【発明の詳細な説明】[Detailed description of the invention]
〔発明の技術分野〕
本発明は、マンネスマン製管法にあつて、穿孔
前にビレツトの後端面にセンター穴を形成する継
目無金属管の製造方法に関する。
〔発明の技術的背景とその問題点〕
マンネスマン製管法により継目無鋼管を製造す
る場合、加熱丸鋼ビレツトをピアサーで穿孔する
際、穿孔工程の末期において、第1図のように、
プラグ1がビレツト2の後端面2aから抜け出る
ときに、リング状の耳片3が発生することがあ
る。なお、4はロール、5は芯金である。
この耳片は、ピアサー内に、あるいは以後の圧
延磨管工程中に脱離落下し、後続の管内面に掬い
込まれスタンプされたり、さらにロールやガイド
類に付着し、結果的に内外面にピツト疵の発生要
因となる。
そこで、この対策として、特公昭45−31753号
公報記載のように、ビレツトの後端にセンター穴
を形成する方法が知られている。たしかにこの方
法はピツト疵発生防止に著しい効果があるもの
の、本発明者の数多くの基礎実験および実操業経
験によれば、未だピツト疵発生防止効果が必らず
しも十分でなく、後述するように、そのセンター
穴の形状に改善の余地があることが判つた。
〔発明の目的〕
本発明は、前記事情に鑑み開発されたもので、
その主たる目的はピツト疵の発生率が著しく低い
継目無金属管の製造方法を提供することにある。
〔発明の概要〕
この目的を達成する本発明法は、マンネスマン
製管法にあつて、ビレツトの穿孔時に後端となる
側の端面中央に下記(a)〜(c)の条件を満たす円錐状
のセンター穴を熱間状態で形成し、その後穿孔す
る、
(a) センター穴がビレツトの穿孔時に後端となる
側の端面から連続的な円錐状をなしているこ
と、
(b) センター穴の底面直径dが、30mm≦d≦プラ
グ直径、
(c) 円錐角θが、50゜≦θ≦75゜、
ことを特徴とするものである。
〔発明の具体例〕
本発明においては、穿孔前熱間状態、たとえば
加熱炉を出た後ピアサーに至るまでの間におい
て、プレス方式によりセンター穴を形成する。
その1例を第2図および第3図に示す。すなわ
ち、加熱炉から抽出した後、穿孔前の熱間ライン
において、円形の孔型10構成する上下一対のダ
イス11,12によつて、加熱ビレツト13を拘
束しながら、その後端面13aに、油圧シリンダ
(図示せず)の先端に取付けたポンチ14をプレ
スし、センター穴15を形成するものである。
ここで、センター穴15は、第4図のような形
状を採ることが重要である。第1にセンター穴1
5は、後端面13aから連続的な円錐形状をなし
ていることである。もし、前述の公報記載のよう
に、そして第6図のように、平行部15′aを有
するセンター穴15′とすると、平行部15′aが
穿孔末期において管の内面に流れ込み、内面にカ
ブレ疵(内面ヘゲ疵)を生じる。
第2に、センター穴の底面直径dは、30mm≦d
≦プラグ直径、との関係に設定する必要がある。
dが30mm未満であると、センター穴が無い場合と
同様であつて、ピツト疵が生じる。またdがプラ
グ直径を超えると、穿孔末期において圧延反力が
取れなくなり、プラグを抜けない事態が起きる。
第3に、円錐角θは50゜≦θ≦75゜、とするべき
である。従来は、冷間ビレツトに、先端角120゜
の、ドリルにより旋盤加工を行い、第6図の形状
に仕上げるか、スカーフイングによつてかなり大
きな開き角をもつたセンター穴を開けていた。こ
れに対して、本発明においては、従来のセンター
穴より尖鋭の穴を開けるものである。後述の実施
例で示すように、θが75゜を超えると、外面ピツ
ト疵が生じ易い。またθが50゜未満では、外面ピ
ツト疵発生率は低いものの、中カブレ疵(内面ヘ
ゲ疵)を生じ好ましくない。
先に触れたように、従来は冷間でビレツト後端
面にセンター穴を施すのが通例であるが、旋盤加
工の場合には、センター穴の形状を本発明に係る
形状とすることが加工上実際的に困難であり、か
つ製管能力に比して加工能力が不足し、他方スカ
ーフイングによる場合には、穴の偏芯、形状不均
一の問題に加えて、スカーフイング時に発生する
ノロがビレツトに付着し、品質に悪影響を及ぼす
ため、これを除去する必要があり、加工費が嵩
む。いずれにしても、従来法では歩留りが悪い。
そこで、本発明では、熱間センター穴を加工す
ることとし、その設備としては、第7図に示すも
のを使用することができる。
20は回転加熱炉で、ここから抽出された加熱
ビレツト13は、搬送ローラ群21により所定位
置まで搬送された後、第1入側スキツドテーブル
22に移動され、その後第1出側スキツドテーブ
ル23との間において、トツプ用センタリング機
24により、チヤツキングダイス25により固定
されたビレツド13の先端にセンター穴が穿孔さ
れる。その後ビレツト13は、第1出側スキツド
テーブル23、搬送ローラ群26、第2入側スキ
ツドテーブル27を順に経て、第2出側スキツド
テーブル28との間の位置において、ダイス1
1,12により拘束された状態で、ポンチ14を
備えたボトム用センタリング機29により、その
後端面に前述のセンター穴が穿孔される。穿孔
後、ビレツトは、第2出側スキツドテーブル28
を経て、第1ピアサー30に供せられ、プツシヤ
ー31に押されながら穿孔される。
なお、センタリングに当つて、先に後端を、後
に先端を穿孔するようにしてもよい。
〔実施例〕
187mmφのビレツトについて、後端センター孔
形状および加工法を変えて、直径が103mmのプラ
グにより多数本製管し、外ピツト疵発生率および
外ピツト疵屑金率を調べたところ、第1表に示す
結果が得られた。他の加工条件は全て同一であ
る。
[Technical Field of the Invention] The present invention relates to a method for manufacturing a seamless metal pipe using the Mannesmann pipe manufacturing method, in which a center hole is formed in the rear end face of a billet before drilling. [Technical background of the invention and its problems] When manufacturing seamless steel pipes using the Mannesmann pipe manufacturing method, when drilling a heated round steel billet with a piercer, at the end of the drilling process, as shown in Figure 1,
When the plug 1 comes out from the rear end surface 2a of the billet 2, a ring-shaped lug 3 may be generated. Note that 4 is a roll and 5 is a core metal. These lobes fall off into the piercer or during the subsequent rolling and polishing process, are scooped into and stamped on the inner surface of the subsequent tube, or are attached to rolls and guides, resulting in the inner and outer surfaces of the tube being scooped and stamped. It becomes a cause of pitting flaws. As a countermeasure to this problem, a method is known in which a center hole is formed at the rear end of the billet, as described in Japanese Patent Publication No. 45-31753. It is true that this method has a remarkable effect on preventing the occurrence of pit flaws, but according to the present inventor's numerous basic experiments and actual operational experience, the effect of preventing the occurrence of pit flaws is still not necessarily sufficient. However, it was found that there was room for improvement in the shape of the center hole. [Object of the invention] The present invention was developed in view of the above circumstances, and
The main purpose is to provide a method for manufacturing seamless metal pipes with a significantly low incidence of pitting defects. [Summary of the Invention] The method of the present invention that achieves this object is based on the Mannesmann pipe manufacturing method, in which a conical shape that satisfies the following conditions (a) to (c) is placed at the center of the end surface of the billet on the side that becomes the rear end when drilling. The center hole of the billet is formed in a hot state and then drilled. The bottom diameter d is 30 mm≦d≦plug diameter, and (c) the cone angle θ is 50°≦θ≦75°. [Specific Examples of the Invention] In the present invention, a center hole is formed by a press method in a hot state before drilling, for example, after leaving a heating furnace and before reaching a piercer. An example is shown in FIGS. 2 and 3. That is, in the hot line before drilling after being extracted from the heating furnace, while the heating billet 13 is restrained by a pair of upper and lower dies 11 and 12 forming the circular hole mold 10, a hydraulic cylinder is inserted into the rear end surface 13a. A center hole 15 is formed by pressing a punch 14 attached to the tip of a hole (not shown). Here, it is important that the center hole 15 has a shape as shown in FIG. First, center hole 1
5 is that it has a continuous conical shape from the rear end surface 13a. If the center hole 15' has a parallel part 15'a as described in the above-mentioned publication and as shown in FIG. Causes scratches (internal sagging scratches). Second, the bottom diameter d of the center hole is 30mm≦d
It is necessary to set the relationship between ≦plug diameter.
If d is less than 30 mm, pit flaws will occur, which is the same as when there is no center hole. Furthermore, if d exceeds the diameter of the plug, the rolling reaction force cannot be taken at the final stage of drilling, and a situation may occur in which the plug cannot be pulled out. Third, the cone angle θ should be 50°≦θ≦75°. Conventionally, a cold billet was lathed using a drill with a tip angle of 120° to finish it in the shape shown in Figure 6, or a center hole with a fairly large opening angle was made by scarfing. In contrast, in the present invention, the hole is made to be sharper than the conventional center hole. As shown in Examples below, when θ exceeds 75°, pitting flaws tend to occur on the outer surface. Furthermore, if θ is less than 50°, although the incidence of pitting defects on the outer surface is low, it is not preferable because it causes center curvature defects (inner surface scuffing defects). As mentioned earlier, conventionally it is customary to form a center hole on the rear end face of a billet by cold processing, but in the case of lathe processing, it is advantageous for machining to make the center hole into the shape according to the present invention. It is practically difficult and the processing capacity is insufficient compared to the pipe manufacturing capacity.On the other hand, when scarfing is used, in addition to the problems of eccentricity of the hole and uneven shape, there is also the problem of slag generated during scarfing. It adheres to the billet and has a negative effect on quality, so it must be removed, which increases processing costs. In any case, the conventional method has a poor yield. Therefore, in the present invention, the hot center hole is machined, and the equipment shown in FIG. 7 can be used for this purpose. 20 is a rotary heating furnace, and the heating billet 13 extracted from this is conveyed to a predetermined position by a group of conveying rollers 21, then moved to a first inlet skid table 22, and then transferred to a first outlet skid table. 23, a center hole is drilled by a top centering machine 24 at the tip of the billet 13 fixed by a chucking die 25. Thereafter, the billet 13 passes through the first exit skid table 23, the conveying roller group 26, and the second input skid table 27 in order, and then passes through the die 1 at a position between it and the second exit skid table 28.
1 and 12, the bottom centering machine 29 equipped with the punch 14 punches the aforementioned center hole in the rear end surface. After drilling, the billet is transferred to the second exit side skid table 28.
After that, it is provided to the first piercer 30 and pierced while being pushed by the pusher 31. Note that for centering, the rear end may be drilled first, and the tip may be drilled later. [Example] For a billet of 187 mmφ, a large number of pipes were manufactured using a plug with a diameter of 103 mm by changing the rear end center hole shape and processing method, and the outer pit flaw occurrence rate and outer pit flaw scrap metal rate were investigated. The results shown in Table 1 were obtained. All other processing conditions were the same.
〔発明の効果〕〔Effect of the invention〕
以上の通り、本発明によれば、内外ピツト疵お
よび中カブレ疵発生を確実に低減できる。
As described above, according to the present invention, it is possible to reliably reduce the occurrence of inner and outer pit flaws and middle curvature flaws.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は、センター穴のない場合の耳片発生状
態の説明図、第2図はセンター穴の加工例の正面
図、第3図はその側面図、第4図は本発明に係る
センター穴形状を示す一部断面正面図、第5図は
本発明によるビレツト使用時の穿孔末期状況の説
明図、第6図は従来のセンター穴形状の一例を示
す一部破断正面図、第7図は製管設備例の概略平
面図である。
13……ビレツト、13a……後端面、14…
…ポンチ、15……センター穴、θ……円錐角、
d……底面径。
Fig. 1 is an explanatory diagram of the state of ear piece generation when there is no center hole, Fig. 2 is a front view of an example of processing a center hole, Fig. 3 is a side view thereof, and Fig. 4 is a center hole according to the present invention. 5 is an explanatory diagram of the final stage of drilling when the billet according to the present invention is used; FIG. 6 is a partially cutaway front view showing an example of the conventional center hole shape; FIG. 7 is a partially cutaway front view showing the shape of the hole; FIG. 2 is a schematic plan view of an example of pipe manufacturing equipment. 13... billet, 13a... rear end surface, 14...
...Punch, 15...Center hole, θ...Cone angle,
d...Bottom diameter.