JPH0473063B2 - - Google Patents
Info
- Publication number
- JPH0473063B2 JPH0473063B2 JP60113962A JP11396285A JPH0473063B2 JP H0473063 B2 JPH0473063 B2 JP H0473063B2 JP 60113962 A JP60113962 A JP 60113962A JP 11396285 A JP11396285 A JP 11396285A JP H0473063 B2 JPH0473063 B2 JP H0473063B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- exhaust gas
- generator
- exhaust
- heat recovery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011084 recovery Methods 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 238000010521 absorption reaction Methods 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 15
- 239000013529 heat transfer fluid Substances 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 3
- 239000002918 waste heat Substances 0.000 claims 2
- 239000007788 liquid Substances 0.000 description 13
- 238000005057 refrigeration Methods 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、燃焼炉、ボイラなどの高温排ガスか
ら排熱を回収して吸収冷凍機を駆動する排熱駆動
吸収冷凍装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an exhaust heat-driven absorption refrigeration system that recovers exhaust heat from high-temperature exhaust gas from a combustion furnace, boiler, etc. to drive an absorption refrigerator.
従来、高温排ガスの排熱を回収して吸収冷凍機
を駆動するようにした装置は、例えば特開昭60−
26290号公報に開示されている。この装置の排熱
回収器付近の構成をフロー図で示せば第4図の如
くなる。
Conventionally, a device that recovers exhaust heat from high-temperature exhaust gas to drive an absorption refrigerator has been developed, for example, in Japanese Patent Application Laid-Open No.
It is disclosed in Publication No. 26290. A flow diagram of the structure of this device near the exhaust heat recovery device is shown in FIG. 4.
ここで、1は発生器であり、伝熱チユーブ2の
外側には溶液管3,4により溶液が出入し、伝熱
チユーブ2の内側には排ガス管5,6により高温
の排ガスが供給され通過するようになつており、
伝熱チユーブ2を介して排ガスの排熱が溶液に与
えられ、冷媒蒸気が発生されるようになつてい
る。7,8は排ガス供給量を調節するダンパであ
る。9は、排ガス管5から分岐し、排ガス管6に
至るバイパス管であり、バイパス流量調節用のダ
ンパ10を備えている。 Here, 1 is a generator, a solution enters and leaves the outside of the heat transfer tube 2 through solution pipes 3 and 4, and high temperature exhaust gas is supplied to the inside of the heat transfer tube 2 through exhaust gas pipes 5 and 6 and passes through. It has come to be that
The exhaust heat of the exhaust gas is applied to the solution through the heat transfer tube 2, and refrigerant vapor is generated. 7 and 8 are dampers that adjust the amount of exhaust gas supplied. A bypass pipe 9 branches from the exhaust gas pipe 5 and reaches the exhaust gas pipe 6, and is provided with a damper 10 for regulating the bypass flow rate.
しかしながら、このような従来のものにおいて
は次のような問題点があつた。
However, such conventional devices have the following problems.
先ず運転時における問題点として、ダンパ操作
に伴う圧力変動の問題がある。即ち、冷凍容量の
制御を行うために発生器1における加熱量を調節
するのであるが、これをダンパによる排ガス流量
の調節で行う。このとき、ダンパ7を単独で制御
すると、排ガスの発生源に大きな圧力変動を与え
てしまうため、通常、ダンパ10をも連動して制
御している。しかし、ダンパ7,10を連動させ
るようにしても連動の調節は難しく、ある程度の
圧力変動が残り、発生源の種類によつては許容で
きないこともある。 First, as a problem during operation, there is the problem of pressure fluctuations associated with damper operation. That is, in order to control the refrigeration capacity, the amount of heating in the generator 1 is adjusted, and this is done by adjusting the exhaust gas flow rate using a damper. At this time, if the damper 7 is controlled alone, large pressure fluctuations will be given to the exhaust gas generation source, so normally the damper 10 is also controlled in conjunction. However, even if the dampers 7 and 10 are interlocked, it is difficult to adjust the interlocking, and a certain amount of pressure fluctuation remains, which may be unacceptable depending on the type of source.
また、運転時に関する他の問題点として、ダン
パの構造が非常に大きくなることが挙げられる。
即ち、通常排ガスは大気圧付近のことが多く、比
容積が非常に大きく、また、途中での圧力損失を
避けるため、ダンパは非常に大きなものとなる。
従つて、そのまわりの構造も大きくなり、装置が
大型となる。 Further, another problem during operation is that the structure of the damper becomes very large.
That is, normally exhaust gas is often at near atmospheric pressure and has a very large specific volume, and in order to avoid pressure loss during the process, the damper must be very large.
Therefore, the surrounding structure also becomes large, and the device becomes large.
また、排ガスを直接発生器1に導いているため
腐食の場合の対策や機器変換等の手間がかかる問
題を有していた。 Furthermore, since the exhaust gas is directly led to the generator 1, there is a problem in that it takes time and effort to take measures against corrosion and to convert equipment.
さらに停止時における問題点として、ダンパか
らの排ガスの漏洩の問題が挙げられる。即ち、無
負荷時や停止時にダンパ7,8を閉じダンパ10
を開いて、発生器1に排ガスが流入しないように
する。しかしながら、ダンパは構造上締切り性能
が悪く、3〜5%程度の漏洩は避けられず、この
漏洩により発生器1内の液温は150℃程度にまで
上昇することもあり、圧力もそれに伴つて上昇
し、危険を招くことがあつた。 Another problem when the engine is stopped is the leakage of exhaust gas from the damper. That is, the dampers 7 and 8 are closed when there is no load or when the damper 10 is stopped.
Open to prevent exhaust gas from flowing into the generator 1. However, the damper has poor shutoff performance due to its structure, and leakage of about 3 to 5% is unavoidable. Due to this leakage, the liquid temperature in the generator 1 may rise to about 150℃, and the pressure will increase accordingly. It could rise and pose a danger.
本発明は、従来のものにおける上記の問題点を
解決し、容量制御に際して排ガスの発生源に大き
な圧力変動を与えることなく、制御機構が大型に
なるのを防ぎ、腐食に対しての対策も容易であ
り、さらに停止時のガスの漏洩による発生器内の
温度や圧力の上昇を防ぐことができる排熱駆動吸
収冷凍装置を提供することを目的とする。 The present invention solves the above-mentioned problems in conventional systems, prevents the control mechanism from increasing in size without causing large pressure fluctuations to the exhaust gas generation source during capacity control, and facilitates countermeasures against corrosion. Another object of the present invention is to provide an exhaust heat-driven absorption refrigeration system that can prevent increases in temperature and pressure inside the generator due to gas leakage during shutdown.
本願発明は、高温排ガスの排熱を回収する加熱
チユーブのある排熱回収器と、発生器、凝縮器、
蒸発器、吸収器を有する吸収冷凍機とを備え、前
記排熱回収器の熱交換部の被加熱側と前記発生器
の加熱側とを連通させた状態で熱媒流体を充填し
て密閉し、前記排熱回収器の熱交換部の加熱側に
高温排ガスを導く排ガス管と、被加熱側の熱媒流
体を加熱し、加熱された該熱媒流体を前記発生器
の加熱側に導く管路とを備えて吸収溶液を加熱し
て前記吸収冷凍機を駆動するよう構成した装置に
おいて、負荷を検知する温度検出器を蒸発器の冷
水管に設け、この負荷検出で前記排熱回収器の排
熱回収部に供給される熱媒流体の流量を調整する
流量調節弁と、該流量調節弁を前記温度検出器に
連絡した制御装置とを備えたことを特徴とする排
熱駆動吸収冷凍装置である。
The present invention provides an exhaust heat recovery device with a heating tube for recovering exhaust heat of high-temperature exhaust gas, a generator, a condenser,
An absorption refrigerator having an evaporator and an absorber is provided, and the heated side of the heat exchange section of the exhaust heat recovery device and the heating side of the generator are in communication with each other, and filled with a heat transfer fluid and sealed. , an exhaust gas pipe that guides high-temperature exhaust gas to the heating side of the heat exchange section of the exhaust heat recovery device; and a pipe that heats the heat medium fluid on the heated side and guides the heated heat medium fluid to the heating side of the generator. In the apparatus configured to heat the absorption solution and drive the absorption refrigerator, a temperature detector for detecting the load is provided in the cold water pipe of the evaporator, and this load detection causes the temperature of the exhaust heat recovery device to be increased. An exhaust heat-driven absorption refrigeration system comprising: a flow rate adjustment valve that adjusts the flow rate of heat medium fluid supplied to the exhaust heat recovery section; and a control device that communicates the flow rate adjustment valve with the temperature detector. It is.
本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.
第1図において、排熱回収部11内には熱交換
部としての加熱チユーブ14が設けられ排ガス管
5より高温排ガスが供給され、通過して排ガス管
6に排出されるようになつている。発生器12に
は伝熱チユーブ2が設けられ、吸収溶液を加熱す
るようになつている。18は流量調節弁であり、
負荷の検出として冷水出口温度を検出する温度検
出器19からの信号で制御装置33が作動し、加
熱チユーブ14へスプレー管17から散布する冷
媒液の流量を調節し、冷水出口温度を制御して冷
凍容量を制御するようになつている。 In FIG. 1, a heating tube 14 as a heat exchange section is provided in the exhaust heat recovery section 11, and high-temperature exhaust gas is supplied from the exhaust gas pipe 5, passes through it, and is discharged into the exhaust gas pipe 6. The generator 12 is provided with a heat transfer tube 2 adapted to heat the absorption solution. 18 is a flow rate control valve;
The control device 33 is actuated by a signal from the temperature detector 19 that detects the cold water outlet temperature as a load detection, and adjusts the flow rate of the refrigerant liquid sprayed from the spray pipe 17 to the heating tube 14 to control the cold water outlet temperature. Refrigeration capacity is now controlled.
27は凝縮器、28は吸収器、29は蒸発器、
30,31は冷却水管、32は冷水管である。 27 is a condenser, 28 is an absorber, 29 is an evaporator,
30 and 31 are cooling water pipes, and 32 is a cold water pipe.
作用につき説明すれば、通常運転時は熱媒液は
加熱チユーブ14に散布され、高温の排ガスによ
り加熱されて蒸発し、熱媒ガスとなつて管路23
を経て発生器12に供給される。発生器12に入
つた熱媒ガスは伝熱チユーブ2の外側の吸収溶液
により冷却されて凝縮し熱媒液となる。熱媒液は
管路22を経て排熱回収部11に入り、ポンプ2
0により、流量調節弁18、管路16を経て再び
加熱チユーブ14に散布され循環する。一方、発
生器12において、伝熱チユーブ2の外側の吸収
溶液は加熱濃縮される。 To explain the operation, during normal operation, the heating medium liquid is sprayed into the heating tube 14, heated by high temperature exhaust gas, evaporated, and becomes a heating medium gas, which flows through the pipe line 23.
It is supplied to the generator 12 via the. The heat transfer gas entering the generator 12 is cooled by the absorption solution outside the heat transfer tube 2 and condensed to become a heat transfer liquid. The heat medium liquid enters the exhaust heat recovery section 11 through the pipe line 22, and then enters the pump 2.
0, it is dispersed again into the heating tube 14 via the flow rate control valve 18 and the pipe line 16 and circulated. On the other hand, in the generator 12, the absorption solution outside the heat transfer tube 2 is heated and concentrated.
冷水負荷が少なくなると冷水温度が上昇する
が、この負荷減少を温度検出器19で検出し、流
量調節弁18を操作し、冷水温度が所定の設定範
囲を越えぬよう制御して容量制御を行う。例え
ば、微小な冷水負荷になれば、熱媒液の供給量を
流量調節弁18により微少量とするし、また、負
荷がなくなれば、流量調節弁18を全閉とし、加
熱チユーブ14への熱媒液供給量をゼロとし熱回
収能力をなくしている。 When the chilled water load decreases, the chilled water temperature rises, but this load decrease is detected by the temperature detector 19, and the flow control valve 18 is operated to control the chilled water temperature so that it does not exceed a predetermined setting range, thereby controlling the capacity. . For example, if there is a small chilled water load, the amount of heat transfer fluid supplied is reduced to a very small amount by the flow rate control valve 18, and if the load is eliminated, the flow rate control valve 18 is fully closed to reduce the heat transfer to the heating tube 14. The amount of medium supplied is zero, eliminating heat recovery ability.
即ち冷水温度制御により冷凍容量制御を行うの
に、排ガス流量をダンパで調節するのでなく、熱
媒流体側の供給流量を調節するようにしてある。 That is, to control the refrigeration capacity by controlling the temperature of chilled water, the flow rate of the heat medium fluid supplied is adjusted instead of adjusting the exhaust gas flow rate with a damper.
本実施例は、このように構成されており、熱媒
液の供給量を調節することにより容量制御を行う
ので、容量制御に当たり、排ガス源に大きな圧力
変動を与えることなく、また、調節すべき流体は
液体なので体積流量は小さく、ダンパ7,8,1
0などの如き大型の弁を必要とせず小型の流量調
節弁18を用いるので、構造が簡単で、装置が小
型になる。また、排ガスが直接発生器に導かれ
ず、排熱回収部11を介して間接的に排熱を回収
して発生器12に供給しているので腐食が生じた
場合の機器の補修や交換が容易となる。さらに、
冷凍機の停止時には熱媒流体を供給せず、熱回収
能力をなくしているので排ガスの熱が発生器に伝
わることがなく発生器12内の温度、圧力の上昇
の恐れがなく、危険を防止することができる。な
お、熱回収部の熱媒流体の温度、圧力が異常に上
昇したときには、熱媒ポンプ20を止め、或いは
弁18を閉として、熱回収能力をなくして異常上
昇を回避することができる。 This embodiment is configured as described above, and the capacity is controlled by adjusting the supply amount of the heat medium liquid. Therefore, when controlling the capacity, it is possible to control the capacity without giving a large pressure fluctuation to the exhaust gas source. Since the fluid is a liquid, the volumetric flow rate is small, and the dampers 7, 8, 1
Since a small flow control valve 18 is used without the need for a large valve such as 0, etc., the structure is simple and the device is small. In addition, since the exhaust gas is not led directly to the generator, but rather the exhaust heat is indirectly recovered via the exhaust heat recovery section 11 and supplied to the generator 12, it is easy to repair or replace the equipment in the event of corrosion. becomes. moreover,
When the refrigerator is stopped, heat medium fluid is not supplied and the heat recovery ability is eliminated, so the heat of the exhaust gas is not transferred to the generator, and there is no risk of the temperature or pressure inside the generator 12 increasing, preventing danger. can do. Note that when the temperature and pressure of the heat medium fluid in the heat recovery section rise abnormally, the heat medium pump 20 is stopped or the valve 18 is closed to eliminate the heat recovery ability and avoid the abnormal rise.
第2図は別の実施例を示し、熱媒流体が加熱チ
ユーブ14の中を通り、その外側を通る排ガスに
より加熱され熱媒ガスとなつて管路23を経て発
生器12の伝熱チユーブ2に送られるようになつ
ている。伝熱チユーブ2内で凝縮した熱媒液はポ
ンプ20により流量調節弁18を経て排熱回収部
11に送られる。 FIG. 2 shows another embodiment in which the heat transfer fluid passes through the heating tube 14 and is heated by the exhaust gas passing outside thereof, becoming a heat transfer gas and passing through the line 23 to the heat transfer tube 2 of the generator 12. It is now being sent to The heat medium liquid condensed in the heat transfer tube 2 is sent to the exhaust heat recovery section 11 by the pump 20 via the flow control valve 18 .
温度検出器19により冷水出口温度を検出し、
その信号に制御装置33からの操作信号を受けて
流量調節弁18を調節し、熱交換量を調節し冷水
温度制御を行い冷凍容量の制御を行う。 The temperature detector 19 detects the cold water outlet temperature,
In response to this signal and an operation signal from the control device 33, the flow control valve 18 is adjusted, the amount of heat exchange is adjusted, the chilled water temperature is controlled, and the refrigeration capacity is controlled.
熱媒液を排熱回収部11に供給する場合、上部
からでも、下部からでも何れから行つてもよい。
下部から供給しても加熱チユーブ14内では気液
二相となつて伝熱面への液供給が行われる。加熱
チユーブ14の内面にウイツクを設けて下部の熱
媒を吸い上げるようにしてもよい。 When the heat transfer liquid is supplied to the exhaust heat recovery section 11, it may be supplied from either the upper part or the lower part.
Even if the liquid is supplied from the lower part, the liquid becomes gas-liquid two-phase within the heating tube 14 and is supplied to the heat transfer surface. A wick may be provided on the inner surface of the heating tube 14 to suck up the heat medium from the lower part.
また、熱媒流体経路中に、熱媒タンク34を設
けておき、冷凍機停止時このタンクは熱媒流体を
貯え、熱回収部に熱媒流体が行かぬようにし、停
止時の熱回収を確実になくすこともできる。 In addition, a heat medium tank 34 is provided in the heat medium fluid path, and when the refrigerator is stopped, this tank stores the heat medium fluid and prevents the heat medium fluid from going to the heat recovery section, so that heat recovery when the refrigerator is stopped is performed. You can definitely eliminate it.
なお、冷凍機異常あるいは、熱回収器異常時に
は、弁35を開け、熱回収部の熱媒流体を熱媒タ
ンクに急速に戻し、熱回収能力をなくすようにも
できる。 In addition, in the event of an abnormality in the refrigerator or the heat recovery device, the valve 35 can be opened to quickly return the heat medium fluid in the heat recovery section to the heat medium tank, thereby eliminating the heat recovery ability.
第3図は別の実施例であり、排熱回収部11よ
りも発生器12を高い位置に置き、凝縮熱媒液を
重力により排熱回収部11に供給するようにした
もので、ポンプ20を省略したものである。 FIG. 3 shows another embodiment, in which the generator 12 is placed at a higher position than the exhaust heat recovery section 11, and the condensed heat transfer liquid is supplied to the exhaust heat recovery section 11 by gravity. is omitted.
冷水温度としてはこの例の如く入口温度を検出
してもよい。以上は単効用の場合について例示し
たが、二重効用の場合にも適用できる。 As the cold water temperature, the inlet temperature may be detected as in this example. The above example is for the case of single effect, but it can also be applied to the case of double effect.
また、以上は冷凍サイクルとして説明したが暖
房サイクルの場合にも適用できる。この場合は例
えば負荷検出として温水温度を検出して、流量調
節弁18を調節する。熱媒タンク34を熱媒流体
の通常の経路外に設けておき、緊急時、タンクに
熱媒流体を回収するようにした安全装置を取りつ
けることもできる。 Further, although the above description has been made regarding a refrigeration cycle, it can also be applied to a heating cycle. In this case, for example, the hot water temperature is detected as load detection, and the flow rate control valve 18 is adjusted. The heat transfer medium tank 34 may be provided outside the normal path of the heat transfer fluid, and a safety device may be installed to recover the heat transfer fluid from the tank in an emergency.
本発明は、負荷を検知する温度検出器を蒸発器
の冷水管に設け、この負荷検出で前記排熱回収器
の排熱回収部に供給される熱媒流体の流量を調整
する流量調節弁と、該流量調節弁を前記温度検出
器に連絡した制御装置とを備えたことにより、排
ガスの顕熱を熱媒に潜熱の形で回収でき、この回
収する熱量を制御し、熱を回収し過ぎないように
して熱交換量を応答性良好に調整でき、冷凍容量
の制御性を著しく向上させ、排熱回収機構の簡素
化と取扱上の簡便化とがはかれ、しかも安全性の
高い装置とできるし、容量制御に当たり、排ガス
源に大きな圧力変動を与えることなく安定した運
転を行うことができ、ダンパの如き大型の部品を
必要とせず装置を小型にすることができ、腐食に
対しての補修、交換作業が容易であり、また、停
止時に発生器内の温度、圧力の上昇を招くことな
く危険を防止することができる排熱駆動吸収冷凍
装置を提供することができ、実用上極めて大なる
効果を奏する。
The present invention provides a temperature detector for detecting a load in a cold water pipe of an evaporator, and a flow rate regulating valve that adjusts the flow rate of heat medium fluid supplied to the exhaust heat recovery section of the exhaust heat recovery device based on the load detection. By including the flow rate control valve and a control device connected to the temperature detector, the sensible heat of the exhaust gas can be recovered to the heating medium in the form of latent heat, and the amount of heat to be recovered can be controlled to prevent excessive heat recovery. The amount of heat exchange can be adjusted with good responsiveness, the controllability of refrigeration capacity has been significantly improved, the exhaust heat recovery mechanism has been simplified and handling has been simplified, and the device is highly safe. It is possible to perform stable operation without giving large pressure fluctuations to the exhaust gas source when controlling the capacity, it is possible to downsize the equipment without the need for large parts such as dampers, and it is resistant to corrosion. It is possible to provide an exhaust heat-driven absorption refrigeration system that is easy to repair and replace, and can prevent danger without causing a rise in temperature or pressure inside the generator when it is stopped. It has a certain effect.
第1図、第2図、第3図は本発明の、それぞれ
異なる実施例のフロー図、第4図は従来例の発生
器付近のフロー図である。
1……発生器、2……伝熱チユーブ、3,4…
…溶液管、5,6……排ガス管、7,8……ダン
パ、9……バイパス管、10……ダンパ、11…
…排熱回収部、12……発生器、14……加熱チ
ユーブ、16……管路、17……スプレー管、1
8……流量調節弁、19……温度検出器、20…
…ポンプ、22,23……管路、27……凝縮
器、28……吸収器、29……蒸発器、30,3
1……冷却水管、32……冷水管、33……制御
装置、34……熱媒タンク、35……弁。
1, 2, and 3 are flowcharts of different embodiments of the present invention, and FIG. 4 is a flowchart of the vicinity of a generator in a conventional example. 1... Generator, 2... Heat transfer tube, 3, 4...
...Solution pipe, 5, 6...Exhaust gas pipe, 7,8...Damper, 9...Bypass pipe, 10...Damper, 11...
...Exhaust heat recovery section, 12...Generator, 14...Heating tube, 16...Pipe line, 17...Spray pipe, 1
8...Flow control valve, 19...Temperature detector, 20...
... Pump, 22, 23 ... Pipe line, 27 ... Condenser, 28 ... Absorber, 29 ... Evaporator, 30, 3
1... Cooling water pipe, 32... Cold water pipe, 33... Control device, 34... Heat medium tank, 35... Valve.
Claims (1)
4のある排熱回収器11と、発生器12、凝縮器
27、蒸発器29、吸収器28を有する吸収冷凍
機とを備え、前記排熱回収器11の熱交換部の被
加熱側と前記発生器の加熱側とを連通させた状態
で熱媒流体を充填して密閉し、前記排熱回収器1
1の熱交換部の加熱側に高温排ガスを導く排ガス
管5,6と、被加熱側の熱媒流体を加熱し、加熱
された該熱媒流体を前記発生器12の加熱側に導
く管路23とを備えて吸収溶液を加熱して前記吸
収冷凍機を駆動するよう構成した装置において、
負荷を検知する温度検出器19を蒸発器29の冷
水管32に設け、この負荷検出で前記排熱回収器
11の排熱回収部に供給される熱媒流体の流量を
調整する流量調節弁18と、該流量調節弁18を
前記温度検出器19に連絡した制御装置33とを
備えたことを特徴とする排熱駆動吸収冷凍装置。1 Heating tube 1 that recovers waste heat from high-temperature exhaust gas
4, an absorption refrigerator having a generator 12, a condenser 27, an evaporator 29, and an absorber 28. The exhaust heat recovery device 1 is filled with a heat transfer fluid and sealed in a state where the heating side of the generator is in communication with the waste heat recovery device 1.
Exhaust gas pipes 5 and 6 that lead high-temperature exhaust gas to the heating side of the heat exchanger 1, and pipes that heat the heating medium fluid on the heated side and lead the heated heating medium fluid to the heating side of the generator 12. 23, the apparatus is configured to heat an absorption solution and drive the absorption refrigerator,
A temperature detector 19 for detecting the load is provided in the cold water pipe 32 of the evaporator 29, and a flow rate regulating valve 18 adjusts the flow rate of the heat medium fluid supplied to the exhaust heat recovery section of the exhaust heat recovery device 11 based on the load detection. and a control device 33 that connects the flow control valve 18 to the temperature detector 19.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11396285A JPS61272563A (en) | 1985-05-29 | 1985-05-29 | Exhaust-heat driving absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11396285A JPS61272563A (en) | 1985-05-29 | 1985-05-29 | Exhaust-heat driving absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61272563A JPS61272563A (en) | 1986-12-02 |
JPH0473063B2 true JPH0473063B2 (en) | 1992-11-19 |
Family
ID=14625563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11396285A Granted JPS61272563A (en) | 1985-05-29 | 1985-05-29 | Exhaust-heat driving absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61272563A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4427797Y1 (en) * | 1966-09-19 | 1969-11-19 | ||
JPS53133261A (en) * | 1977-04-25 | 1978-11-20 | Ici Ltd | Mold release foil |
JPS6026290A (en) * | 1983-07-25 | 1985-02-09 | Ebara Corp | Waste heat recovery device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53133261U (en) * | 1977-03-29 | 1978-10-21 |
-
1985
- 1985-05-29 JP JP11396285A patent/JPS61272563A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4427797Y1 (en) * | 1966-09-19 | 1969-11-19 | ||
JPS53133261A (en) * | 1977-04-25 | 1978-11-20 | Ici Ltd | Mold release foil |
JPS6026290A (en) * | 1983-07-25 | 1985-02-09 | Ebara Corp | Waste heat recovery device |
Also Published As
Publication number | Publication date |
---|---|
JPS61272563A (en) | 1986-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2749436C (en) | Improved flow control and improved heat rise control device for water heaters | |
JPH0473063B2 (en) | ||
JPH0473062B2 (en) | ||
JPS6326319B2 (en) | ||
JP3585890B2 (en) | Heating operation control method of triple effect absorption chiller / heater | |
JPS602862A (en) | Direct fire type double effect absorption cold and hot watermachine | |
JP2639969B2 (en) | Absorption refrigerator | |
JPS5844298Y2 (en) | Absorption heat pump | |
KR19980038994U (en) | Circulating water device for heat recovery system | |
JPS63176965A (en) | Dual effect air-cooled absorption chiller/heater | |
JPS61235685A (en) | Temperature control device in waste heat retrieving device for thermal plant | |
JPS6021721Y2 (en) | Absorption chiller control device | |
JP2780546B2 (en) | Heat transfer device | |
JPS6222080B2 (en) | ||
JPH0222311B2 (en) | ||
JP3446159B2 (en) | Absorption type cold heat generator | |
JPS6138785B2 (en) | ||
JPH0148470B2 (en) | ||
JP2006090682A (en) | Absorption chiller/heater | |
JPH04217757A (en) | Absorption cold and hot water device | |
JPH0353544B2 (en) | ||
JPH0635902B2 (en) | Absorption cold water heater | |
JPH04203862A (en) | Cold water and hot water parallel supplying absorption type refrigerating machine | |
CN108592004A (en) | Economizer heat exchange regulating system | |
JPH11201579A (en) | Control method at low load in ammonia absorption refrigerator |