[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0478030B2 - - Google Patents

Info

Publication number
JPH0478030B2
JPH0478030B2 JP59123984A JP12398484A JPH0478030B2 JP H0478030 B2 JPH0478030 B2 JP H0478030B2 JP 59123984 A JP59123984 A JP 59123984A JP 12398484 A JP12398484 A JP 12398484A JP H0478030 B2 JPH0478030 B2 JP H0478030B2
Authority
JP
Japan
Prior art keywords
metal substrate
thickness
substrate material
cold
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59123984A
Other languages
Japanese (ja)
Other versions
JPS613474A (en
Inventor
Akio Hashimoto
Tsunekazu Saigo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP59123984A priority Critical patent/JPS613474A/en
Publication of JPS613474A publication Critical patent/JPS613474A/en
Publication of JPH0478030B2 publication Critical patent/JPH0478030B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、太陽電池用に使用される厚さ0.1
mm以下の薄膜よりなる太陽電池用金属基板材に関
する。
[Detailed Description of the Invention] Field of Application This invention is applicable to solar cells with a thickness of 0.1
This invention relates to a metal substrate material for solar cells made of a thin film of mm or less.

背景技術 太陽電池は、新しい規模のエネルギー源の一方
法として注目され、高効率・大容量化を目標に、
低エネルギー化、低コスト化による製造方法が
種々開発されている。
Background technology Solar cells are attracting attention as a method of generating energy on a new scale, and are being developed with the aim of achieving high efficiency and large capacity.
Various manufacturing methods have been developed that reduce energy consumption and cost.

当初、太陽電池用基板には、シリコン単結晶が
使用され、PN接合を形成後その裏面に裏面電極
を、表面に透明電極及び反射防止膜を被着した電
池構造のものが開発されたが、シリコン単結晶は
製造コストが非常に高価なため、特殊用途に限定
されていた。
Initially, a silicon single crystal was used as a solar cell substrate, and a battery structure was developed in which a PN junction was formed and a back electrode was attached to the back surface, and a transparent electrode and antireflection film were coated on the front surface. Single crystal silicon is extremely expensive to manufacture, so it has been limited to special uses.

太陽電池はその作動上、シリコン単結晶の活性
領域は、精々数μmであり、またシリコン単結晶
の電池製造時の拡散における温度が1000℃〜1500
℃と高温を必要とする。
Due to the operation of solar cells, the active region of silicon single crystal is at most several micrometers, and the temperature during the diffusion of silicon single crystal during battery manufacturing is 1000℃ to 1500℃.
℃ and high temperature is required.

これに対して、アモルフアスシリコンは300℃
以下温度で基板上に気相成長により形成させるこ
とができ、さらに、太陽電池の基本構成のP形膜
−i形膜−n形膜接合を容易に形成できることか
ら、シリコン単結晶の代替材として着目され、ア
モルフアスシリコン薄膜を使用した太陽電池がそ
の製造工程の簡素化とともに製造コストの低減化
により、新しい展開がなされている。
In contrast, amorphous silicon is heated to 300°C.
It can be formed by vapor phase growth on a substrate at a temperature below 100 mL, and furthermore, it can easily form a P-type film-I-type film-N type film junction, which is the basic structure of solar cells, so it can be used as a substitute for silicon single crystals. Solar cells using amorphous silicon thin films have been attracting attention, and new developments are being made due to the simplification of the manufacturing process and the reduction of manufacturing costs.

かかる太陽電池の基板としては、従来、ガラス
が多用されてきたが、ガラスは曲げ強度が低いた
め、曲げ加工を必要とする用途の太陽電池用基板
には不適であつた。
Conventionally, glass has been widely used as a substrate for such solar cells, but glass has low bending strength and is therefore unsuitable for use as a substrate for solar cells that requires bending.

そこで、曲げ強度が高く、各種曲げ加工がで
き、曲げ加工を必要とする用途の太陽電池として
用いられると共に、その製造工程中において、従
来のバツチ処理に対して、曲げ加工ができるため
に帯状のままで連続的に処理できるステンレス鋼
板、冷延鋼板等の金属基板は、上記の電池製造工
程の合理化・生産能率向上に多大の利点を有して
いる。
Therefore, it has high bending strength and can be bent in various ways, and is used as a solar cell for applications that require bending. Metal substrates such as stainless steel plates and cold-rolled steel plates that can be continuously processed as they are have great advantages in streamlining the battery manufacturing process and improving production efficiency.

この金属基板を使用した電池製造工程におい
て、該基板にアモルフアスシリコンを形成する方
法としては、気相成長による方法が採用されてい
る。
In the battery manufacturing process using this metal substrate, a vapor phase growth method is adopted as a method for forming amorphous silicon on the substrate.

一例として、グロー放電法により金属基板上に
アモルフアスシリコンを形成する方法を説明する
と、帯状金属基板が通過する減圧下の反応室に、
原料ガスのシランガスSiH4を導入し、反応室内
の電極間で高周波プラズマ放電し、高周波により
励起される高エネルギーの電子は上記原料ガスに
衝突し、該ガスの分解及び活性化されたガス間同
士の反応により、金属基板表面上にアモルフアス
シリコンが気相析出して成長する。
As an example, to explain the method of forming amorphous silicon on a metal substrate by glow discharge method, a strip-shaped metal substrate is placed in a reaction chamber under reduced pressure through which it passes.
Silane gas SiH 4 as a raw material gas is introduced, high-frequency plasma is discharged between electrodes in the reaction chamber, and high-energy electrons excited by the high frequency collide with the raw material gas, decomposing the gas and causing the activated gases to interact with each other. Due to this reaction, amorphous silicon is deposited in a vapor phase and grows on the surface of the metal substrate.

ところが、従来の金属基板表面には、機械的表
面疵や基板材内の介在物等による内質疵があり、
これらの疵によつて気相析出成長したアモルフア
スシリコンは、該基板表面上に均一に形成され
ず、金属基板と最外面の透明電極が短絡し、太陽
電池の致命的欠陥となる。
However, the surface of conventional metal substrates has internal defects such as mechanical surface defects and inclusions within the substrate material.
Due to these defects, the amorphous silicon grown by vapor phase deposition is not uniformly formed on the surface of the substrate, causing a short circuit between the metal substrate and the outermost transparent electrode, which becomes a fatal defect in the solar cell.

かかる金属基板表面の表面疵を除去するため、
表面研削あるいは表面研摩方法が実施されている
が、上記機械的除去方法では介在物等による内質
疵は除去できず、金属基板内の介在物の減少に関
しては製鋼法にて種々検討されており、大きさが
50μm以上の大型介在物は除去されている。しか
し、太陽電池用金属基板として致命的欠陥を生じ
ないように、基板内の介在物の全てを1.0μm以下
にすることは困難で、かつ多大のコスト高を招来
する問題があつた。
In order to remove surface flaws on the surface of the metal substrate,
Surface grinding or surface polishing methods have been implemented, but the mechanical removal methods described above cannot remove internal defects caused by inclusions, etc., and various studies have been conducted in steel manufacturing methods to reduce inclusions in metal substrates. , the size is
Large inclusions of 50 μm or more were removed. However, it is difficult to reduce all the inclusions in the substrate to 1.0 μm or less so as not to cause fatal defects as a metal substrate for a solar cell, and there is a problem that this results in a large increase in cost.

発明の目的 この発明は、従来の金属基板の問題点を解決
し、表面疵が皆無で安価な太陽電池用金属基板材
の提供を目的としている。
OBJECTS OF THE INVENTION The present invention aims to solve the problems of conventional metal substrates and to provide an inexpensive metal substrate material for solar cells that has no surface flaws.

発明の開示 この発明は、ステンレス鋼板または冷延鋼板の
片面または両面に、非金属介在物の大きさが1.0μ
m以下の内質良好なステンレス、Ni、Al、Agの
うち1種からなる厚さ200μm以下の圧着層を有
することを特徴とする太陽電池用金属基板材であ
る。
DISCLOSURE OF THE INVENTION This invention provides that non-metallic inclusions with a size of 1.0 μm are present on one or both sides of a stainless steel plate or a cold-rolled steel plate.
This is a metal substrate material for a solar cell characterized by having a pressure bonding layer with a thickness of 200 μm or less and made of one of stainless steel, Ni, Al, and Ag with a good internal quality of 200 μm or less.

この発明は、金属基板表面に上記の圧着層を設
けることにより、金属基板表面の機械的疵及び非
金属介在物等による内質疵の表面露出が防止で
き、太陽電池製造時、金属基板材表面に均一な薄
膜を形成せしめ、平滑平面を有し、太陽電池用金
属基板材に最適となる。
By providing the above-mentioned pressure bonding layer on the surface of the metal substrate, this invention can prevent mechanical defects on the surface of the metal substrate and internal defects caused by non-metallic inclusions from being exposed on the surface. It forms a uniform thin film with a smooth surface, making it ideal for metal substrate materials for solar cells.

この発明において、金属基板には、強度、耐食
性においてすぐれたステンレス鋼板が好ましい
が、表面および内質が良好なステンレス、Ni、
Al、Agの圧着層を有することにより、耐食性が
付与されるため、冷延鋼板を使用することが可能
となる。
In this invention, the metal substrate is preferably a stainless steel plate with excellent strength and corrosion resistance.
By having a pressure bonding layer of Al and Ag, corrosion resistance is imparted, so it becomes possible to use a cold-rolled steel plate.

また、金属基板に圧着する金属層は、使用目的
等に応じてステンレス、Ni、Al、Agのいずれか
の材質を選定し、基板材の片面あるいは両面に圧
着するが、両面圧着の場合は同種金属を圧着する
ほか、異種金属を用いるのもよい。
In addition, the metal layer to be crimped to the metal substrate is selected from stainless steel, Ni, Al, or Ag depending on the purpose of use, and is crimped to one or both sides of the substrate material, but in the case of double-sided crimping, the same material is selected. In addition to crimping metals, it is also good to use different metals.

この金属基板の厚みは、軽量化のため、0.5mm
以下が好ましい。
The thickness of this metal board is 0.5mm to reduce weight.
The following are preferred.

また、この発明における圧着層厚みは、金属基
板表面に圧着したのち、その表面を鏡面加工した
とき、基板表面疵が露出しない程度の厚みとする
必要があるが、圧着層の厚みの上限は、経済性を
考慮して200μmとする。
In addition, the thickness of the pressure bonding layer in this invention needs to be such that when the surface is mirror-finished after being pressure bonded to the surface of a metal substrate, flaws on the surface of the substrate are not exposed. However, the upper limit of the thickness of the pressure bonding layer is as follows. The thickness is set at 200 μm in consideration of economic efficiency.

この発明における圧着は、熱間加工あるいは、
冷間加工のいずれでもよい。
The crimping in this invention is hot processing or
Either cold working may be used.

実施例 第1図a図は、Ni圧着層を有しない金属基板
材表面の疵大きさと表面欠陥数との関係図、同b
図はNi圧着層を有する金属基板材表面の疵大き
さと表面欠陥数との関係図である。第2図a図、
b図は、SUS304,SUS430表面上にNi圧着層を
有する金属基板材の板厚方向断面における表面欠
陥数と疵大きさとの関係を示す関係図である。
Example Figure 1a is a relationship diagram between the size of flaws and the number of surface defects on the surface of a metal substrate material that does not have a Ni pressure bonding layer, and Figure 1b is
The figure is a diagram showing the relationship between the size of flaws on the surface of a metal substrate material having a Ni pressure bonding layer and the number of surface defects. Figure 2 a,
Figure b is a relationship diagram showing the relationship between the number of surface defects and the flaw size in a cross section in the plate thickness direction of a metal substrate material having a Ni pressure bonding layer on the surface of SUS304 and SUS430.

実施例 1 金属基板として、板厚2mm×板幅200mm寸法か
らなる、市販のSUS304,SUS430の焼鈍した冷
延コイルを用いた。
Example 1 As a metal substrate, a commercially available cold-rolled annealed SUS304 or SUS430 coil having dimensions of 2 mm in thickness and 200 mm in width was used.

圧着層の金属として、Ni板中の非金属介在物
の大きさが1.0μm以下となるように、真空高周波
溶解炉を用いて、炭素脱酸にて十分精錬した後、
真空中で造塊された250mm×200mm×高さ500mm寸
法の角柱状Ni鋳塊を熱間鍛造し、熱間圧延を経
て手入した後、冷間圧延により板厚0.22mm×板幅
200mmの冷延コイルに仕上げ、連続焼鈍炉で、水
素中、1000℃の条件で焼鈍したNi板を用いた。
After thoroughly refining the Ni plate by carbon deoxidation using a vacuum high-frequency melting furnace so that the size of non-metallic inclusions in the Ni plate is 1.0 μm or less as the metal for the pressure bonding layer,
A prismatic Ni ingot with dimensions of 250 mm x 200 mm x height 500 mm is forged in a vacuum, hot-forged, hot-rolled, and then cold-rolled into a sheet with a thickness of 0.22 mm and a width of 0.22 mm.
A Ni plate finished into a 200 mm cold-rolled coil and annealed in hydrogen at 1000°C in a continuous annealing furnace was used.

上記金属基板の片面に、上記Ni板を冷間圧延
機を用いて冷間圧接したのち、再び水素雰囲気
で、800℃、1時間の焼鈍しを行ない、さらに、
冷間圧延して板厚0.20mmのこの発明による太陽電
池用基板材に仕上げた。得られた金属基板材の圧
着層厚みは20μmであつた。
After cold welding the Ni plate to one side of the metal substrate using a cold rolling machine, annealing was performed again at 800°C for 1 hour in a hydrogen atmosphere, and further,
A solar cell substrate material according to the present invention having a thickness of 0.20 mm was obtained by cold rolling. The thickness of the pressure bonding layer of the obtained metal substrate material was 20 μm.

比較基板として、板厚2mm×板幅200mm寸法か
らなる、市販のSUS304,SUS430の焼鈍した冷
延コイルをそのまま板厚0.20mmまで冷間圧延した
ものを用いた。
As a comparison board, a commercially available annealed cold-rolled coil of SUS304 or SUS430 having dimensions of 2 mm in thickness and 200 mm in width was cold-rolled to a thickness of 0.20 mm.

上記のこの発明による基板材コイルと比較材コ
イルについて、長手方向の10箇所より、長さ10mm
×幅200mmの試料を各2枚採取した。
Regarding the above-mentioned substrate material coil according to this invention and comparative material coil, a length of 10 mm was measured from 10 points in the longitudinal direction.
Two samples each having a width of 200 mm were taken.

上記10箇所より2枚ずつ採取したうちの1枚
は、光学顕微鏡(倍率600倍)で長さ5mm×幅200
mmの試料について表面疵の大きさ及びその数を測
定した。その測定結果は第1図に示す。
One of the two samples taken from each of the above 10 locations was 5mm long x 200mm wide using an optical microscope (600x magnification).
The size and number of surface flaws were measured on a mm sample. The measurement results are shown in FIG.

また、採取試料のもう一方は、板幅方向に3等
分し、フエノール樹脂中に埋め込み、Al2O3粉末
にてバフ研摩した後、その断面の非金属介在物の
大きさ、数を測定し、板厚方向での欠陥の分布を
調べた。結果は第2図に示す。
In addition, the other sample was divided into three equal parts in the width direction of the plate, embedded in phenolic resin, and buffed with Al 2 O 3 powder, after which the size and number of nonmetallic inclusions in the cross section were measured. Then, the distribution of defects in the thickness direction was investigated. The results are shown in Figure 2.

第1図及び第2図より明らかな如く、Ni圧着
層の被着前の金属基板は、表面に多数の欠陥を有
しているが、この発明による金属基板材は、太陽
電池において特に問題となる1.0μmより大きい表
面疵の露出が完全に防止されていることが分る。
As is clear from FIGS. 1 and 2, the metal substrate before the Ni compression layer is coated has many defects on its surface, but the metal substrate material according to the present invention is particularly problematic in solar cells. It can be seen that exposure of surface flaws larger than 1.0 μm is completely prevented.

実施例 2 金属基板として、板厚2mm×板幅200mm寸法か
らなる、市販のSUS304、SUS430の焼鈍した冷
延コイルを用いた。
Example 2 As a metal substrate, a commercially available cold-rolled annealed SUS304 or SUS430 coil having dimensions of 2 mm in thickness and 200 mm in width was used.

圧着層の金属として、非金属介在物の大きさが
1.0μm以下となるように、真空高周波溶解炉を用
いて、溶解した母材をさらに消耗電極式真空アー
ク再溶解炉で再溶解し、造塊したSUS430鋳塊を
熱間鍛造し、熱間圧延を経て手入した後、冷間圧
延により板厚0.22mm×板幅200mmの冷延コイルに
仕上げ、連続焼鈍炉で、水素中、1000℃の条件で
焼鈍したSUS430板を用いた。
As the metal of the compression layer, the size of non-metallic inclusions
Using a vacuum high-frequency melting furnace, the melted base metal is further remelted in a consumable electrode type vacuum arc remelting furnace so that the ingot is 1.0μm or less, and the resulting SUS430 ingot is hot forged and hot rolled. After treatment, the coil was cold-rolled to a thickness of 0.22 mm x width of 200 mm, and an SUS430 plate annealed in hydrogen at 1000°C in a continuous annealing furnace was used.

上記金属基板を片面に、上記SUS430板を冷間
圧延機を用いて冷間圧延したのち、再び水素雰囲
気で、900℃、1時間の焼鈍しを行ない、さらに、
冷間圧延して板厚0.10mmのこの発明による太陽電
池用基板材に仕上げた。得られた金属基板板材の
圧着層厚みは10μmであつた。
After cold rolling the SUS430 plate with the metal substrate on one side using a cold rolling machine, annealing was performed again at 900°C for 1 hour in a hydrogen atmosphere, and further,
A solar cell substrate material according to the present invention having a thickness of 0.10 mm was obtained by cold rolling. The thickness of the pressure bonding layer of the obtained metal substrate plate material was 10 μm.

上記のこの発明による基板材コイルについて長
手方向の10箇所より、長さ10mm×幅200mmの試料
を各2枚採取した。
Two samples each having a length of 10 mm and a width of 200 mm were taken from 10 locations in the longitudinal direction of the above-mentioned substrate material coil according to the present invention.

上記10箇所より2枚ずつ採取したうちの1枚
は、光学顕微鏡(倍率600倍)で長さ5mm×幅200
mmの試料について表面疵の大きさ及びその数を測
定し、採取試料のもう一方は、板幅方向に3等分
し、フエノール樹脂中に埋め込み、Al2O3粉末に
てバフ研摩した後、その断面の非金属介在物の大
きさ、数を測定し、板厚方向での欠陥の分布を調
べた。
One of the two samples taken from each of the above 10 locations was 5mm long x 200mm wide using an optical microscope (600x magnification).
The size and number of surface flaws were measured for the mm sample, and the other sample was divided into three equal parts in the board width direction, embedded in phenol resin, and buffed with Al 2 O 3 powder. The size and number of nonmetallic inclusions in the cross section were measured, and the distribution of defects in the thickness direction was investigated.

実施例1と同様に結果が得られ、この発明によ
る金属基板材は、太陽電池において特に問題とな
る1.0μm以上の表面疵の露出が完全に防止されて
いる。
Similar results were obtained as in Example 1, and the metal substrate material according to the present invention completely prevented exposure of surface flaws of 1.0 μm or more, which are a particular problem in solar cells.

実施例 3 金属基板として、市販のC0.1%の冷延鋼板で、
板厚1.80mm×板幅200mmの焼鈍された冷延コイル
を用いた。
Example 3 A commercially available cold-rolled steel plate with 0.1% C was used as the metal substrate.
An annealed cold-rolled coil with a plate thickness of 1.80 mm and a plate width of 200 mm was used.

圧着層の金属として、非金属介在物の大きさが
1.0μm以下となるように、真空高周波溶解炉を用
いて、溶解した母材をさらに消耗電極式真空アー
ク再溶解炉で再溶解し、造塊したSUS430鋳塊を
熱間鍛造し、熱間圧延を経て手入した後、冷間圧
延により板厚0.22mm×板幅200mmの冷延コイルに
仕上げ、連続焼鈍炉で、水素中、1000℃の条件で
焼鈍したSUS430板を用いた。
As the metal in the compression layer, the size of non-metallic inclusions
Using a vacuum high-frequency melting furnace, the melted base metal is further remelted in a consumable electrode type vacuum arc remelting furnace so that the ingot is 1.0μm or less, and the resulting SUS430 ingot is hot forged and hot rolled. After treatment, the coil was cold-rolled to a thickness of 0.22 mm x width of 200 mm, and an SUS430 plate annealed in hydrogen at 1000°C in a continuous annealing furnace was used.

上記金属基板の両面に、上記SUS430板を冷間
圧延機を用いて冷間圧接したのち、再び水素雰囲
気で、900℃、1時間の焼鈍を行ない、さらに、
冷間圧延して板厚0.10mmのこの発明による太陽電
池用基板材に仕上げた。得られた金属基板材の圧
着層厚みは10μmであつた。
After cold welding the SUS430 plate to both sides of the metal substrate using a cold rolling machine, annealing was performed again at 900°C for 1 hour in a hydrogen atmosphere, and further,
A solar cell substrate material according to the present invention having a thickness of 0.10 mm was obtained by cold rolling. The thickness of the pressure bonding layer of the obtained metal substrate material was 10 μm.

上記この発明による基板材コイルについて長手
方向の10箇所より、長さ10mm×幅200mmの試料を
各2枚採取した。
Two samples each having a length of 10 mm and a width of 200 mm were taken from 10 locations in the longitudinal direction of the substrate material coil according to the present invention.

上記10箇所より2枚ずつ採取したうちの1枚
は、光学顕微鏡(倍率600倍)で長さ5mm×幅200
mmの試料について表面疵の大きさ及びその数を測
定し、採取試料のもう一方は、板幅方向に3等分
し、フエノール樹脂中に埋め込み、Al2O3粉末に
てバフ研摩した後、その断面の非金属介在物の大
きさ、数を測定し、板厚方向での欠陥の分布を調
べた。
One of the two samples taken from each of the above 10 locations was 5mm long x 200mm wide using an optical microscope (600x magnification).
The size and number of surface flaws were measured for the mm sample, and the other sample was divided into three equal parts in the board width direction, embedded in phenol resin, and buffed with Al 2 O 3 powder. The size and number of nonmetallic inclusions in the cross section were measured, and the distribution of defects in the thickness direction was investigated.

実施例1と同様の結果が得られ、この発明によ
る金属基板材は、太陽電池において特に問題とな
る1.0μmより大きい表面疵の露出が完全に防止さ
れている。
The same results as in Example 1 were obtained, and the metal substrate material according to the present invention completely prevented exposure of surface flaws larger than 1.0 μm, which are a particular problem in solar cells.

実施例 4 金属基板として、板厚2mm×板幅200mm寸法か
らなる、市販のSUS304、SUS430の焼鈍した冷
延コイルを用いた。
Example 4 As a metal substrate, a commercially available cold rolled coil of SUS304 or SUS430 having dimensions of 2 mm in thickness and 200 mm in width was used.

圧着層の金属として、非金属介在物の大きさが
1.0μm以下となるように、真空高周波溶解炉を用
いて、真空下で溶解し、非金属介在物除去のため
セラミツクフイルターを通して鋳込み、造塊され
たAl鋳塊を、熱間圧延を経て手入した後、冷間
圧延により板厚0.04mm×板幅200mmの冷延コイル
に仕上げたAl板を用いた。
As the metal in the compression layer, the size of non-metallic inclusions
The aluminum ingot is melted in a vacuum using a vacuum high-frequency melting furnace to a thickness of 1.0 μm or less, cast through a ceramic filter to remove nonmetallic inclusions, and the resulting aluminum ingot is hot-rolled and treated. After that, an Al plate that had been cold-rolled into a cold-rolled coil with a thickness of 0.04 mm and a width of 200 mm was used.

上記金属基板の片面に、上記Al板を冷間圧延
機を用いて冷間圧接し、板厚0.1mmのこの発明に
よる太陽電池用基板材に仕上げた。得られた金属
基板材の圧着層厚みは9μmであつた。
The Al plate was cold-welded to one side of the metal substrate using a cold rolling machine to obtain a substrate material for a solar cell according to the present invention having a thickness of 0.1 mm. The thickness of the pressure bonding layer of the obtained metal substrate material was 9 μm.

上記のこの発明による基板材コイルについて長
手方向の10箇所より、長さ10mm×幅200mmの試料
を各2枚採取した。
Two samples each having a length of 10 mm and a width of 200 mm were taken from 10 locations in the longitudinal direction of the above-mentioned substrate material coil according to the present invention.

上記10箇所より2枚ずつ採取したうちの1枚
は、光学顕微鏡(倍率600倍)で長さ5mm×幅200
mmの試料について表面疵の大きさ及びその数を測
定し、採取試料のもう一方は、板幅方向に3等分
し、フエノール樹脂中に埋め込み、Al2O3粉末に
てバフ研摩した後、その断面の非金属介在物の大
きさ・数を測定し、板厚方向での欠陥の分布を調
べた。
One of the two samples taken from each of the above 10 locations was 5mm long x 200mm wide using an optical microscope (600x magnification).
The size and number of surface flaws were measured for the mm sample, and the other sample was divided into three equal parts in the board width direction, embedded in phenol resin, and buffed with Al 2 O 3 powder. The size and number of nonmetallic inclusions in the cross section were measured, and the distribution of defects in the thickness direction was investigated.

実施例1と同様の結果が得られ、この発明によ
る金属基板材は、太陽電池において特に問題とな
る1.0μmより大きい表面疵の露出が完全に防止さ
れている。
The same results as in Example 1 were obtained, and the metal substrate material according to the present invention completely prevented exposure of surface flaws larger than 1.0 μm, which are a particular problem in solar cells.

実施例 5 金属基板として、市販のSUS304の塊状のもの
を切削し、板厚95mm×幅200mm×長さ500mmに仕上
げたSUS304板を用いた。
Example 5 As a metal substrate, a SUS304 plate was used, which was obtained by cutting a block of commercially available SUS304 and finishing it with a thickness of 95 mm, a width of 200 mm, and a length of 500 mm.

圧着層の金属として、非金属介在物の大きさが
1.0μm以下となるように、真空高周波溶解炉を用
いて、溶解した母材をさらにエレクトロスラグ再
溶解炉で再溶解し、造塊したSUS304鋳塊を熱間
鍛造し、熱間圧延を経て手入した後、冷間圧延に
より板厚5mm×幅200mm×長さ500mmの板に仕上げ
たSUS304板を用いた。
As the metal in the compression layer, the size of non-metallic inclusions
Using a vacuum high-frequency melting furnace, the molten base metal is further remelted in an electroslag remelting furnace so that the ingot is 1.0μm or less, and the resulting SUS304 ingot is hot forged, hot rolled, and then hand-rolled. After that, a SUS304 plate finished by cold rolling into a plate with a thickness of 5 mm x width of 200 mm x length of 500 mm was used.

上記基板用SUS304板と内質のすぐれた圧着層
用SUS304板を密着させ、密着面が酸化しないよ
うに、端面部をアルゴンガス雰囲気で、電極ワイ
ヤにSUS304を用いたMIG溶接により完全に溶着
した。
The above SUS304 plate for the substrate and the SUS304 plate for the pressure bonding layer with excellent internal quality were brought into close contact with each other, and the end faces were completely welded by MIG welding using SUS304 as the electrode wire in an argon gas atmosphere to prevent the adhesion surface from oxidizing. .

その後、一体化した上記の板を熱間圧延して表
面を手入し、冷間圧延機により、板厚0.50mmまで
冷間圧延してこの発明による太陽電池用基板材に
仕上げた。得られた基板材の圧着厚みは25μmで
あつた。
Thereafter, the above-mentioned integrated plate was hot-rolled to condition the surface, and then cold-rolled to a thickness of 0.50 mm using a cold rolling mill to produce a solar cell substrate material according to the present invention. The crimped thickness of the obtained substrate material was 25 μm.

上記のこの発明による基板材コイルについて長
手方向の10箇所より、長さ10mm×幅200mmの試料
を各2枚採取した。
Two samples each having a length of 10 mm and a width of 200 mm were taken from 10 locations in the longitudinal direction of the above-mentioned substrate material coil according to the present invention.

上記10箇所より2枚ずつ採取したうちの1枚
は、光学顕微鏡(倍率600倍)で長さ5mm×幅200
mmの試料について表面疵の大きさ及びその数を測
定し、採取試料のもう一方は、板幅方向に3等分
し、フエノール樹脂中に埋め込み、Al2O3粉末に
てバフ研摩した後、その断面の非金属介在物の大
きさ、数を測定し、板厚方向での欠陥の分布を調
べた。
One of the two samples taken from each of the above 10 locations was 5mm long x 200mm wide using an optical microscope (600x magnification).
The size and number of surface flaws were measured for the mm sample, and the other sample was divided into three equal parts in the board width direction, embedded in phenol resin, and buffed with Al 2 O 3 powder. The size and number of nonmetallic inclusions in the cross section were measured, and the distribution of defects in the thickness direction was investigated.

実施例1と同様の結果が得られ、この発明によ
る金属基板材は、太陽電池において特に問題とな
る1.0μmより大きい表面疵の露出が完全に防止さ
れている。
The same results as in Example 1 were obtained, and the metal substrate material according to the present invention completely prevented exposure of surface flaws larger than 1.0 μm, which are a particular problem in solar cells.

以上の実施例から明らかなように、この発明に
よる基板材は、表面欠陥がなく、安価に平滑平面
が得られるもので、アモルフアスシリコン太陽電
池用に最適の基板材を提供できる。
As is clear from the above examples, the substrate material according to the present invention has no surface defects and can provide a smooth surface at low cost, and can provide an optimal substrate material for amorphous silicon solar cells.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a図は、Ni圧着層を有しない金属基板
材表面の疵大きさと表面欠陥数との関係図、同b
図はNi圧着層を有する金属基板材表面の疵大き
さと表面欠陥数との関係図である。 第2図a図、b図は、SUS304、SUS430表面
上にNi圧着層を有する金属基板材の板厚方向断
面における表面欠陥数と疵大きさとの関係を示す
関係図である。
Figure 1a is a diagram of the relationship between the flaw size and the number of surface defects on the surface of a metal substrate material that does not have a Ni pressure bonding layer, and Figure 1b is
The figure is a diagram showing the relationship between the size of flaws on the surface of a metal substrate material having a Ni pressure bonding layer and the number of surface defects. FIGS. 2a and 2b are relationship diagrams showing the relationship between the number of surface defects and the flaw size in a cross section in the thickness direction of a metal substrate material having a Ni pressure bonding layer on the surface of SUS304 or SUS430.

Claims (1)

【特許請求の範囲】[Claims] 1 ステンレス鋼板または冷延鋼板の片面または
両面に、非金属介在物の大きさが1.0μm以下の内
質良好なステンレス、Ni、Al、Agのうち1種か
らなる厚さ200μm以下の圧着層を有することを
特徴とする太陽電池用金属基板材。
1. On one or both sides of a stainless steel plate or cold-rolled steel plate, a pressure bonding layer with a thickness of 200 μm or less made of stainless steel with good internal quality, Ni, Al, or Ag with a nonmetallic inclusion size of 1.0 μm or less is applied. A metal substrate material for solar cells characterized by having the following characteristics:
JP59123984A 1984-06-15 1984-06-15 Metallic substrate for thin film battery Granted JPS613474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123984A JPS613474A (en) 1984-06-15 1984-06-15 Metallic substrate for thin film battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123984A JPS613474A (en) 1984-06-15 1984-06-15 Metallic substrate for thin film battery

Publications (2)

Publication Number Publication Date
JPS613474A JPS613474A (en) 1986-01-09
JPH0478030B2 true JPH0478030B2 (en) 1992-12-10

Family

ID=14874162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123984A Granted JPS613474A (en) 1984-06-15 1984-06-15 Metallic substrate for thin film battery

Country Status (1)

Country Link
JP (1) JPS613474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095954A1 (en) * 2011-01-12 2012-07-19 株式会社Neomaxマテリアル Solar-cell metal substrate and method of manufacturing solar-cell metal substrate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4245394B2 (en) 2003-03-27 2009-03-25 新日鉄マテリアルズ株式会社 Stainless foil coated with inorganic polymer film
JP5589777B2 (en) * 2010-11-05 2014-09-17 Jfeスチール株式会社 Chrome-containing ferritic steel sheet for solar cell substrates
JP5625765B2 (en) * 2010-11-05 2014-11-19 Jfeスチール株式会社 Chrome-containing ferritic steel sheet for solar cell substrates
JP5589776B2 (en) * 2010-11-05 2014-09-17 Jfeスチール株式会社 Chrome-containing ferritic steel sheet for solar cell substrates

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095954A1 (en) * 2011-01-12 2012-07-19 株式会社Neomaxマテリアル Solar-cell metal substrate and method of manufacturing solar-cell metal substrate
CN103299433A (en) * 2011-01-12 2013-09-11 株式会社新王材料 Solar-cell metal substrate and method of manufacturing solar-cell metal substrate
JPWO2012095954A1 (en) * 2011-01-12 2014-06-09 株式会社Neomaxマテリアル Metal substrate for solar cell and method for producing metal substrate for solar cell

Also Published As

Publication number Publication date
JPS613474A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
KR100488922B1 (en) Stainless steel separator for fuel cells, method for making the same, and solid polymer fuel cell including the same
JP6057034B1 (en) Separator for polymer electrolyte fuel cell and method for producing the same
US20110130294A1 (en) Method of manufacturing superconducting radio-frequency acceleration cavity
WO2021046927A1 (en) Nickel-rhenium alloy rotary tubular target material containing trace rare earth elements and preparation method therefor
KR19990029673A (en) Tantalum sputtering target, manufacturing method and assembly thereof
JP4884561B1 (en) Indium target and manufacturing method thereof
FR2756572A1 (en) ALUMINUM ALLOYS WITH HIGH RECRYSTALLIZATION TEMPERATURE USED IN CATHODIC SPUTTER TARGETS
JP2004273370A (en) Titanium system material for fuel cell separator, and manufacturing method therefor
JP2005523584A5 (en)
WO2023036206A9 (en) Preparation method for titanium metal bipolar plate substrate of hydrogen fuel cell
JPH0478030B2 (en)
JPH0660386B2 (en) Metal semi-finished product and manufacturing method thereof
JP6344539B1 (en) Titanium material, cell component, cell, and polymer electrolyte fuel cell
US3895671A (en) Method of manufacturing a thin sheet of beryllium or an alloy thereof
JP6620468B2 (en) Titanium material and cell member for polymer electrolyte fuel cell containing the same
JP4874676B2 (en) Structure and manufacturing method thereof
CN114934261A (en) Iron target, iron-nickel alloy target, and method for producing same
JP2017061731A (en) Titanium made substrate, titanium material and cell member for solid polymer type fuel cell
CA2469805C (en) Metal separator for fuel cell and its production method
CN113522975A (en) Production process of surface corrosion-resistant nickel-based composite steel plate
JP2003171760A (en) Tungsten sputtering target
JP7281929B2 (en) Stainless steel sheet and method for manufacturing stainless steel sheet
JPH10158733A (en) Steel plate excellent in laser beam machinability and its production
JPH1161392A (en) Production of sputtering target for forming ru thin film
CN118591653A (en) Metal sputtering target and method for producing same, and metal material and method for producing same