[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0477440B2 - - Google Patents

Info

Publication number
JPH0477440B2
JPH0477440B2 JP56214493A JP21449381A JPH0477440B2 JP H0477440 B2 JPH0477440 B2 JP H0477440B2 JP 56214493 A JP56214493 A JP 56214493A JP 21449381 A JP21449381 A JP 21449381A JP H0477440 B2 JPH0477440 B2 JP H0477440B2
Authority
JP
Japan
Prior art keywords
conditions
thickness
fluoroscopy
optimal
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56214493A
Other languages
Japanese (ja)
Other versions
JPS58116530A (en
Inventor
Toshio Nakayama
Kunio Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP56214493A priority Critical patent/JPS58116530A/en
Publication of JPS58116530A publication Critical patent/JPS58116530A/en
Publication of JPH0477440B2 publication Critical patent/JPH0477440B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 この発明は、被写体厚さの変化等による透過度
の変化にかかわらず常に最適画像のX線写真が得
られる最適撮影条件をX線写真撮影に先立ち行な
われる透視の条件から自動的に設定し得るように
したX線写真撮影装置、特に撮影系の条件(使用
されるX線管・フイルム・増感紙・グリツド等で
異なる)ならびにX線写真を影続し、診断を下す
医師等術者の経験、知識に基づく好みをも加味し
た最適撮影条件の設定が可能な、最適撮影条件の
設定に自由度を持たせたX線写真撮影装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION This invention provides optimal imaging conditions under which an optimal image of an X-ray photograph can always be obtained regardless of changes in transparency due to changes in subject thickness, etc. X-ray photography equipment that can be automatically set from The present invention relates to an X-ray photographing apparatus that has a degree of freedom in setting optimal imaging conditions and can set optimal imaging conditions that also take into account the experience and knowledge-based preferences of a doctor or other surgeon who administers the procedure.

最適なX線写真を得る為には、その撮影系(X
線管・被検体・フイルム・感光紙等)に最も適当
な撮影条件を設定しなければならない。
In order to obtain the optimal X-ray photograph, the imaging system (X
The most appropriate imaging conditions must be set for the radiation tube, object, film, photosensitive paper, etc.).

この為の一手段として、X線写真撮影に先じて
行こなわれる透視条件を基礎として先の最適撮影
条件を得る考え方が提案されている。
As one means for this purpose, a concept has been proposed in which optimal imaging conditions are obtained based on fluoroscopic conditions performed prior to X-ray photography.

この透視条件から撮影条件を割出す方式は、先
ず透視条件(管電圧・管電流)と撮影条件(管電
圧・管電流・曝射時間)との間に固定した関係を
与えている。例えば透視管電流一定として透視管
電圧が決まると、ある関係で撮影管電圧が決定さ
れ、同時に撮影管電流撮影時間も一義的に決めら
れるように構成されている。しかもこの関係は低
透視管電圧から高透視管電圧まで一様な変化しか
なし得ないものである。
This method of determining imaging conditions from fluoroscopic conditions first provides a fixed relationship between fluoroscopic conditions (tube voltage, tube current) and imaging conditions (tube voltage, tube current, exposure time). For example, when the fluoroscopic tube voltage is determined assuming that the fluoroscopic tube current is constant, the imaging tube voltage is determined based on a certain relationship, and at the same time, the imaging tube current imaging time is also uniquely determined. Moreover, this relationship can only change uniformly from a low fluoroscopy tube voltage to a high fluoroscopy tube voltage.

したがつて透視条件と撮影条件が一義的に定め
られていることから、あらゆる被写体の変化に対
して最適画像のX線写真が得られる最適撮影条件
(管電圧・管電流・曝射時間)が設定できない。
Therefore, since the fluoroscopy conditions and imaging conditions are uniquely determined, it is possible to determine the optimal imaging conditions (tube voltage, tube current, exposure time) to obtain the optimal X-ray image for all changes in the subject. Cannot be set.

また透視系と撮影系の画像形成システムの違い
の配慮がなされておらず、撮影目的・撮影対象に
応じて選定されるフイルム・増感紙等の違いによ
る撮影系システム毎ならびに各管電圧毎に最適撮
影条件を設定できるようにする事は実際上不可能
である。さらにX線写真の画質は、それを影続し
診断を下す医師等術者の経験、知識による好みも
あり、それによつても最適な撮影条件は異なる
が、この点についての配慮もなされていないもの
である。
In addition, there is no consideration given to the differences between the image forming systems of the fluoroscopy system and the imaging system, and the differences in film, intensifying screen, etc. that are selected depending on the purpose of imaging and the object to be photographed are not taken into consideration for each imaging system and for each tube voltage. It is practically impossible to set optimal photographing conditions. Furthermore, the image quality of an X-ray photograph is influenced by the experience and knowledge of the doctor or other operator who makes the diagnosis, and the optimal imaging conditions vary depending on this, but no consideration is given to this point. It is something.

この発明は上記に鑑み、被写体の変化に対して
透視条件からの撮影条件の割出しに自由度を持た
せ、透視系と撮影系の画像形成系の違いはもとよ
り、X線写真の画質に対する医師等術者の経験、
知識をも反映した状態で、医師が診断上最適なX
線写真とするところの最適撮影条件を透視条件か
ら自動的に設定できるようにしたX線写真撮影装
置を提供しようとするものである。
In view of the above, this invention provides a degree of freedom in determining imaging conditions from fluoroscopic conditions in response to changes in the subject, and allows doctors to improve the The experience of the operator,
The doctor can determine the optimal X for diagnosis, which also reflects the knowledge
An object of the present invention is to provide an X-ray photographing apparatus that can automatically set optimal photographing conditions for taking a radiograph based on fluoroscopic conditions.

このためにこの発明のX線写真撮影装置は、被
写体厚と最適透視条件の関係を実際の透視により
得る。さらに撮影に関しては、予め術者(医師)
が使用する撮影系システム(X線管・フイルム・
感光材等)に最適な、被写体厚さと撮影条件(管
電圧・管電流・曝射時間)の関係を任意、あるい
は実測したデータを術者が設定記憶させる。この
透視と撮影に関する実際的であるデータを、記憶
し、以降透視による被写体厚さに応じて記憶デー
タより透視条件から撮影条件を割り出す様にした
事を特徴とする。
For this reason, the X-ray photographing apparatus of the present invention obtains the relationship between the thickness of the subject and the optimal fluoroscopy conditions through actual fluoroscopy. Furthermore, regarding photography, the surgeon (doctor)
The imaging system used by (X-ray tube, film,
The operator sets and memorizes the optimal relationship between the subject thickness and imaging conditions (tube voltage, tube current, exposure time) (tube voltage, tube current, exposure time) or actual measured data. The present invention is characterized in that practical data relating to fluoroscopy and photography are stored, and thereafter, photographing conditions are determined from the fluoroscopy conditions from the stored data in accordance with the thickness of the subject to be photographed through fluoroscopy.

以下、実施例について説明する。第1図は、被
写体厚さと透視管電圧の関係を示す管電流をパラ
メータとして示した特性図である。図中A〜C点
は、実際に例えば人体等価フアントムを利用し
て、フアントム厚さを変化させて既知の、透視輝
度自動調整機構により得られる最適透視管電圧で
ある。a〜cは、透視管電流を変化させた時の前
記A〜C点に相当する。このデータを得る事は、
フアントムを利用する事により簡易に得られる。
Examples will be described below. FIG. 1 is a characteristic diagram showing the relationship between object thickness and fluoroscopic tube voltage using tube current as a parameter. Points A to C in the figure are the optimum fluoroscopic tube voltages obtained by a known fluoroscopic brightness automatic adjustment mechanism by actually using, for example, a human body equivalent phantom and changing the phantom thickness. ac corresponds to the points A to C when changing the fluoroscopic tube current. Obtaining this data is
It can be easily obtained by using Phantom.

第2図aは、被写体厚さと撮影管電圧の関係
を、同図bは、被写体厚と管電流×撮影時間の関
係を示す特性図である。A′〜C′点、A″〜C″点は
第1図のA〜C点の厚さに対応する各条件であ
る。
FIG. 2a is a characteristic diagram showing the relationship between object thickness and imaging tube voltage, and FIG. 2b is a characteristic diagram showing the relationship between object thickness and tube current x imaging time. Points A' to C' and points A'' to C'' are conditions corresponding to the thicknesses of points A to C in FIG.

この場合A′〜C′及びA″〜C″点に相当する撮影
データは、術者の意志により決定できる。すなわ
ち、術者が経験、知識に基づく一つの撮影系での
最適条件、あるいはX線撮影術に大きな意味をも
つ術者が望む診断しやすい写真の撮影条件を配慮
できる。また、撮影系に於いても透視条件のデー
タ収集と同様にフアントムを利用してA′〜C′、
A″〜C″のデータを“実測”、決定する事も可能で
ある。図示しないが第2図bに示す管電流×撮影
時間(mA×sec)を各々mAとsecに分解して決
定しても良い。
In this case, the imaging data corresponding to points A' to C' and A'' to C'' can be determined according to the operator's will. That is, the operator can consider the optimal conditions for one imaging system based on his experience and knowledge, or the imaging conditions for photographs that are easy to diagnose and desired by the operator, who has great significance in X-ray photography. In addition, in the imaging system, we used a phantom to collect data on A′ to C′, as well as data collection for fluoroscopic conditions.
It is also possible to “actually measure” and determine the data from A″ to C″. Although not shown, the tube current×imaging time (mA×sec) shown in FIG. 2b may be decomposed into mA and sec for determination.

この様にして決定されたA〜C、A′〜C′、
A″〜C″の各々のデータは、後に示すメモリーに
記憶される。実際の撮影に際しては、ある被写体
を透視すると透視輝度自動調整機構により最適透
視画像が得られる様に、調整された透視管電圧が
得られ、この管電圧は散乱線等の影響をも含めた
被写体の厚さについての指標を与えている。従つ
てこの透視管電圧を指標として第1図の特性図よ
り被写体厚さが判るので、これより第2図a,b
の特性図のデータを参照して被写体厚さに応じて
それに最適な撮影時の管電圧・管電流・撮影時間
が決定できる。当然記憶したデータ以外の点につ
いても直線補間等により算出できる。
A~C, A'~C' determined in this way,
Each data of A″ to C″ is stored in a memory described later. During actual photography, when a certain subject is viewed through, a fluoroscopic tube voltage is obtained that is adjusted to obtain the optimum fluoroscopic image by the automatic fluoroscopic brightness adjustment mechanism, and this tube voltage is calculated based on the fluoroscopic tube voltage, which takes into account the effects of scattered radiation, etc. gives an indication of the thickness of the Therefore, using this fluoroscopy tube voltage as an index, the object thickness can be determined from the characteristic diagram in Figure 1, and from this, Figures 2 a and b
The optimal tube voltage, tube current, and time for imaging can be determined according to the thickness of the subject by referring to the data of the characteristic diagram. Of course, points other than the stored data can also be calculated by linear interpolation or the like.

第3図は、この発明を実施する為の装置の構成
を示すブロツク図である。図中、1は撮影時の管
電圧・管電流・曝射時間を設定制御する撮影制御
部、2は透視時の管電圧・管電流を設定制御する
透視制御部を示す。3はX線高電圧発生装置、4
はX線管、5は被検体、6は撮影用フイルム保持
装置、7はイメージアンプリフアイヤー(II)、
8はII7の出力像を撮像し電気信号に変換するテ
レビカメラとカメラコントロール部、9はモニタ
ー用TV、10は前記カメラコントロール部8の
電気信号をサンプリングし、モニター用TV像が
所定輝度によるように透視制御部2を制御し透視
輝度調整を行こなう為の信号処理部である。11
は、マイクロコンピユーター(演算装置)、12
はマイクロコンピユータ11と結合されるメモリ
ーである。なお、上記II7、テレビカメラとカメ
ラコントローラ部8、モニター用TV9でX線
TV透視システムを構成している。
FIG. 3 is a block diagram showing the configuration of an apparatus for carrying out the present invention. In the figure, reference numeral 1 indicates an imaging control unit that sets and controls the tube voltage, tube current, and exposure time during imaging, and 2 indicates a fluoroscopy control unit that sets and controls the tube voltage and tube current during fluoroscopy. 3 is an X-ray high voltage generator, 4
is an X-ray tube, 5 is a subject, 6 is a photographic film holding device, 7 is an image amplifier amplifier (II),
Reference numeral 8 denotes a television camera and a camera control unit that captures the output image of II7 and converts it into an electrical signal, 9 a TV for monitoring, and 10 samples the electrical signal of the camera control unit 8 so that the TV image for monitor has a predetermined brightness. This is a signal processing unit for controlling the perspective control unit 2 and adjusting the perspective brightness. 11
is a microcomputer (arithmetic device), 12
is a memory connected to the microcomputer 11. In addition, the above II7, the TV camera and camera controller section 8, and the monitor TV9
It constitutes a TV fluoroscopy system.

上記構成において先ず、透視条件を決定する為
に5の被検体としてフアントムを入れる。透視制
御部2を制御して術者が透視操作を行こなうと信
号処理部10の動作によりモニター用TV9の像
が最適になる様に透視制御部2が制御され透視条
件(透視管電圧)が自動的に設定される。この
時、必要に応じてフアントムの厚さの人体厚への
換算を行こない、人体厚とその時の透視条件をキ
ーボード等により手動あるいは自動的にマイクロ
コンピユーター11を通じてメモリー12に記憶
させる。
In the above configuration, first, a phantom is inserted as the object to be examined in order to determine the fluoroscopy conditions. When the operator performs a fluoroscopy operation by controlling the fluoroscopy control section 2, the fluoroscopy control section 2 is controlled by the operation of the signal processing section 10 so that the image on the monitor TV 9 is optimized, and the fluoroscopy conditions (fluoroscopy tube voltage) are adjusted. Automatically set. At this time, the thickness of the phantom is not converted to the human body thickness if necessary, and the human body thickness and the fluoroscopy conditions at that time are stored in the memory 12 through the microcomputer 11 manually or automatically using a keyboard or the like.

さらに2〜3点(データ数が多い程、システム
の精度は向上する)各種のフアントム厚さで透視
条件を実測する。この一連の操作により、第1図
に示すデータがメモリー12に記憶される。
Furthermore, the perspective conditions are actually measured at two to three points (the more data there is, the higher the accuracy of the system is) at various phantom thicknesses. Through this series of operations, the data shown in FIG. 1 is stored in the memory 12.

次に、撮影条件を決定する為に、先に透視条件
を求めた時のフアントム厚さのフアントムを入
れ、各々の厚さにて所望の写真が得られる条件を
撮影制御部1にて設定し、撮影する。この様にし
て各厚さに対して得られた最適の撮影条件(管電
圧・管電流)を透視条件の場合と同様にしてメモ
リー12に記憶する。この撮影条件決定に際して
術者の必要な情報の多く入つた写真が得られる様
に決定する事も可能である。術者が日常的に使用
すると思われる範囲の人体厚のうち、数点を前述
の様にして、透視撮影条件を記憶させると、収集
していない人体厚の撮影条件についても、術者の
経験、知識が反映される。すなわち、前述した方
法で投入、記憶されたデータ間を直線補間、関数
補間等周知の補間法で、マイクロコンピユータに
て算出させる事により、投入したデータに反映さ
れている術者の経験、知識が各々の人体厚でも適
用される事による。この時例えば、撮影時間をあ
る部位については人体厚に関わりなく一定にした
い時は、投入するデータの撮影時間の項を一定に
する事により、その他の人体厚に相当する点の撮
影時間も一定にできる。
Next, in order to determine the photographing conditions, enter the phantom of the phantom thickness used when the fluoroscopic conditions were obtained first, and set the conditions in the photographing control unit 1 to obtain the desired photograph at each thickness. , take pictures. The optimal imaging conditions (tube voltage and tube current) obtained for each thickness in this way are stored in the memory 12 in the same way as for the fluoroscopic conditions. When determining the photographing conditions, it is also possible to determine the photographic conditions in such a way that a photograph containing much of the information required by the surgeon can be obtained. By memorizing the fluoroscopic imaging conditions for several points within the range of human body thickness that the surgeon is likely to use on a daily basis as described above, the operator's experience can also be used for imaging conditions for body thicknesses that have not been collected. , knowledge is reflected. In other words, by using a well-known interpolation method such as linear interpolation or functional interpolation between the data input and stored using the method described above, the operator's experience and knowledge reflected in the input data can be calculated using a microcomputer. This applies to each human body thickness. At this time, for example, if you want to keep the imaging time constant for a certain part regardless of body thickness, by making the imaging time term of the input data constant, the imaging time for other points corresponding to the human body thickness will also be constant. Can be done.

このようにして被写体厚さに対する最適透視な
らびに最適撮影条件に関するデータ、すなわち第
1図、第2図の特性図をメモリー12に記憶させ
た後、被写体の透視撮影を行なうことにより、透
視条件より被写体厚に対応した最適な撮影条件が
自動的に設定される。
In this way, after storing the data regarding the optimal fluoroscopic view and the optimal imaging conditions for the thickness of the subject, that is, the characteristic diagrams shown in FIGS. 1 and 2, in the memory 12, by performing fluoroscopic photography of the subject, The optimal shooting conditions corresponding to the thickness are automatically set.

すなわち、被写体5をII7の前面に位置させ、
フイルム保持装置6をII7の前面より除去した状
態(図示の状態)で、透視制御部2に設けられた
図示しない透視スイツチを閉成するとX線管4が
付勢され、被写体5にX線が照射され、透視が行
なわれる。
That is, the subject 5 is positioned in front of II7,
When the fluoroscopy switch (not shown) provided in the fluoroscopy control section 2 is closed with the film holding device 6 removed from the front of the II 7 (as shown), the X-ray tube 4 is energized and the subject 5 is exposed to X-rays. It is illuminated and fluoroscopy is performed.

この際、信号処理部10の作用でモニター用
TVの像が所定の輝度になるように透視条件、す
なわち被写体5の厚さに対応した透視管電圧が自
動的に設定される。
At this time, due to the action of the signal processing section 10,
The fluoroscopic conditions, ie, the fluoroscopic tube voltage corresponding to the thickness of the subject 5, are automatically set so that the TV image has a predetermined brightness.

この自動的に設定された透視管電圧はメモリー
12に記憶されたデータに基づき、マイクロコン
ピユーター11で補間されたデータと突き合わさ
れ、被写体5の厚さに対応した最適の撮影条件
(管電圧・管電流・曝射時間)がメモリー12よ
り読み出され、撮影制御部1に設定される。
This automatically set fluoroscopic tube voltage is based on the data stored in the memory 12 and compared with the data interpolated by the microcomputer 11 to find the optimal imaging conditions (tube voltage, tube voltage, etc.) corresponding to the thickness of the subject 5. current and exposure time) are read out from the memory 12 and set in the imaging control section 1.

その後、フイルム保持装置6をII7の前面に位
置させ、撮影制御部1に設けられた図示しないX
線曝射スイツチを閉成すると、透視過程で自動的
に設定された被写体の厚さに対応した最適な撮影
条件で写真撮影が行な得る。
Thereafter, the film holding device 6 is positioned in front of the II 7, and the
When the radiation exposure switch is closed, a photograph can be taken under optimal photographing conditions corresponding to the thickness of the subject automatically set during the fluoroscopy process.

以上のようにこの発明によれば、透視条件から
の撮影条件の割り出しに際し、撮影条件決定に術
者の経験、知識、部位別の撮影条件に関する多量
の情報、透視系と撮影系の画像形成システムの差
異の情報を、自由におり込む事が可能となり、被
写体の厚さないし部位にかかわらず、被写体に対
応した最適な撮影条件(管電圧・管電流・曝射時
間)を自動的に設定することができ、医師の経
験、知識が反映されたX線診断上最適画質のX線
写真が得られる。
As described above, according to the present invention, when determining the imaging conditions from the fluoroscopic conditions, the experience and knowledge of the operator, a large amount of information regarding the imaging conditions for each region, and the image forming system of the fluoroscopy system and the imaging system are used to determine the imaging conditions. It is now possible to freely input information on the differences between images, and automatically set the optimal imaging conditions (tube voltage, tube current, exposure time) for the subject, regardless of the thickness or part of the subject. X-ray photographs with optimal image quality for X-ray diagnosis, reflecting the experience and knowledge of the doctor, can be obtained.

なお、実施例では被写体の厚さに対応した最適
透視管電圧を得る為に、透視輝度自動調整機構を
使用したが、テンキー等により、手動によりメモ
リーに記憶させるようにしても良い。
In the embodiment, an automatic fluoroscopic brightness adjustment mechanism was used in order to obtain the optimum fluoroscopic tube voltage corresponding to the thickness of the subject, but it may also be manually stored in the memory using a numeric keypad or the like.

要するに、透視条件の管電圧・管電流より、別
個に術者が投入したデータを利用して自動的に撮
影条件を割出す方式であれば良い。また実施例に
おいて透視管電流をある一定の値に設定した状態
で被写体厚さに対する最適透視条件に関するデー
タを収集するものとして述べたが、この値は被写
体により変化させるものである。従つて実際上
は、2点以上の透視管電流について人体厚と透視
管電圧の関係のデータを収集・記憶させる。そし
て収集・記憶していない透視管電流が設定された
場合はデータの補間法によりその時の最適透視管
電圧より人体厚を割出し、最適撮影条件を算出す
るようにすればよい。
In short, any method is sufficient as long as it automatically determines the imaging conditions using data input by the operator separately from the tube voltage and tube current of the fluoroscopy conditions. Furthermore, in the embodiment, it has been described that data regarding the optimum fluoroscopic condition for the thickness of the object is collected with the fluoroscopic tube current set at a certain value, but this value is changed depending on the object. Therefore, in practice, data on the relationship between human body thickness and fluoroscopy tube voltage is collected and stored for fluoroscopy tube currents at two or more points. If a fluoroscopic tube current that has not been collected or stored is set, the human body thickness may be determined from the optimal fluoroscopic tube voltage at that time using a data interpolation method, and the optimum imaging conditions may be calculated.

さらに、イメージアンプリフアイヤーの画像有
効視野の変化により人体厚さと最適透視条件は変
化する。従つてこの場合についても透視管電流が
変化した場合と同様に処置する方法も考えられ
る。さらに、撮影時にホトタイマを使用する場合
は、この発明の装置で自動的に設定される撮影時
間は、バツクアツプ用として作用するようにすれ
ばよい。この場合ホトタイマによる撮影時間より
も少し長い目に設定した撮影条件をメモリーに記
憶させておけばよい。
Furthermore, the human body thickness and optimal fluoroscopy conditions change due to changes in the image effective field of view of the image amplifier amplifier. Therefore, it is also possible to consider a method of treating this case in the same way as when the fluoroscopic tube current changes. Furthermore, if a phototimer is used during photographing, the photographing time automatically set by the apparatus of the present invention may be used for backup purposes. In this case, it is sufficient to store in memory the photographing conditions set to be slightly longer than the photographing time by the phototimer.

さらに、実施例の構成においてメモリー素子と
してC−MOS RAM等の書き換え可能なメモリ
ー素子を用いてマイクロコンピユータと組み合わ
せておけば、最適透視条件ならびにそれに対応す
る最適撮影条件を必要に応じて任意に書き換える
ことが可能となる。
Furthermore, in the configuration of the embodiment, if a rewritable memory element such as C-MOS RAM is used as a memory element and is combined with a microcomputer, the optimum fluoroscopy conditions and the corresponding optimum imaging conditions can be arbitrarily rewritten as necessary. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、被写体厚さと透視管電圧との関係を
示す特性図、第2図aは被写体厚さと撮影管電圧
との関係を示す特性図、同図bは被写体厚さと操
影mAsとの関係を示す特性図、第3図はこの発
明装置の一実施例の構成を示すブロツク図であ
る。 1:撮影制御部、2:透視制御部、3:高電圧
発生装置、4:X線管、5:被写体、6:フイル
ム保持装置、7:II、8:テレビカメラとカメラ
コントロール部、9:モニター用TV、10:透
視輝度調整用信号処理部、11:マイクロコンピ
ユータ、12:メモリー(演算装置)。
Figure 1 is a characteristic diagram showing the relationship between object thickness and imaging tube voltage, Figure 2a is a characteristic diagram showing the relationship between object thickness and imaging tube voltage, and Figure 2b is a characteristic diagram showing the relationship between object thickness and imaging tube voltage. A characteristic diagram showing the relationship, and FIG. 3 is a block diagram showing the configuration of an embodiment of the device of the present invention. 1: Imaging control unit, 2: Fluoroscopic control unit, 3: High voltage generator, 4: X-ray tube, 5: Subject, 6: Film holding device, 7: II, 8: Television camera and camera control unit, 9: TV for monitor, 10: Signal processing unit for adjusting perspective brightness, 11: Microcomputer, 12: Memory (arithmetic device).

Claims (1)

【特許請求の範囲】 1 X線TV透視システムを備えたX線写真撮影
装置において、被写体の異なる厚さに対応する最
適透視条件と、前記被写体厚さにほぼ対応する最
適撮影条件に関するデータを記憶するメモリー
と、このメモリーに記憶されたデータに基づき各
データ間のメモリーに記憶されていない被写体厚
さに対応する最適透視条件と最適撮影条件を直線
補間などの補間計算により算出する演算装置とを
設け、透視条件から被写体厚さを求め、この被写
体厚さに対応する最適撮影条件を自動的に設定す
るようにしたことを特徴とするX線写真撮影装
置。 2 メモリーは被写体厚さに対応する少なくとも
最適撮影条件に関するデータを外部より設定・記
憶させることができるものであることを特徴とす
る特許請求の範囲第1項記載のX線写真撮影装
置。
[Scope of Claims] 1. In an X-ray photography apparatus equipped with an X-ray TV fluoroscopy system, data regarding optimal fluoroscopy conditions corresponding to different thicknesses of a subject and optimal imaging conditions approximately corresponding to the thickness of the subject are stored. and an arithmetic unit that calculates optimal fluoroscopy conditions and optimal imaging conditions corresponding to the subject thickness that is not stored in the memory between each data based on the data stored in this memory by interpolation calculation such as linear interpolation. 1. An X-ray photographing apparatus, characterized in that the thickness of an object is determined from fluoroscopic conditions, and the optimum imaging conditions corresponding to the thickness of the object are automatically set. 2. The X-ray photography apparatus according to claim 1, wherein the memory is capable of externally setting and storing data regarding at least optimal imaging conditions corresponding to the thickness of the subject.
JP56214493A 1981-12-29 1981-12-29 X-ray photographing device Granted JPS58116530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214493A JPS58116530A (en) 1981-12-29 1981-12-29 X-ray photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214493A JPS58116530A (en) 1981-12-29 1981-12-29 X-ray photographing device

Publications (2)

Publication Number Publication Date
JPS58116530A JPS58116530A (en) 1983-07-11
JPH0477440B2 true JPH0477440B2 (en) 1992-12-08

Family

ID=16656616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214493A Granted JPS58116530A (en) 1981-12-29 1981-12-29 X-ray photographing device

Country Status (1)

Country Link
JP (1) JPS58116530A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213298A (en) * 1987-02-27 1988-09-06 Shimadzu Corp X-ray cine imaging device
JPH01232699A (en) * 1988-03-12 1989-09-18 Toshiba Corp Digital fluorography device
JP2007213979A (en) * 2006-02-09 2007-08-23 Shimadzu Corp X-ray diagnostic equipment
JP5277861B2 (en) * 2008-10-22 2013-08-28 株式会社島津製作所 X-ray high voltage device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655919Y2 (en) * 1973-12-22 1981-12-26
JPS5717517Y2 (en) * 1974-02-20 1982-04-12
JPS5314592A (en) * 1976-07-26 1978-02-09 Toshiba Corp X-ray diagnosis apparatus
JPS5546289A (en) * 1978-09-28 1980-03-31 Shimadzu Corp X-ray apparatus of photographing condition program establishing type
JPS55100698A (en) * 1979-01-29 1980-07-31 Hitachi Medical Corp Computerized x-ray photographing device
JPS55111100A (en) * 1979-02-20 1980-08-27 Shimadzu Corp X-ray equipment of photographing condition program setting type
JPS55148398A (en) * 1979-05-09 1980-11-18 Toshiba Corp X-ray camera
JPS5619040A (en) * 1979-07-25 1981-02-23 Toshiba Corp X-ray photo timer
JPS5683325A (en) * 1979-12-10 1981-07-07 Olympus Optical Co Light source apparatus of endoscope
JPH0112799Y2 (en) * 1980-11-19 1989-04-13

Also Published As

Publication number Publication date
JPS58116530A (en) 1983-07-11

Similar Documents

Publication Publication Date Title
JPS62222600A (en) X-ray generator
US4473843A (en) Digital radiographic system and method for adjusting such system
McDonnell et al. An evaluation of the Sens-A-Ray digital dental imaging system
JPH0462798A (en) X-ray diagnostic device
US4486896A (en) X-Ray generator incorporating automatic correction of a dose-determining exposure parameter
GB2132780A (en) Apparatus for maintaining a cathode ray tube image in relation to the light acceptance range of a photographic film
JPH0477440B2 (en)
CA1145994A (en) X-ray photographing and developing apparatus
JPH0642225Y2 (en) X-ray diagnostic device
JP3778523B2 (en) X-ray equipment
JP2004188094A (en) Radiographic apparatus and radiographic system
JP2983421B2 (en) Bone measurement method and device
JPS6227597B2 (en)
JP3597677B2 (en) X-ray controller
JPH0510875B2 (en)
JP2770192B2 (en) X-ray digital subtraction device
JPH0440645Y2 (en)
JPS5985195A (en) X-ray fluoroscope graphy device
Eraso et al. Clinical and in vitro film quality comparison of manual and automatic exposure control in panoramic radiography
JPS587039B2 (en) Jidousatsuei Souchi
JPH079357Y2 (en) X-ray fluoroscope
JP2625978B2 (en) X-ray automatic exposure control device
JP2001292992A (en) Radiographic device
JPH0381999A (en) X-ray continuous radiographing device
JPH0638398Y2 (en) X-ray equipment