[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0478585B2 - - Google Patents

Info

Publication number
JPH0478585B2
JPH0478585B2 JP59277985A JP27798584A JPH0478585B2 JP H0478585 B2 JPH0478585 B2 JP H0478585B2 JP 59277985 A JP59277985 A JP 59277985A JP 27798584 A JP27798584 A JP 27798584A JP H0478585 B2 JPH0478585 B2 JP H0478585B2
Authority
JP
Japan
Prior art keywords
silica powder
particle size
ultrafine silica
pot life
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59277985A
Other languages
Japanese (ja)
Other versions
JPS61158872A (en
Inventor
Nobuyuki Wada
Kunio Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Original Assignee
Harima Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Ceramic Co Ltd filed Critical Harima Ceramic Co Ltd
Priority to JP27798584A priority Critical patent/JPS61158872A/en
Publication of JPS61158872A publication Critical patent/JPS61158872A/en
Publication of JPH0478585B2 publication Critical patent/JPH0478585B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は特に出銑樋、取鍋、タンデイツシユ、
均熱炉、加熱炉、混銑車及び脱ガス装置浸漬管等
のライニングに用いられるキヤスタブル耐火物に
関する。 (従来の技術) 一般に、キヤスタブル耐火物はバインダーとし
て多量のアルミナセメントが添加されているた
め、使用中の高温時にセメント中のCaO成分が液
相を生成し、キヤスタブル耐火物の強度及び耐火
性を低下させている。このためアルミナセメント
量を減らし、その分耐火性超微粉を添加して高強
度をもたらせることは知られており、殊にシリカ
超微粉が多用されている。 しかしこの場合、施工時において加水混練後の
硬化が速く、鋳込成形するまでの可使時間が十分
に得られないという欠点がある。又冬期の低温時
には、施工体の硬化が進まないことが多かつた。 (発明の解決しようとする問題点) そこで各種の分散剤、減水剤、硬化遅延剤ある
いは硬化促進剤等の添加もしくは有機溶剤等によ
るセメント成分の処理が行われているが、可使時
間及び硬化時間の調整についていまだに充分な効
果が得られていない。 本発明者等は、前記従来材質の欠点を解決すべ
く鋭意研究を重ねた結果、バインダーとしてのア
ルミナセメント及びあるいはマグネシアの割合
を、低減させ、シリカ超微粉を添加したキヤスタ
ブル耐火物において、バインダーの粒度並びに添
加量、及びシリカ超微粉の粒度、添加量並びに特
にPHを限定することによつて得たキヤスタブル耐
火物は、加水混練して鋳込み成形する際、十分な
可使時間が得られまた冬期の低温時でも所望する
時間内での硬化が保証され、その施工体は低気
孔、高強度の施工体が得られることを見出し、本
発明を完成させたものである。 (問題点を解決するための手段) 本発明は100〜1μのアルミナセメント及び/又
はマグネシア1〜8重量%と、粒子径5〜0.01μ
でPHが3.5〜8.5に調整されたシリカ超微粉1〜10
重量%と、残部粒度調整された耐火性粉末と解膠
剤を外掛で0.01〜0.3重量%加えてなるキヤスタ
ブル耐火物である。 以下に本発明を詳述する。 バインダーに用いられるアルミナセメント又は
マグネシアの粒径は100〜1μのものが対象であ
り、1μ未満では熟成の際に水和が過度となつて、
キヤスタブル耐火物の可使時間が短くなる。また
100μを超えると表面積の総和が少くなつてバイ
ンダーとしての効果が十分得られない。 前記の添加量は1〜8重量%が好ましく8重量
%を超えると施工に必要な水分の量が相対的に不
足するため流動性が悪化し、さらに凝集作用が早
まり好ましくない。また、高温下において液相生
成量が増大してキヤスタブル耐火物の耐火性を低
下させる。1重量%未満では施工体として好まし
い強度が得られないからである。 本発明で使用するシリカ超微粉は粒径0.01〜5μ
のものであり、非晶質で金属シリコン、シリコン
合金、ジルコニア製造の際に副生し、一般にシリ
カフラワーとして知られる捕集ダストである。 このシリカ超微粉はキヤスタブル耐火物に施工
時の流動性を付与するとともに、バインダーとし
てのアルミナセメント又は、マグネシアから溶出
するCa++,Mg++のイオンによるフアンデルワー
ルス結合で強固な結合を発現し、施工体の強度、
緻密性を向上させる。粒子径0.01μ未満ではアル
ミナセメント又はマグネシアの水和層に凝集固化
し、流動性、強度等を向上させる作用が低下す
る。又、5μを超えると粒子径が大きくなつて超
微粉としての効果を損う。 シリカ超微粉の割合は、1〜10重量%であり、
1重量%未満では密充填を得るための必要量が不
足し、流動性も低下する。逆に10重量%を超える
と過多となり、充填性が低下する。 以上の粒度と割合で用いるシリカ超微粉のPHは
3.5〜8.5好ましくは4.0〜6.5に調整する必要があ
る。 本発明者等は、可使時間及び硬化時間につい
て、種々検討を加えたところ、従来のようにアル
ミナセメントあるいはマグネシアから溶出する
Ca++,Mg++を分散剤と反応させ、シリカ超微粉
のこれら陽イオンによる凝集も制御しようとする
方法ではなく、それら陽イオンの溶出自体を制御
することが有効であることを見出した。 シリカ超微粉と共存するアルミナセメントある
いはマグネシアはシリカ超微粉のPHの違いによつ
てキヤスタブル耐火物として製造したものでは溶
出するCa++,Mg++の溶出速度が大きく違うこと
が明らかとなつた。 すなわち本発明で特に限定使用するPH3.5〜8.5
のシリカ超微粉では施工に可能な可使時間、施工
作業に支障のない硬化時間を発揮する。PH3.5以
下のものを用いた場合には、加水混練後アルミナ
セメント又はマグネシアからCa++あるいはMg++
はあまり溶出しなくなり、特に冬期の気温の低い
時、陽イオンの溶出が不活発の場合施工に必要な
可使時間は充分あるものの施工体は未硬化となる
ことが多かつた。 又PHが8.5以上のものを使用した組成物では加
水混練後アルミナセメントあるいはアグネシアか
らCa++あるいはMg++は急速に溶出し、シリカ超
微粉は急速に凝集し、施工に要する可使時間が確
保できなくなる。 以上のように限定使用されるPHが3.5〜8.5好ま
しくは4.0〜6.0に調整されることにより、冬期、
夏期を問わず安定な可使時間と硬化時間が初めて
確保できたのである。 以上の機構は、充分解明されているとは云い難
いが現在のところでは、これら組成物は製造ある
いは製造後の貯蔵時に組成物中に微量に存在する
水分によつてアルミナセメントあるいはマグネシ
ア表面が水和し、その水和膜にシリカ超微粉が固
定される加水混練後のCa++あるいはMg++の溶出
が制御される。シリカ超微粉のPHが異なることに
よつて固定される度合が異なりCa++,Mg++の陽
イオンの溶出に差が生じるものと思われる。 シリカ超微粉のPH3.5〜8.5の調整は2種以上の
シリカ超微粉の混合、1種あるいは2種以上のシ
リカ超微粉の表面処理、例えば酸、アルカリ溶液
等による事前混合処理を行う。 耐火性粉末は塩基性、中性、酸性から選ばれる
1種又は2種以上を使用する。塩基性としてはマ
グネシア質、ドロマイト質、カルシア質、スピネ
ル質、中性としてはアルミナ質、クロム質、ジル
コニア質、ジルコン質、酸性としてはシリカ質、
珪石質、蝋石質、粘土質等である。さらに炭素
質、炭化物でもよい。 これらは密充填が得られるように従来のキヤス
タブル耐火物と同様に粗粒、中粒、微粒に粒度調
整する。 又、アルミナ、酸化クロム、ジルコン、ジルコ
ニアの1種あるいは2種以上の5μ以下の超微粉
を加えたものも使用可能である。解膠剤は、耐火
性超微粉の分散性を図り、キヤスタブル耐火物の
流動性を向上させる。その種類は特に限定するも
のではなく、例えばトリポリリン酸ソーダ、ヘキ
サメタリン酸ソーダ、ウルトラポリリン酸ソー
ダ、酸性ヘキサメタリン酸ソーダ、リン酸アルミ
ニウム、ホウ酸ソーダ、炭酸ソーダ等の無機塩、
クエン酸ソーダ、酒石酸ソーダ、ポリアクリル酸
ソーダ、スルホン酸ソーダ等の有機塩から選ばれ
る1種又は2種以上から、好ましくはシリカ超微
粉のPHに合せて、使用する。 割合は、前記配合物に対して外掛で0.01〜
0.3wt%とする。0.01wt%未満では耐火性超微粉
の分散性が乏しい。0.3wt%を超えると解膠剤増
粘性が発現し、加水量を増加しなければ充分な流
動性が得られなくなる。 (実施例) 以下、実施例について記述する。 本発明例および比較例はいずれも第1表に示す
割合と雰囲気温度で混練し、その可使時間、硬化
時間および品質、強度を下記の方法により測定し
た。 可使時間は施工時において加水混練後硬化に
より施工不能になる時間を測定、 硬化時間については、施工時において加水混
練後硬化により脱枠可能になる時間を測定、 見掛気孔率は施工体を各温度で熱処理後JIS
−R2205にもとづいて測定、 圧縮強さについては、施工体を各温度で熱処
理後JIS−R2206で測定した。 その結果は第1表から明らかなように、本発明
例では可使時間の40〜120分、硬化時間が1.5〜
4.5時間と実施工に必要な所要時間が得られた。
施工体の品質は低気孔率高強度と品質の高いもの
が得られた。これに対し比較例No.1およびNo.2に
示されるようにシリカ超微粉のPHが本発明の範囲
を逸脱するものでは、硬化するのに32時間かかる
ものや、可使時間が15分と短くなり、共に施工に
支障をきたす。また比較例No.3〜No.6は、バイン
ダーであるアルミナセメントの量あるいはシリカ
超微粉の添加量が本発明の範囲を逸脱するもので
あつて、低強度あるいは1400℃での熱処理後の圧
縮強さが110℃の時に比べ大きく増大して高温で
の液相生成量が大であり、耐火物としての品質が
劣下した。 以上のように、本発明のキヤスタブル耐火物は
従来のキヤスタブルに比べ可使時間、硬化時間が
適度で施工性にすぐれ、しかも低気孔率、高強度
の良好な品質の施工体が得られる。
(Industrial Application Field) The present invention is particularly applicable to tap runners, ladles, tundishes,
The present invention relates to castable refractories used for lining soaking furnaces, heating furnaces, pig iron mixers, degasser immersion pipes, etc. (Prior art) Generally, castable refractories have a large amount of alumina cement added as a binder, so the CaO component in the cement forms a liquid phase at high temperatures during use, reducing the strength and fire resistance of castable refractories. It is decreasing. For this reason, it is known that high strength can be achieved by reducing the amount of alumina cement and adding refractory ultrafine powder accordingly, and ultrafine silica powder is particularly frequently used. However, in this case, there is a drawback that during construction, the hardening after kneading with water is rapid, and a sufficient pot life is not obtained until casting. Furthermore, at low temperatures in winter, the hardening of the constructed body often did not proceed. (Problems to be Solved by the Invention) Therefore, various dispersants, water reducing agents, curing retarders, curing accelerators, etc. are added, or cement components are treated with organic solvents, etc., but the pot life and curing Adequate effects have not yet been obtained regarding time adjustment. As a result of extensive research in order to resolve the drawbacks of the conventional materials, the present inventors have reduced the proportion of alumina cement and/or magnesia as binders, and created castable refractories containing ultrafine silica powder. Castable refractories obtained by limiting the particle size and amount of addition, as well as the particle size, amount of addition, and especially PH of ultrafine silica powder, can have sufficient pot life when mixed with water and cast, and can be used in winter. The present invention was completed based on the discovery that curing is guaranteed within the desired time even at low temperatures, and a constructed body with low porosity and high strength can be obtained. (Means for Solving the Problems) The present invention uses alumina cement of 100 to 1μ and/or magnesia of 1 to 8% by weight and a particle size of 5 to 0.01μ.
Ultrafine silica powder 1 to 10 with pH adjusted to 3.5 to 8.5
It is a castable refractory made by adding 0.01 to 0.3% by weight of a refractory powder whose particle size has been adjusted and a deflocculant to the balance. The present invention will be explained in detail below. The particle size of the alumina cement or magnesia used in the binder should be 100 to 1μ; if it is less than 1μ, hydration will be excessive during ripening.
The pot life of castable refractories is shortened. Also
If it exceeds 100μ, the total surface area decreases and a sufficient effect as a binder cannot be obtained. The amount added is preferably from 1 to 8% by weight; if it exceeds 8% by weight, the amount of water required for application will be relatively insufficient, resulting in poor fluidity and premature agglomeration, which is undesirable. Furthermore, the amount of liquid phase produced increases at high temperatures, reducing the fire resistance of castable refractories. This is because if the amount is less than 1% by weight, the desired strength as a construction body cannot be obtained. The ultrafine silica powder used in the present invention has a particle size of 0.01 to 5μ.
It is an amorphous collected dust that is produced as a by-product during the production of metallic silicon, silicon alloys, and zirconia, and is generally known as silica flour. This ultrafine silica powder not only gives castable refractories fluidity during construction, but also creates strong bonds through van der Waals bonds created by Ca ++ and Mg ++ ions eluted from alumina cement or magnesia as a binder. and the strength of the construction body,
Improve precision. If the particle size is less than 0.01μ, it will coagulate and solidify in the hydration layer of alumina cement or magnesia, reducing its ability to improve fluidity, strength, etc. Moreover, if it exceeds 5μ, the particle size becomes large and the effect as an ultrafine powder is impaired. The proportion of ultrafine silica powder is 1 to 10% by weight,
If it is less than 1% by weight, the amount necessary to obtain close packing will be insufficient and the fluidity will also decrease. On the other hand, if it exceeds 10% by weight, it will be too much and the filling properties will decrease. The pH of ultrafine silica powder used with the above particle size and ratio is
It is necessary to adjust it to 3.5-8.5, preferably 4.0-6.5. The present inventors conducted various studies regarding the pot life and curing time, and found that leaching from alumina cement or magnesia does not occur as usual.
We found that it is effective to control the elution of these cations themselves, rather than reacting Ca ++ and Mg ++ with a dispersant to control the aggregation of ultrafine silica powder caused by these cations. . It has become clear that when alumina cement or magnesia, which coexists with ultrafine silica powder, is manufactured as a castable refractory, the elution rate of Ca ++ and Mg ++ is significantly different due to the difference in the pH of the ultrafine silica powder. . That is, PH3.5 to 8.5, which is used in a particularly limited manner in the present invention.
The ultra-fine silica powder has a pot life that is possible for construction and a curing time that does not interfere with construction work. When using PH3.5 or lower, add Ca ++ or Mg ++ from alumina cement or magnesia after mixing with water.
elutes less, especially when the temperature is low in winter, and when cation elution is inactive, the applied product often remains uncured, although the pot life required for application is sufficient. In addition, in compositions with a pH of 8.5 or higher, Ca ++ or Mg ++ rapidly dissolves from alumina cement or agnesia after mixing with water, and ultrafine silica powder rapidly aggregates, resulting in a shortened pot life required for construction. It will not be possible to secure it. As mentioned above, by adjusting the pH for limited use to 3.5 to 8.5, preferably 4.0 to 6.0, in winter,
For the first time, it was possible to ensure stable pot life and curing time regardless of the summer season. The above mechanism cannot be said to be fully elucidated, but at present, the alumina cement or magnesia surface becomes hydrated due to trace amounts of water present in these compositions during manufacture or storage after manufacture. The elution of Ca ++ or Mg ++ is controlled after water-mixing, which fixes the ultrafine silica powder in the hydrated film. It is thought that the degree of immobilization differs depending on the pH of the ultrafine silica powder, resulting in a difference in the elution of Ca ++ and Mg ++ cations. Adjustment of the pH of the ultrafine silica powder to 3.5 to 8.5 is performed by mixing two or more types of ultrafine silica powder, or by surface treatment of one or more types of ultrafine silica powder, such as pre-mixing treatment with an acid, alkaline solution, etc. As the refractory powder, one or more types selected from basic, neutral, and acidic powders are used. Basic properties include magnesia, dolomite, calcia, and spinel; neutral properties include alumina, chromium, zirconia, and zircon; acidic properties include silica;
These include siliceous, silicate, and clay. Furthermore, carbonaceous materials and carbides may be used. The particle size of these materials is adjusted to coarse, medium, and fine particles in the same way as conventional castable refractories to obtain dense packing. Further, it is also possible to use a material containing ultrafine powder of 5μ or less of one or more of alumina, chromium oxide, zircon, and zirconia. The deflocculant improves the dispersibility of the refractory ultrafine powder and improves the fluidity of the castable refractory. The type is not particularly limited, and examples include inorganic salts such as sodium tripolyphosphate, sodium hexametaphosphate, sodium ultrapolyphosphate, acidic sodium hexametaphosphate, aluminum phosphate, sodium borate, and soda carbonate;
One or more organic salts selected from organic salts such as sodium citrate, sodium tartrate, sodium polyacrylate, and sodium sulfonate are used, preferably in accordance with the pH of the ultrafine silica powder. The ratio is 0.01 to 0.01 in terms of the above formulation.
The content shall be 0.3wt%. If it is less than 0.01wt%, the refractory ultrafine powder will have poor dispersibility. If it exceeds 0.3 wt%, the peptizer exhibits thickening properties, and sufficient fluidity cannot be obtained unless the amount of water added is increased. (Example) Examples will be described below. Both the invention examples and comparative examples were kneaded at the proportions and ambient temperature shown in Table 1, and their pot life, curing time, quality, and strength were measured by the following methods. The pot life is determined by measuring the time at which work becomes impossible due to curing after mixing with water during construction.The curing time is determined by measuring the time at which it becomes possible to remove the frame by curing after kneading with water during construction.The apparent porosity is determined by measuring the construction body. JIS after heat treatment at each temperature
- Measured based on R2205. Compressive strength was measured based on JIS-R2206 after heat treatment of the constructed body at each temperature. As is clear from Table 1, the results show that in the examples of the present invention, the pot life was 40 to 120 minutes, and the curing time was 1.5 to 120 minutes.
The required time for implementation was 4.5 hours.
The quality of the constructed body was high, with low porosity and high strength. On the other hand, as shown in Comparative Examples No. 1 and No. 2, ultrafine silica powder with a pH outside the range of the present invention takes 32 hours to harden and a pot life of 15 minutes. Both become shorter and cause problems in construction. In addition, Comparative Examples No. 3 to No. 6 have low strength or compression after heat treatment at 1400°C because the amount of alumina cement as a binder or the amount of ultrafine silica powder added is outside the scope of the present invention. The strength increased significantly compared to that at 110°C, the amount of liquid phase produced at high temperatures was large, and the quality as a refractory deteriorated. As described above, the castable refractory of the present invention has a suitable pot life and curing time and has excellent workability compared to conventional castable refractories, and can provide a constructed body of good quality with low porosity and high strength.

【表】【table】

【表】【table】

【表】【table】

【表】 発明の効果 (1) 可使時間が少くとも30分以上確保され、かつ
大型の施工体へのキヤスタブル耐火物の鋳込み
に際しても、打ち継ぎ面(可使時間が短い場
合、先に鋳込んだものが流動性を失い、新たに
鋳込んだものとなじまず、打ち継ぎ跡が残る)
を生起せず、一体化した施工体が容易に得られ
る。 (2) 硬化時間は冬期の場合でも数時間以内に制御
可能となり(従来、冬期には硬化時間は長くな
り12〜24時間程度の養生が必要であり、硬化す
るまで工事は中断する。)施工工事が大巾に短
縮される。 (3) 前記(1)項、(2)項に示されるような施工性にす
ぐれ、しかも得られた施工体の耐火物としての
品質が良好なものが得られる。
[Table] Effects of the invention (1) A pot life of at least 30 minutes or more is ensured, and even when casting castable refractories into large construction objects, the pouring surface (if the pot life is short, (The poured material loses its fluidity and does not mix well with the newly cast material, leaving traces of splicing.)
An integrated construction body can be easily obtained without causing any problems. (2) Curing time can be controlled within a few hours even in winter (conventionally, curing time is longer in winter and curing is required for about 12 to 24 hours, and construction is suspended until curing).Construction The construction work will be drastically shortened. (3) As shown in the above (1) and (2), it is possible to obtain a constructed body that has excellent workability and also has good quality as a refractory.

Claims (1)

【特許請求の範囲】[Claims] 1 粒子径100〜1μのアルミナセメント及び/又
は粒子径100〜1μのマグネシア1〜8重量%と、
粒子径5〜0.01μでPHが3.5〜8.5に調整されたシリ
カ超微粉1〜10重量%と、残部粒度調整された耐
火性粉末とからなる配合物に対して解膠剤を外掛
で0.01〜0.3重量%加えてなるキヤスタブル耐火
物。
1 1 to 8% by weight of alumina cement with a particle size of 100 to 1μ and/or magnesia with a particle size of 100 to 1μ,
Add a deflocculant to a mixture consisting of 1 to 10% by weight of ultrafine silica powder with a particle size of 5 to 0.01μ and a pH of 3.5 to 8.5, and the balance of refractory powder with a particle size adjustment of 0.01 to 10%. Castable refractory made by adding 0.3% by weight.
JP27798584A 1984-12-28 1984-12-28 Castable refractories Granted JPS61158872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27798584A JPS61158872A (en) 1984-12-28 1984-12-28 Castable refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27798584A JPS61158872A (en) 1984-12-28 1984-12-28 Castable refractories

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6121495A Division JPH07309675A (en) 1994-06-02 1994-06-02 Castable refractory

Publications (2)

Publication Number Publication Date
JPS61158872A JPS61158872A (en) 1986-07-18
JPH0478585B2 true JPH0478585B2 (en) 1992-12-11

Family

ID=17591017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27798584A Granted JPS61158872A (en) 1984-12-28 1984-12-28 Castable refractories

Country Status (1)

Country Link
JP (1) JPS61158872A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633179B2 (en) * 1989-06-17 1994-05-02 黒崎窯業株式会社 Irregular refractory for pouring
US5494267A (en) * 1994-07-26 1996-02-27 Magneco/Metrel, Inc. Pumpable casting composition and method of use
JP5336987B2 (en) * 2009-09-24 2013-11-06 ニチアス株式会社 Method for producing fire-resistant molded body for metal casting and method for producing fire-resistant fired body for metal casting

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519770A (en) * 1974-07-10 1976-01-26 Kartridg Pak Co HONEKARANIKUOBUNRISURUHOHO
JPS5312926A (en) * 1976-07-22 1978-02-06 Europ Prod Refract Novel cement and concrete containing thereof
JPS5585478A (en) * 1978-12-20 1980-06-27 Kurosaki Refractories Co Waterrsetting refractory composition
JPS5692178A (en) * 1979-12-27 1981-07-25 Toshiba Ceramics Co Castable refractories
JPS5860663A (en) * 1981-10-02 1983-04-11 大光炉材株式会社 Hardening agent for formless refractories
JPS5913767A (en) * 1982-07-15 1984-01-24 Sanwa Kagaku Kenkyusho:Kk Novel 1-phenyl-2,6-benzodiazonine derivative and its preparation
JPS5935068A (en) * 1982-08-17 1984-02-25 播磨耐火煉瓦株式会社 Basic castable
JPS5983979A (en) * 1982-11-06 1984-05-15 大光炉材株式会社 Magnesia carbon cast refractories

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS519770A (en) * 1974-07-10 1976-01-26 Kartridg Pak Co HONEKARANIKUOBUNRISURUHOHO
JPS5312926A (en) * 1976-07-22 1978-02-06 Europ Prod Refract Novel cement and concrete containing thereof
JPS5585478A (en) * 1978-12-20 1980-06-27 Kurosaki Refractories Co Waterrsetting refractory composition
JPS5692178A (en) * 1979-12-27 1981-07-25 Toshiba Ceramics Co Castable refractories
JPS5860663A (en) * 1981-10-02 1983-04-11 大光炉材株式会社 Hardening agent for formless refractories
JPS5913767A (en) * 1982-07-15 1984-01-24 Sanwa Kagaku Kenkyusho:Kk Novel 1-phenyl-2,6-benzodiazonine derivative and its preparation
JPS5935068A (en) * 1982-08-17 1984-02-25 播磨耐火煉瓦株式会社 Basic castable
JPS5983979A (en) * 1982-11-06 1984-05-15 大光炉材株式会社 Magnesia carbon cast refractories

Also Published As

Publication number Publication date
JPS61158872A (en) 1986-07-18

Similar Documents

Publication Publication Date Title
ES2728304T3 (en) Refractory combination and its use
JP2015528790A (en) Refractory products and their use
KR101047358B1 (en) Refractory Compositions for Steel Industry
US4680279A (en) Abrasion resistant refractory composition
CN109456072B (en) Anti-skinning castable for cement kiln and preparation method thereof
JPH0478585B2 (en)
US3436236A (en) Refractory composition
CA1144187A (en) Refractory gun mix
JPH07309675A (en) Castable refractory
JPS6251912B2 (en)
JPH04952B2 (en)
JP3024723B2 (en) Insulated castable
JPS6051673A (en) Manufacture of castable refractories
JPH09301780A (en) Lightweight monolithic refractory
JP3106053B2 (en) Hydraulic amorphous refractory composition
JPS60235770A (en) Refractory composition for spray
JP4571354B2 (en) Indeterminate refractories for casting construction
JPH032822B2 (en)
JP7242788B1 (en) castable refractories
JP3615578B2 (en) Hydraulic amorphous refractory composition
JPS6140622B2 (en)
JPH0227308B2 (en)
JPS6120511B2 (en)
JP2000034483A (en) Improvement of soil
JPS6065770A (en) Manufacture of castable refractories

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees