinafter, hydrocarbons in exhaust gas are expressed as rHcJ) and -carbon oxides (CO) as well as N.
A method of removing Ox is used. This method is carried out under conditions where only enough air is introduced to allow complete combustion of the fuel. However, as the ratio of air to fuel (air-fuel ratio = air/fuel) increases, there will be an excess of hydrogen than is necessary to completely burn unburned components such as HC and CO in the exhaust gas. Therefore, under such an oxidizing atmosphere, NOx cannot be reduced and removed by a three-way catalyst.

また、内燃機間のうちのディーゼルエンジンやボイラー
の場合、アンモニア、水嚢または一酸化炭素の還元剤を
用いてNOxを除去する方法が用いられている。しかし
、この方法においては、未反応の還元剤の回収、処理の
ため特別な装置が必要という問題がある。
Furthermore, in the case of diesel engines and boilers among internal combustion engines, a method of removing NOx using a reducing agent such as ammonia, water bladder, or carbon monoxide is used. However, this method has a problem in that special equipment is required to recover and treat unreacted reducing agent.

最近、NOxの除去方法として、銅イオンを含有する結
晶性アルミノ珪酸塩からなるNOx分解触媒を用いる方
法が提案されている(特開昭60−125250号公報
)。しかし、この公報には、単に一酸化望素(No)が
窒素(N2)と酸素(02)とに分解可能であると示さ
れているにすぎず、実際の排ガス条件下での有効性およ
び不飽和炭化水素がNOxの分解に有効であることは記
載されていない。
Recently, as a method for removing NOx, a method using a NOx decomposition catalyst made of crystalline aluminosilicate containing copper ions has been proposed (Japanese Unexamined Patent Publication No. 125250/1982). However, this publication simply states that oxidant monoxide (No) can be decomposed into nitrogen (N2) and oxygen (02), and does not show its effectiveness under actual exhaust gas conditions. There is no mention that unsaturated hydrocarbons are effective in decomposing NOx.

また、特開昭63−100919号公報には、炭化水素
の存在下に酸化雰囲気下て銅含有触媒を用いて排ガスを
処理するとNOxと炭化水素との反応が優先的に促進さ
れ、NOxが効率よく除去できることが記載されている
。この方法において使用する炭化水素は、排ガス中のH
Cでも、あるいは外部から必要に応じて添加する炭化水
素てもよいとしている。また、その具体的態様として、
排ガスを先ず銅含有触媒に接触させてNOxを除去し、
次いで酸化触媒に接触させてHC,COなどを除去する
方法も開示されている。
Furthermore, JP-A No. 63-100919 states that when exhaust gas is treated using a copper-containing catalyst in an oxidizing atmosphere in the presence of hydrocarbons, the reaction between NOx and hydrocarbons is preferentially promoted, and NOx becomes more efficient. It is stated that it can be easily removed. The hydrocarbons used in this method are H
It is said that C or a hydrocarbon added externally as required may be used. In addition, as a specific aspect,
The exhaust gas is first contacted with a copper-containing catalyst to remove NOx,
A method is also disclosed in which HC, CO, etc. are then removed by contacting with an oxidation catalyst.

しかし、ここには、炭化水素を添加使用する場合の具体
的な供給手段もしくは方法などについての記載はなく、
またこの公報に開示された条件は、炭化水素とNOxの
濃度比がNOxが高い条件であり、炭化水素とNOxの
濃度比が炭化水素が高い条件での検討はなされていない
。さらに、この方法によるNOx分解効果も低いもので
ある。
However, there is no mention of specific supply means or methods when adding hydrocarbons.
Furthermore, the conditions disclosed in this publication are conditions in which the concentration ratio of hydrocarbons to NOx is high, and no study has been made under conditions in which the concentration ratio of hydrocarbons to NOx is high in hydrocarbons. Furthermore, the NOx decomposition effect of this method is also low.

また、特開平1−139145号公報には、排ガス流入
側にゼオライトに遷移金属を担持した還元触媒を、また
排ガス流出側にはアルミナに触媒成分を担持した酸化触
媒または三元触媒を配置した排ガス浄化触媒が開示され
ている。ここでは、上記した特開昭63−100919
号公報記載の具体的態様と同様に、先ず還元触媒により
排ガス中のNOxを除去し、次いて酸化触媒によりHC
lC0なとを除去しようするものである。
Furthermore, Japanese Patent Application Laid-open No. 1-139145 discloses a reduction catalyst in which a transition metal is supported on zeolite on the exhaust gas inflow side, and an oxidation catalyst or a three-way catalyst in which catalyst components are supported on alumina on the exhaust gas outflow side. A purification catalyst is disclosed. Here, the above-mentioned Japanese Patent Application Laid-Open No. 63-100919
Similar to the specific embodiment described in the publication, NOx in the exhaust gas is first removed by a reduction catalyst, and then HC is removed by an oxidation catalyst.
The purpose is to remove lC0.

しかし、この公報には、NOxの除去にはHCが必要で
あるとの記載はあるものの、そのHCの具体的な供給手
段もしくは方法、および使用量などについてはなにも開
示されていない。
However, although this publication states that HC is necessary to remove NOx, it does not disclose any specific means or method for supplying the HC, or the amount used.

(発明が解決しようとする課題) 本発明者らは、排ガス中のNOxに対し過剰量の02〜
C4不飽和炭化水素の存在下に酸化雰囲気下の排ガスを
処理するとNOxが効率よく除去できるという、排ガス
の浄化処理に好適な条件を既に見出している。
(Problems to be Solved by the Invention) The present inventors have discovered that an excessive amount of NOx in exhaust gas is
It has already been discovered that NOx can be efficiently removed by treating exhaust gas in an oxidizing atmosphere in the presence of C4 unsaturated hydrocarbons, which is a suitable condition for exhaust gas purification treatment.

しかし、内燃機間、例えばディーゼルエンジンなどから
排出される排ガス中のHCO含1は一般に低く、排ガス
をそのまま使用したのでは、上記のような好適な条件下
に浄化処理を行うことができない。また、軽油やLPG
は、02〜C−不飽和炭化水素を殆と含まず、炭素数の
大きい炭化水素やパラフィンからなることから、これら
をそのまま添加したのでは上記のような好適な条件下に
浄化処理を行うことはできない。
However, the HCO content in exhaust gas discharged from internal combustion engines, such as diesel engines, is generally low, and if the exhaust gas is used as it is, it cannot be purified under the above-mentioned suitable conditions. In addition, diesel oil and LPG
contains almost no 02-C-unsaturated hydrocarbons and consists of hydrocarbons and paraffins with a large number of carbon atoms, so if these were added as they were, it would be difficult to carry out purification treatment under the suitable conditions described above. I can't.

従って、本発明の目的は、排ガスを上記のような好適な
条件下に処理してNOxを効率よく除去する方法を提供
することである。
Therefore, an object of the present invention is to provide a method for efficiently removing NOx by treating exhaust gas under the above-mentioned suitable conditions.

(課題を解決するための手段) このような状況に鑑み、本発明者らは鋭意検討をかさね
た結果、排ガスを浄化処理する際に、予め排ガスを一般
に用いられている燃料と混合し、これをアルミナまたは
シリカなどを含有する触媒あるいは、さらにNi、Co
、FeS Kなどを含有する触媒に接触させて、上記燃
料を分解、不均化または酸化脱水素などにより主として
02〜C4不飽和炭化水素からなる炭化水素に変換する
ことにより、上記のような好適な条件を作り出せること
を知り、この知見に基づいて本発明を完成するに至った
(Means for Solving the Problems) In view of this situation, the inventors of the present invention have made extensive studies and found that when purifying exhaust gas, the exhaust gas is mixed with commonly used fuel in advance. a catalyst containing alumina or silica, or further Ni, Co
, FeS K, etc., to convert the fuel into hydrocarbons mainly consisting of 02-C4 unsaturated hydrocarbons by decomposition, disproportionation, oxidative dehydrogenation, etc. The present invention was completed based on this knowledge.

なお、本発明においては、上記のような燃料の分解、不
均化または酸化脱水素などの反応により主として02〜
C4不飽和炭化水素からなる炭化水素を生成する反応を
「分解反応」と総称する。
In addition, in the present invention, mainly 02-
Reactions that produce hydrocarbons composed of C4 unsaturated hydrocarbons are collectively referred to as "decomposition reactions."

すなわち、本発明は、排ガスと燃料とを第1触媒層に導
入し、ここで上記燃料を分解反応に服せしめで主として
C2〜caF飽和炭化水素からなる炭化水素に変換し、
引続きこの炭化水素とともに上記排ガスを第2触媒層に
導入し、ここで酸素雰囲気下でかつ上記炭化水素の存在
下に排ガス中の窒素酸化物を分解除去することを特徴と
する窒素酸化物の除去方法に関する。
That is, the present invention introduces exhaust gas and fuel into a first catalyst layer, where the fuel is subjected to a decomposition reaction to convert it into hydrocarbons mainly consisting of C2-caF saturated hydrocarbons,
Subsequently, the above-mentioned exhaust gas together with this hydrocarbon is introduced into a second catalyst layer, where the nitrogen oxides in the exhaust gas are decomposed and removed in an oxygen atmosphere and in the presence of the above-mentioned hydrocarbon. Regarding the method.

上記酸化雰囲気下とは排ガス中のHC,C01H2、お
よび上記燃料の分解反応によって生成する炭(ヒ水素な
との燃焼成分を完全酸化するに必要な酸素量よりも過剰
な酸素が存在する状態を意味するものである。
The above-mentioned oxidizing atmosphere refers to a state in which there is an excess of oxygen compared to the amount of oxygen required to completely oxidize the combustion components such as HC, CO1H2 in the exhaust gas, and carbon (such as arsenic) generated by the decomposition reaction of the above-mentioned fuel. It means something.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用する燃料としては、軽油、灯油、ガソリン
、LPGなどを挙げることができる。
Examples of the fuel used in the present invention include light oil, kerosene, gasoline, and LPG.

本発明の方法によれば、自動車なとの内燃機関、ボイラ
ー、工業プラントなどから排出される排カスと上記燃料
とを第1触媒層に導入し、ここてこの燃料を分解反応に
服せしめて主としてC2〜C−不飽和炭化水素からなる
炭化水素に変換し、このようにして得られた炭化水素と
排ガスとを第2触媒層に導入し、ここで酸化雰囲気下の
排ガス中のNOxを上記炭化水素の存在下に分解除去し
て排ガスを浄化する。
According to the method of the present invention, waste gas discharged from an internal combustion engine such as an automobile, a boiler, an industrial plant, etc. and the above-mentioned fuel are introduced into the first catalyst layer, where the fuel is subjected to a decomposition reaction. The hydrocarbons mainly composed of C2 to C-unsaturated hydrocarbons are converted into hydrocarbons, and the thus obtained hydrocarbons and exhaust gas are introduced into the second catalyst layer, where the NOx in the exhaust gas under an oxidizing atmosphere is The exhaust gas is purified by decomposition and removal in the presence of hydrocarbons.

上記第1触媒層で使用する触媒としては、上記燃料を分
解反応により主として02〜C4不飽和炭化水素からな
る炭化水素に変換しえるもので、アルミナ、シリカ、ゼ
オライト、チタニアおよびジルコニアから選ばれる少な
くとも1種の酸化物からなる触媒を使用する。特に、上
記酸化物に、さらにNiS Co、、Fe、KS Cr
、■、Mo。
The catalyst used in the first catalyst layer is one that can convert the fuel into hydrocarbons mainly consisting of 02 to C4 unsaturated hydrocarbons through a decomposition reaction, and at least one selected from alumina, silica, zeolite, titania, and zirconia. A catalyst consisting of one oxide is used. In particular, in addition to the above oxide, NiS Co, , Fe, KS Cr
,■,Mo.

Bi、Sn、Pt、PdおよびRhから選ばれる少なく
とも1種の金属を担持したものが好適に使用される。
Those carrying at least one metal selected from Bi, Sn, Pt, Pd and Rh are preferably used.

上記金属は、その硝酸塩、硫酸塩、炭酸塩なとの水溶性
の塩として、常法により上記酸化物に担持させればよい
。この金属の担持量は、上記酸化物の重量基準で0.1
〜20重量%とするのが好ましい。
The above-mentioned metal may be supported on the above-mentioned oxide in the form of a water-soluble salt such as a nitrate, sulfate, or carbonate by a conventional method. The supported amount of this metal is 0.1 based on the weight of the above oxide.
It is preferable to set it as 20 weight%.

上記62〜C−不飽和炭化水素とは、エチレン、プロピ
レン、ブテン、ブタジェンなどの炭素数2〜4の不飽和
炭化水素を意味し、また上記主としてC2〜C,不飽和
炭化水素(以下、単に「不飽和炭化水素」という場合も
ある)からなる炭化水素とは、このような不飽和炭化水
素を少なくとも50M量%(CH,換算)含有する炭化
水素を意味する。
The above-mentioned 62 to C-unsaturated hydrocarbons mean unsaturated hydrocarbons having 2 to 4 carbon atoms such as ethylene, propylene, butene, butadiene, and the above-mentioned mainly C2 to C-unsaturated hydrocarbons (hereinafter simply referred to as Hydrocarbons consisting of unsaturated hydrocarbons (sometimes referred to as "unsaturated hydrocarbons") mean hydrocarbons containing at least 50 M% (in terms of CH) of such unsaturated hydrocarbons.

上記炭化水素中の不飽和炭化水素含量が少なすぎると後
記する第2触媒層における不飽和炭化水素とNOxとの
割合を所望範囲に調整するのに多量の燃料を使用しなけ
ればならず経済的に不利になるほか、上記不飽和炭化水
素以外の炭化水素が多量に存在することになり、これら
炭化水素を第2触媒層で分解除去するのが困難となるな
どして好ましくない。
If the content of unsaturated hydrocarbons in the hydrocarbons is too low, a large amount of fuel must be used to adjust the ratio of unsaturated hydrocarbons and NOx in the second catalyst layer (to be described later) to a desired range, which is not economical. In addition, a large amount of hydrocarbons other than the above-mentioned unsaturated hydrocarbons will be present, making it difficult to decompose and remove these hydrocarbons in the second catalyst layer, which is undesirable.

第1触媒層における温度は、使用する触媒の種類なとに
よって変わるので一概に特定できないが、上記燃料の分
解反応が起こるここ十分な温度であればよい。通常、3
00〜700℃で十分である。
The temperature in the first catalyst layer cannot be absolutely specified because it varies depending on the type of catalyst used, but it may be a temperature sufficient to cause the decomposition reaction of the fuel. Usually 3
00-700°C is sufficient.

排ガス温度が十分高い場合には、特別な加熱手段を設け
ることなく、そのまま排ガスの熱を利用して上記燃料の
分解反応を実施することができる。
When the exhaust gas temperature is sufficiently high, the decomposition reaction of the fuel can be carried out using the heat of the exhaust gas as it is without providing any special heating means.

なお、排ガスの温度が低い場合には、第1触媒層の上流
にヒーターなどの加熱手段を設ければよい。
Note that if the temperature of the exhaust gas is low, a heating means such as a heater may be provided upstream of the first catalyst layer.

第1触媒層における触媒の体積は、排ガスの空間速度(
SV)が10000〜100000h rl(STP)
となるようにするのが好ましい。
The volume of the catalyst in the first catalyst layer is determined by the space velocity of the exhaust gas (
SV) is 10000~100000h rl (STP)
It is preferable to do so.

第2触媒層において使用する触媒としては、上記のよう
な炭化水素の存在下に排ガスを接触させてNOxを分解
除去し得るもので、Cu、Co、Ni、Pt、Pdなと
の金属元素から選ばれる少なくとも1種をゼオライト、
例えばZSM−5型、Y型、フェリエライト型またはモ
ルデナイト型のゼオライト、あるいは非アルミノケイ酸
塩、例えばGa、  Cr、  Ge、  T i、 
La、  Zr、 Mn、CuまたはFeを含むシリケ
ートにイオン交換により担持した触媒を使用することが
てきる。
The catalyst used in the second catalyst layer is one that can decompose and remove NOx by contacting exhaust gas in the presence of hydrocarbons as described above, and is made of metal elements such as Cu, Co, Ni, Pt, and Pd. At least one selected type is zeolite,
For example, zeolites of type ZSM-5, Y, ferrierite or mordenite, or non-aluminosilicates such as Ga, Cr, Ge, Ti,
A catalyst supported by ion exchange on a silicate containing La, Zr, Mn, Cu or Fe can be used.

才た、Mn、  Fe、  Co、 N1、 Cu、Z
n、Sr、Y、Ba、LaおよびCeから選ばれる少な
くとも2種の元素を含有する複合酸化物からなる触媒も
使用することができる。
N1, Mn, Fe, Co, N1, Cu, Z
A catalyst made of a composite oxide containing at least two elements selected from n, Sr, Y, Ba, La, and Ce can also be used.

さらにまた、Ce、La、Sm、Tbなとの希土類から
選ばれる少なくとも1種の元素およびPt、Pd、Rh
、Irなとの貴金属から選ばれる少なくとも1種の元素
をアルミナに担持した触媒も使用することができる。
Furthermore, at least one element selected from rare earths such as Ce, La, Sm, and Tb, and Pt, Pd, and Rh.
A catalyst in which at least one element selected from noble metals such as , Ir, etc. is supported on alumina can also be used.

上記ゼオライトまたは非アルミノケイ酸塩にイオン交換
する金属塩としては各金属の硝酸塩、酢酸塩などが用い
られるが、イオン交換型はゼオライトまたは非アルミノ
ケイ酸塩の重量基準で0.1〜10重量%とするのが好
ましい。イオン交換型を大きくするには、金属塩水溶液
にアンモニアを添加した液にゼオライトまたは非アルミ
ケイ酸塩を添加すればよい。
As the metal salt to be ion-exchanged with the zeolite or non-aluminosilicate, nitrates and acetates of each metal are used, but the ion-exchange type is 0.1 to 10% by weight based on the weight of the zeolite or non-aluminosilicate. It is preferable to do so. In order to increase the size of the ion exchange type, zeolite or non-aluminum silicate may be added to a metal salt aqueous solution with ammonia added.

上記複合酸化物の調製に使用する各金属元素源としては
、硝酸塩、酢酸塩、硫酸塩なとの水溶性金属塩が好適に
使用される。これら金属塩を用いて上記複合酸化物を調
製する方法については特に制限はなく、例えば金属塩の
混合溶液を蒸発乾固した後焼成するか、または金属塩の
混合液にアンモニア水溶液を滴下して共沈させ、ろ過、
洗浄後、焼成することによって調製することができる。
Water-soluble metal salts such as nitrates, acetates, and sulfates are preferably used as sources of each metal element used in the preparation of the composite oxide. There are no particular restrictions on the method for preparing the above-mentioned composite oxide using these metal salts. For example, a mixed solution of metal salts may be evaporated to dryness and then calcined, or an aqueous ammonia solution may be added dropwise to a mixed solution of metal salts. coprecipitation, filtration,
It can be prepared by baking after washing.

上記アルミナに希土類元素および貴金属元素を担持した
触媒の調製に使用するアルミナとしては、BET表面積
が50〜200m2/gのγ−アルミナが好適に使用さ
れる。希土類元素源としては各元素の硝酸塩、硫酸塩、
炭酸塩などの水溶性塩が、また貴金属元素源としては塩
化白金酸、ジニトロジアンミン白金、塩化パラジウム、
硝酸パラジウムなどの水溶性塩が好ましく使用される。
As the alumina used for preparing the catalyst in which rare earth elements and noble metal elements are supported on alumina, γ-alumina having a BET surface area of 50 to 200 m 2 /g is preferably used. As sources of rare earth elements, nitrates, sulfates,
Water-soluble salts such as carbonates, and noble metal sources include chloroplatinic acid, dinitrodiammine platinum, palladium chloride,
Water-soluble salts such as palladium nitrate are preferably used.

アルミナへの希土類元素および貴金属元素の担持方法に
ついては特に制限はなく、例えばアルミナに希土類元素
を担持した後、貴金属元素を担持する方法、アルミナに
貴金属元素を担持した後、希土類元素を担持する方法、
またはアルミナに希土類元素および貴金属元素を同時に
添加する方法なといずれの方法も用いることができる。
There are no particular restrictions on the method of supporting rare earth elements and precious metal elements on alumina, such as a method of supporting a rare earth element on alumina and then supporting a noble metal element, a method of supporting a noble metal element on alumina, and then supporting a rare earth element. ,
Alternatively, any method can be used, such as a method of simultaneously adding rare earth elements and noble metal elements to alumina.

なお、希土類元素および貴金属元素の担持量は、アルミ
ナの重量基準で、それぞれ、0.1〜30重員%および
0.01〜10重量%とするのが好ましい。
Note that the supported amounts of rare earth elements and noble metal elements are preferably 0.1 to 30% by weight and 0.01 to 10% by weight, respectively, based on the weight of alumina.

第2触媒層に導入される、主として02〜C4不飽和炭
化水素からなる炭化水素と排ガスとの割合は、NOx濃
度(ppm)に対する02〜C4不飽和炭化水素濃度(
CHa換算)(ppm)の比・すなわちC2〜Ca不飽
和炭化水素濃度(CH,換算)/NOx濃度が3:1〜
50:1の範囲にあるように調整するのが好ましい。
The ratio of the hydrocarbons mainly consisting of 02-C4 unsaturated hydrocarbons introduced into the second catalyst layer and the exhaust gas is the concentration of 02-C4 unsaturated hydrocarbons (%) relative to the NOx concentration (ppm).
The ratio of CHa conversion) (ppm), that is, C2~Ca unsaturated hydrocarbon concentration (CH, conversion)/NOx concentration is 3:1~
It is preferable to adjust the ratio to be within the range of 50:1.

上記割合が3:1未満、すなわちNOxに対する不飽和
炭化水素の割合が少ないとこの不飽和炭化水素は酸素と
優先的に反応してNOxとの反応が起こりにくくなり、
そのためNOxの分解効率が低下する。一方、50:1
を超えると、すなわち不飽和炭化水素濃度をあまり高く
してもそれζこ見合ったNOxの除去効果は認められず
、逆に未反応の炭化水素濃度が高くなって第2触媒層で
十分除去することが困難となる。
If the above ratio is less than 3:1, that is, the ratio of unsaturated hydrocarbon to NOx is small, the unsaturated hydrocarbon reacts preferentially with oxygen, making it difficult to react with NOx.
Therefore, the NOx decomposition efficiency decreases. On the other hand, 50:1
In other words, even if the concentration of unsaturated hydrocarbons is increased too much, no commensurate NOx removal effect will be observed; on the contrary, the concentration of unreacted hydrocarbons will increase and will be removed sufficiently by the second catalyst layer. This becomes difficult.

本発明において使用する排ガス中のNOx濃度は、通常
、100〜3000ppm程度であるから、上記のよう
な理由により、第2触媒層において得られる不飽和炭化
水素濃度は、300〜110000pp程度となるよう
にするのが好ましい。
Since the NOx concentration in the exhaust gas used in the present invention is usually about 100 to 3000 ppm, for the reasons mentioned above, the unsaturated hydrocarbon concentration obtained in the second catalyst layer is about 300 to 110000 ppm. It is preferable to

上記第2触媒層に導入される上記不飽和炭化水素濃度と
NOx濃度との割合は、第1触媒層において得られる炭
化水素の組成などを考慮した上で、第1触媒層に導入す
る燃料の量を制御することにより容易に上記範囲内に調
整することができる。
The ratio between the unsaturated hydrocarbon concentration and NOx concentration introduced into the second catalyst layer is determined by considering the composition of the hydrocarbon obtained in the first catalyst layer, etc. of the fuel introduced into the first catalyst layer. It can be easily adjusted within the above range by controlling the amount.

第2触媒層における温度についても特に制限はない、上
記排ガス中のNOxの分解が起こる程度の温度であれば
よい。通常、200〜700℃で十分である。従って、
使用する排ガスの温度が高ければ、第1触媒層からの上
記炭化水素と排ガスとをそのまま第2触媒層に導入して
NOxの分解除去を行わせることができる。
The temperature in the second catalyst layer is also not particularly limited, as long as it is a temperature at which decomposition of NOx in the exhaust gas occurs. Usually, 200 to 700°C is sufficient. Therefore,
If the temperature of the exhaust gas used is high, the hydrocarbons and exhaust gas from the first catalyst layer can be directly introduced into the second catalyst layer to decompose and remove NOx.

第2触媒層における触媒の体積については、空間速度(
SV)が10000〜100000h r(STP)と
なるようにするのが好ましい。
Regarding the volume of the catalyst in the second catalyst layer, the space velocity (
SV) is preferably 10,000 to 100,000 hr (STP).

本発明の方法によれば、排ガス中のNOxの除去はもと
より、排ガス中のHC,Coおよび上記燃料の分解反応
による炭化水素もほぼ完全に酸化され、排ガスを効率よ
く浄化することができる。
According to the method of the present invention, not only NOx in the exhaust gas is removed, but also HC, Co, and hydrocarbons caused by the decomposition reaction of the fuel in the exhaust gas are almost completely oxidized, so that the exhaust gas can be efficiently purified.

上記第1触媒層と第2触媒層との配置については特に制
限はなく、第1触媒層と第2触媒層とを互いに接触した
状態で配置してもよく、あるいは両者をある程度の間隔
を設けて配置してもよい。
There is no particular restriction on the arrangement of the first catalyst layer and the second catalyst layer, and the first catalyst layer and the second catalyst layer may be arranged in contact with each other, or they may be placed with a certain distance between them. It may also be placed.

また、第1触媒層および第2触媒層に使用する触媒の形
状については特に制限はなく、ペレット状、ハニカム状
などいずれてもよい。圧力損失を考慮した場合、ハニカ
ム状とするのが好ましい。
Further, there is no particular restriction on the shape of the catalyst used in the first catalyst layer and the second catalyst layer, and the shape may be pellet-like, honeycomb-like, or the like. In consideration of pressure loss, a honeycomb shape is preferable.

(発明の効果) 本発明の方法によれば、02〜C4不飽和炭化水素の存
在下にNOxの分解除去を行うので効率よく窒g鈑1ヒ
物を除去することができる。
(Effects of the Invention) According to the method of the present invention, since NOx is decomposed and removed in the presence of 02-C4 unsaturated hydrocarbons, nitrogen and arsenic compounds can be efficiently removed.

本発明の方法は、上記不飽和炭化水素を予め燃料を第1
触媒層で分解して供給するので、例えばディーゼルエン
ジンからの排ガスのように上記のような不飽和炭化水素
の含量が低い排ガスの浄化に特ここ効果的に用いること
ができる。
In the method of the present invention, the above-mentioned unsaturated hydrocarbon is first added as a fuel.
Since it is decomposed in a catalyst layer and then supplied, it can be particularly effectively used for purifying exhaust gas with a low content of unsaturated hydrocarbons, such as exhaust gas from a diesel engine.

本発明の方法は、NOxの分解除去を上記のような不飽
和炭化水素の存在下で行うので酸化雰囲気下で効果的に
NOxを除去でき、例えば内燃機関から排出される排ガ
スのように空燃比が高い条件で燃焼された排ガスの浄化
に特に効果的に用いることができる。
Since the method of the present invention decomposes and removes NOx in the presence of unsaturated hydrocarbons as described above, it can effectively remove NOx in an oxidizing atmosphere. It can be used particularly effectively to purify exhaust gas that has been combusted under conditions of high oxidation.

(実施例) 以下、実施例を挙げて本発明をさらに具体的に説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to Examples.

(触媒の調製) 〔触媒(A)] 市販の横断面1インチ平方当り約400個のガス流通セ
ルを有するコージェライト質ハニカム担体を用いて触媒
を調製した。
(Preparation of Catalyst) [Catalyst (A)] A catalyst was prepared using a commercially available cordierite honeycomb carrier having about 400 gas flow cells per square inch of cross section.

BET表面積100m2/gを有するγ−アルミナIk
gに硝酸鉄[F e (NO3)a・9H20コ253
、Ogと硝酸カリウム77.7gとを含む水溶液を加え
て混合し、120℃で2FW!間乾燥し、その後500
℃で2時間焼成した。得られた粉体をボールミルで湿式
粉砕することにより水性スラリーを調製した。この水性
スラリーに前記ハニカム担体を浸漬腰 取り出した後、
セル内の過剰スラリーを圧縮空気でブローして、全ての
セルの目詰まりを除去した。ついて、150℃で2時間
乾燥して触媒(A)を得た。
γ-alumina Ik with BET surface area 100 m2/g
g to iron nitrate [F e (NO3)a・9H20co253
, an aqueous solution containing Og and 77.7 g of potassium nitrate was added and mixed, and the mixture was heated to 2FW at 120°C! Dry for a while, then 500
It was baked at ℃ for 2 hours. An aqueous slurry was prepared by wet-pulverizing the obtained powder using a ball mill. After immersing the honeycomb carrier in this aqueous slurry and taking it out,
Excess slurry in the cells was blown out with compressed air to unclog all cells. Then, the catalyst (A) was obtained by drying at 150° C. for 2 hours.

[触媒(B)コ ZSM−5ゼオライトを”Rapid Crystal
liza−tion Method” Proceed
ings8th InternationalCong
ress on Catalysis、 Berlin
、 +984. Vol、3゜P、569に基づいて調
製した。得られたゼオライトはX線回折によりZSM−
5型であることを確認した。
[Catalyst (B) ZSM-5 zeolite
liza-tion Method”Proceed
ings8th InternationalCong
Ress on Catalysis, Berlin
, +984. Prepared based on Vol. 3°P, 569. The obtained zeolite was determined by X-ray diffraction as ZSM-
It was confirmed that it was type 5.

上記ZSM−5Sモー5イ)1kgに純水4又を加え、
98℃で2時間撹拌した後、80℃て0.2mol/4
の硝酸銅水溶液72をゆっくり滴下した。滴下終了後も
80℃で12時間加熱撹拌し、イオン交換を行った。イ
オン交換したゼオライトは、ろ過し、ざらに硝酸イオン
が検出されなくなるまで十分洗浄した。このイオン交換
したゼオライトを120℃で24時間乾燥した。
Add 4 prongs of pure water to 1 kg of the above ZSM-5S
After stirring at 98°C for 2 hours, 0.2 mol/4 at 80°C
72 of copper nitrate aqueous solution was slowly added dropwise. After the dropwise addition was completed, the mixture was heated and stirred at 80° C. for 12 hours to perform ion exchange. The ion-exchanged zeolite was filtered and thoroughly washed until no nitrate ions were detected. This ion-exchanged zeolite was dried at 120°C for 24 hours.

得られた粉体をボールミルで湿式粉砕し、以下、触媒(
A)と同様にして触媒(B)を得た。
The obtained powder was wet-pulverized in a ball mill, and the catalyst (
Catalyst (B) was obtained in the same manner as A).

[触媒(C)] BET表面積500 m2/ gを有するシリカ1kg
cm硝酸ニッケル[N i  (NO3) ・6H20
]194、.7gと硝酸コバル)36.3gとを含む水
溶液を添加混合し、120”Cて2時r:J乾燥した後
、500°Cで2時間焼成した。
[Catalyst (C)] 1 kg of silica with a BET surface area of 500 m2/g
cm Nickel nitrate [N i (NO3) ・6H20
]194,. An aqueous solution containing 7g of cobalt nitrate and 36.3g of cobalt nitrate was added and mixed, dried at 120"C for 2 hours r:J, and then calcined at 500°C for 2 hours.

得られた粉体をボールミルで湿式粉砕し、以下、触媒(
A)と同様にして触媒(c)を得た。
The obtained powder was wet-pulverized in a ball mill, and the catalyst (
Catalyst (c) was obtained in the same manner as A).

[触媒(D)コ 実施例1て得られたFe−に−アルミナ粉体500g、
ブaトンで置換されたY型ゼオライト300g、および
シリカ−アルミナ粉体200gをボールミルで湿式粉砕
した。
[Catalyst (D) 500 g of Fe-alumina powder obtained in Example 1,
300 g of Y-type zeolite substituted with Buton and 200 g of silica-alumina powder were wet-pulverized in a ball mill.

以下、触媒(A)と同様にして触媒(D)を得た。Catalyst (D) was obtained in the same manner as catalyst (A).

[触媒(E)] 硝酸コバルト [Co  (N 03) 2 ・6 H
2Oコ 125]g、?i酸ランタン[La (NO3
) 3・6H20] 1490 gおよび硝酸ストロン
チウム[Sr (NO3)2] 182gを32の純水
に溶解、撹拌した後、120°Cて十分乾燥し、得られ
た固体をメノウ乳鉢で粉砕し、800℃で5時間焼成し
た。得られた粉体はX線回折によりペロブスカイト型酸
化物であることを確認した。上記ペロブスカイト型酸化
物1kgをボールミルで湿式粉砕した。
[Catalyst (E)] Cobalt nitrate [Co (N 03) 2 ・6 H
2Oko 125] g,? Lanthanum acid [La (NO3
) 3・6H20] 1490 g and 182 g of strontium nitrate [Sr (NO3)2] were dissolved in 32% pure water, stirred, thoroughly dried at 120°C, and the resulting solid was ground in an agate mortar to give 800 g of strontium nitrate [Sr (NO3)2]. It was baked at ℃ for 5 hours. The obtained powder was confirmed to be a perovskite type oxide by X-ray diffraction. 1 kg of the above perovskite type oxide was wet-pulverized using a ball mill.

以下、触媒(A)と同様にして触媒(E)を得た。Catalyst (E) was obtained in the same manner as catalyst (A).

[触媒(F)] 触媒(A)の調製に使用したと同じγ−アルミナ1kg
に硝酸プラセオジウム511gを含む水溶液を添加、混
合し、120℃で2時間乾燥した後、500℃で2時間
焼成した。得られた粉体にジニトロジアンミン白金10
gを含む水溶液を添加、混合し、120℃で2時間乾燥
した後、500℃で2時間焼成した。この粉体をボール
ミルで湿式粉砕した。
[Catalyst (F)] 1 kg of the same γ-alumina used in the preparation of catalyst (A)
An aqueous solution containing 511 g of praseodymium nitrate was added and mixed, dried at 120°C for 2 hours, and then baked at 500°C for 2 hours. Dinitrodiammine platinum 10 was added to the obtained powder.
An aqueous solution containing g was added and mixed, dried at 120°C for 2 hours, and then baked at 500°C for 2 hours. This powder was wet-milled using a ball mill.

以下、触媒(A)と同様にして触媒(F)を得た。Catalyst (F) was obtained in the same manner as catalyst (A).

実施例 第1図に示す装置を用いて本発明の方法を実施した。Example The method of the present invention was carried out using the apparatus shown in FIG.

ここてはエンジン1として市販の直噴式ディーゼルエン
ジン(4気筒、2800cc)を用いた。
Here, a commercially available direct injection diesel engine (4 cylinders, 2800 cc) was used as the engine 1.

排ガスはエキゾーストマニホールド2を経て、燃料タン
ク5から燃料ポンプ4によって燃料導入部3から供給さ
れた燃料とともに第1触媒層6に導入した。この第1触
媒N6において上!IC!燃料を分解反応に洪した後、
燃料の分解反応によって得られた炭化水禁と排ガスとの
混合物をそのまま第2触媒層7に導入した。第2触媒層
7においてNOxを除去した後の排ガスはマフラー8を
経て外気に放出した。
The exhaust gas passed through the exhaust manifold 2 and was introduced from the fuel tank 5 into the first catalyst layer 6 together with the fuel supplied from the fuel introduction part 3 by the fuel pump 4. Above in this first catalyst N6! IC! After feeding the fuel into the decomposition reaction,
A mixture of carbonized water obtained by the decomposition reaction of the fuel and exhaust gas was directly introduced into the second catalyst layer 7. The exhaust gas after NOx was removed in the second catalyst layer 7 was discharged to the outside air through a muffler 8.

9.10.11.12はいずれもサンプリングバルブで
あって、バルブ9からはエンジン1からの排ガスを、バ
ルブ10からは第1触媒N6を通過した後のガスを、バ
ルブ11からは第2触媒層7を通過した後のガスを、ま
たバルブ12がらは第1触媒F’6に導入されるガスを
サンプリングし第1触媒層6には触媒(A)、 (Cン
または(D)を充填し、また第2触媒屡7には触媒(B
)(E)または(F)を充填した。
9.10.11.12 are all sampling valves, and valve 9 receives the exhaust gas from the engine 1, valve 10 receives the gas after passing through the first catalyst N6, and valve 11 receives the gas after passing through the first catalyst N6. The gas after passing through the layer 7 and the gas introduced into the first catalyst F'6 through the valve 12 are sampled, and the first catalyst layer 6 is filled with catalyst (A), (C) or (D). In addition, a catalyst (B
) (E) or (F) was filled.

燃料としては軽油を使用した。Light oil was used as fuel.

第1触媒層6および第2触媒層7の空間速度(SV)は
いずれも85000hr”てあり、第1触媒N6の入口
温度は450℃、また第2触媒N7の入口温度は400
℃であった。
The space velocity (SV) of the first catalyst layer 6 and the second catalyst layer 7 are both 85,000 hr'', the inlet temperature of the first catalyst N6 is 450°C, and the inlet temperature of the second catalyst N7 is 400°C.
It was ℃.

結果を表1に示す。The results are shown in Table 1.

なお、第2触媒層における炭化水素または不飽和炭化水
素とNOxとの濃度比は燃料の導入量を制御して調整し
た。また、不飽和炭化水素はガスクロマトグラフィーに
よって測定した。
Note that the concentration ratio of hydrocarbons or unsaturated hydrocarbons to NOx in the second catalyst layer was adjusted by controlling the amount of fuel introduced. Moreover, unsaturated hydrocarbons were measured by gas chromatography.

比較例 実施例において、第1触媒層6にいずれの触媒も充填す
ることなく、すなわち燃料の分解反応を行わなかったり
、あるいは燃料として軽油の代わりにプロパンを使用し
たり、あるいはNOxに対する炭化水素または不飽和炭
化水素の濃度比を本発明の範囲外となるように燃料の供
給量を変更した以外は実施例と同様にして排ガスの処理
を行った。結果を表1に示す。 (以下余白)
In the comparative examples, the first catalyst layer 6 was not filled with any catalyst, that is, no fuel decomposition reaction was performed, or propane was used instead of light oil as the fuel, or hydrocarbons or Exhaust gas was treated in the same manner as in the example except that the amount of fuel supplied was changed so that the concentration ratio of unsaturated hydrocarbons was outside the range of the present invention. The results are shown in Table 1. (Margin below)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例および比較例で使用した排ガス処理装
置の概略図である。 1・・エンジン、2・・エキゾーストマニホールド、3
・・燃料導入部、4・・燃料ポンプ、5、・燃料タンク
、6・・第1触媒層、7・・第2触媒層、8・・マフラ
ー 9.10.11.12・・サンプリングバルブ
FIG. 1 is a schematic diagram of an exhaust gas treatment device used in Examples and Comparative Examples. 1. Engine, 2. Exhaust manifold, 3
...Fuel introduction part, 4..Fuel pump, 5..Fuel tank, 6..First catalyst layer, 7..Second catalyst layer, 8..Muffler 9.10.11.12..Sampling valve

Claims (6)

【特許請求の範囲】[Claims] (1)排ガスと燃料とを第1触媒層に導入し、ここで上
記燃料を分解反応に供して、主としてC_2〜C_4不
飽和炭化水素からなる炭化水素に変換し、引続きこの炭
化水素とともに上記排ガスを第2触媒層に導入し、ここ
で酸化雰囲気下でかつ上記炭化水素の存在下に排ガス中
の窒素酸化物を分解除去することを特徴とする窒素酸化
物の除去方法。
(1) Exhaust gas and fuel are introduced into the first catalyst layer, where the fuel is subjected to a decomposition reaction to be converted into hydrocarbons mainly consisting of C_2 to C_4 unsaturated hydrocarbons, and then the above-mentioned exhaust gas is A method for removing nitrogen oxides, which comprises introducing nitrogen oxides into a second catalyst layer, and decomposing and removing nitrogen oxides in exhaust gas in an oxidizing atmosphere and in the presence of the hydrocarbons.
(2)第1触媒層に使用する触媒が、アルミナ、シリカ
、ゼオライト、チタニアおよびジルコニアから選ばれる
少なくとも1種の酸化物からなる触媒である請求項(1
)に記載の窒素酸化物の除去方法。
(2) Claim (1) wherein the catalyst used in the first catalyst layer is a catalyst made of at least one oxide selected from alumina, silica, zeolite, titania, and zirconia.
) The method for removing nitrogen oxides described in ).
(3)第2触媒層に使用する触媒が、Cu、Co、Ni
、PtおよびPdから選ばれる少なくとも1種の金属元
素をゼオライトまたは非アルミノケイ酸塩に担持した触
媒である請求項(1)に記載の窒素酸化物の除去方法。
(3) The catalyst used in the second catalyst layer is Cu, Co, Ni.
The method for removing nitrogen oxides according to claim 1, wherein the catalyst is a catalyst in which at least one metal element selected from , Pt, and Pd is supported on zeolite or non-aluminosilicate.
(4)第2触媒層に使用する触媒が、Mn、Fe、Co
、Ni、Cu、Zn、Sr、Y、Ba、LaおよびCe
から選ばれる少なくとも2種の元素を含有する複合酸化
物からなる触媒である請求項(1)に記載の窒素酸化物
の除去方法。
(4) The catalyst used in the second catalyst layer is Mn, Fe, Co
, Ni, Cu, Zn, Sr, Y, Ba, La and Ce
The method for removing nitrogen oxides according to claim 1, wherein the catalyst is a composite oxide containing at least two elements selected from the following.
(5)第2触媒層に使用する触媒が、少なくとも1種の
希土類元素と少なくとも1種の貴金属元素とをアルミナ
に担持した触媒である請求項(1)に記載の窒素酸化物
の除去方法。
(5) The method for removing nitrogen oxides according to claim 1, wherein the catalyst used in the second catalyst layer is a catalyst in which at least one rare earth element and at least one noble metal element are supported on alumina.
(6)第2触媒層における窒素酸化物濃度(ppm)に
対するC_2〜C_4炭化水素濃度(CH_4換算)(
ppm)の割合が3:1〜50:1である請求項(1)
に記載の窒素酸化物の除去方法。
(6) C_2 to C_4 hydrocarbon concentration (CH_4 conversion) relative to nitrogen oxide concentration (ppm) in the second catalyst layer (
Claim (1) wherein the ratio of ppm) is 3:1 to 50:1.
The method for removing nitrogen oxides described in .
JP2189352A 1990-07-19 1990-07-19 Nitrogen oxide removal method Expired - Lifetime JPH0661427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189352A JPH0661427B2 (en) 1990-07-19 1990-07-19 Nitrogen oxide removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189352A JPH0661427B2 (en) 1990-07-19 1990-07-19 Nitrogen oxide removal method

Publications (2)

Publication Number Publication Date
JPH0483516A true JPH0483516A (en) 1992-03-17
JPH0661427B2 JPH0661427B2 (en) 1994-08-17

Family

ID=16239890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189352A Expired - Lifetime JPH0661427B2 (en) 1990-07-19 1990-07-19 Nitrogen oxide removal method

Country Status (1)

Country Link
JP (1) JPH0661427B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103952A (en) * 1991-10-14 1993-04-27 Sangyo Souzou Kenkyusho Method for removing nitrogen oxide in exhaust gas
US5514355A (en) * 1990-07-19 1996-05-07 Tosoh Corporation Method for purifying an oxygen-rich exhaust gas
US5586433A (en) * 1994-02-14 1996-12-24 Daimler-Benz Ag Process and apparatus for selective catalyzed no-reduction in oxygen-containing exhaust gases
JPH09141056A (en) * 1995-11-24 1997-06-03 Sekiyu Sangyo Kasseika Center Contact reducing method of nitrogen oxide
EP0935055A2 (en) 1998-02-05 1999-08-11 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
JP2000135419A (en) * 1998-10-30 2000-05-16 Nissan Motor Co Ltd Exhaust gas purifying system
JP2006255539A (en) * 2005-03-15 2006-09-28 Toyota Motor Corp Exhaust gas purifying device
WO2010018807A1 (en) * 2008-08-11 2010-02-18 日産自動車株式会社 Exhaust gas purification system and exhaust gas purifying method using same
JP2010106799A (en) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd Exhaust emission control system
JP2011047395A (en) * 2009-08-28 2011-03-10 Hyundai Motor Co Ltd Exhaust system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416352B1 (en) * 2008-11-28 2014-07-09 현대자동차 주식회사 Diesel fuel cracking catalyst and lean nox trap provided with the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514355A (en) * 1990-07-19 1996-05-07 Tosoh Corporation Method for purifying an oxygen-rich exhaust gas
JPH05103952A (en) * 1991-10-14 1993-04-27 Sangyo Souzou Kenkyusho Method for removing nitrogen oxide in exhaust gas
US5586433A (en) * 1994-02-14 1996-12-24 Daimler-Benz Ag Process and apparatus for selective catalyzed no-reduction in oxygen-containing exhaust gases
JPH09141056A (en) * 1995-11-24 1997-06-03 Sekiyu Sangyo Kasseika Center Contact reducing method of nitrogen oxide
EP0935055A2 (en) 1998-02-05 1999-08-11 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
EP0935055A3 (en) * 1998-02-05 2002-03-13 Nissan Motor Company, Limited Device for purifying oxygen rich exhaust gas
JP4501166B2 (en) * 1998-10-30 2010-07-14 日産自動車株式会社 Exhaust gas purification system
JP2000135419A (en) * 1998-10-30 2000-05-16 Nissan Motor Co Ltd Exhaust gas purifying system
JP2006255539A (en) * 2005-03-15 2006-09-28 Toyota Motor Corp Exhaust gas purifying device
WO2010018807A1 (en) * 2008-08-11 2010-02-18 日産自動車株式会社 Exhaust gas purification system and exhaust gas purifying method using same
JP2010043569A (en) * 2008-08-11 2010-02-25 Nissan Motor Co Ltd Exhaust emission control system and exhaust emission control method using same
US20110131952A1 (en) * 2008-08-11 2011-06-09 Nissan Motor Co., Ltd. Exhaust gas purifying system and exhaust gas purifying method using the same
CN102119265A (en) * 2008-08-11 2011-07-06 日产自动车株式会社 Exhaust gas purification system and exhaust gas purifying method using same
US8671662B2 (en) 2008-08-11 2014-03-18 Nissan Motor Co., Ltd. Exhaust gas purifying system and exhaust gas purifying method using the same
JP2010106799A (en) * 2008-10-31 2010-05-13 Nissan Motor Co Ltd Exhaust emission control system
JP2011047395A (en) * 2009-08-28 2011-03-10 Hyundai Motor Co Ltd Exhaust system

Also Published As

Publication number Publication date
JPH0661427B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US7743602B2 (en) Reformer assisted lean NOx catalyst aftertreatment system and method
JPH0538452A (en) Catalyst for purifying exhaust gas
WO2005023421A1 (en) Catalyst and method for contact decomposition of nitrogen oxide
JPH0483516A (en) Removal of nitrogen oxide
JP3276191B2 (en) Nitrogen oxide purification method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH0538420A (en) Treatment method for removing nitrogen oxide
JPH07232035A (en) Method and apparatus for purifying nitrogen oxide
JP3510908B2 (en) Exhaust gas purification catalyst
JPH05212248A (en) Method for purifying nox in waste combustion gas of natural gas
JPH0647255A (en) Removing method of nitrogen oxide
JP3242126B2 (en) Nitrogen oxide removal method
JP3763586B2 (en) Nitrogen oxide removal method
JP3221706B2 (en) Nitrogen oxide removal catalyst and exhaust gas purification method using the same
JP2601018B2 (en) Exhaust gas purification catalyst
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3302036B2 (en) Nitrogen oxide removal method
JP3363160B2 (en) Nitrogen oxide removal catalyst
JP3579745B2 (en) Exhaust gas purification method
JPH04193347A (en) Catalyst for purification of exhaust gas
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH06277522A (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method using same
JPH04334527A (en) Removal of nitrogen oxide
JPH0780316A (en) Waste gas purification catalyst and method for removing nox
JPH0549935A (en) Catalyst for removing nitrogen oxide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070817

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 16

EXPY Cancellation because of completion of term