[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0473911A - High frequency transformer - Google Patents

High frequency transformer

Info

Publication number
JPH0473911A
JPH0473911A JP18656390A JP18656390A JPH0473911A JP H0473911 A JPH0473911 A JP H0473911A JP 18656390 A JP18656390 A JP 18656390A JP 18656390 A JP18656390 A JP 18656390A JP H0473911 A JPH0473911 A JP H0473911A
Authority
JP
Japan
Prior art keywords
winding
windings
primary
copper foil
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18656390A
Other languages
Japanese (ja)
Inventor
Hisanaga Takano
高野 久永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP18656390A priority Critical patent/JPH0473911A/en
Publication of JPH0473911A publication Critical patent/JPH0473911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To obtain a transformer having the winding arrangement of less copper loss even with increases in frequency by interlaminating with respective layers of primary windings and secondary windings which use copper foils for connection of the respective layers in a state that adjacent primary winding and secondary winding layers are almost coincided in current density and by making the thicknesses of copper foils of primary windings and secondary windings less than specified values. CONSTITUTION:In a high frequency transformer where primary windings NP and secondary windings NS using copper foils are arranged alternately and fitted to a magnetic core 10, the ratio of turns of primary windings NP to secondary windings NS should be a natural number or fraction number, and respective layers of primary windings and secondary windings are interlaminated and connected in a state that the thickness delta of the copper foil of the primary winding NP and the secondary winding NS is delta<3XK/sq. rt. f. K is the constant of skin effect: 66[mn] in copper, and f is the frequency [Hz] of current applied to the winding. For example, when the ratio of turns is 1:10, primary winding NP is parallel winding whose one turn is 10 pieces, and the secondary winding NS is winding of 10 turns, where parallel windings are interlaminated with each turn of the secondary winding NS.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は数MHz程度の高周波数を取り扱う電子装置に
用いて好適な高周波用トランスに係り、特に低損失化の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high-frequency transformer suitable for use in electronic equipment that handles high frequencies of approximately several MHz, and particularly relates to improvements in reducing loss.

〈従来の技術〉 トランスの一次側に周波数Iの正弦波交流電圧Vpを印
加した場合、コア内に誘起される磁束密度Bは次式で表
せる。
<Prior Art> When a sinusoidal AC voltage Vp of frequency I is applied to the primary side of a transformer, the magnetic flux density B induced in the core can be expressed by the following equation.

B=vp / (2z/ nt ・5eff)    
 (1)ここで、nlは一次巻線の数、S effはコ
アの実効断面積である。従って、周波数Iの増大に伴な
って、コア内の磁束密度Bが減少しコアの小形化が可能
になる。しかし、巻線に流れる電流は以下に述べる表皮
効果及び近接効果により分布が偏って、高周波数化に従
って実質的な等価抵抗の増大、すなわち銅損の増大を招
く。
B=vp/(2z/nt・5eff)
(1) Here, nl is the number of primary windings, and S eff is the effective cross-sectional area of the core. Therefore, as the frequency I increases, the magnetic flux density B within the core decreases, making it possible to downsize the core. However, the distribution of the current flowing through the windings is biased due to the skin effect and proximity effect described below, and as the frequency becomes higher, the effective equivalent resistance increases, that is, the copper loss increases.

■ 表皮効果 第12図は表皮効果の説明図で、(A)は導体断面、(
B)は直径方向での電流分布を表している。
■ Skin effect Figure 12 is an explanatory diagram of the skin effect, where (A) is a cross section of a conductor, (
B) represents the current distribution in the diametrical direction.

表皮効果は、高周波数化に伴ない電流が導体表面に集中
して流れることを言い、導体周囲の漏洩磁束が導体内部
に進入する為に生じる0表皮の厚さδは、表皮効果の定
数Kを用いて次式で与えられる。
The skin effect refers to the fact that as the frequency increases, current flows concentrated on the conductor surface.The skin thickness δ, which occurs when leakage magnetic flux around the conductor enters the inside of the conductor, is the constant K of the skin effect. It is given by the following formula using .

δ=に/J/[mml            ■ここ
でIは周波数である。fがIMHzで導体の材料が銅の
場合、Kが66.1[mm]であるからδは66.1μ
mとなる。従って、単線の場合には線径を表皮程度の厚
さにすると内部の交流抵抗を小さくできる。しかし、導
線に流せる電流密度には一定の限界があるから二次側の
負荷電流が制限されると共に、巻線の細分化により占積
率が低下する。
δ=to/J/[mml ■Here, I is the frequency. If f is IMHz and the conductor material is copper, K is 66.1 [mm], so δ is 66.1 μ.
m. Therefore, in the case of a single wire, the internal AC resistance can be reduced by making the wire diameter as thick as the skin. However, since there is a certain limit to the current density that can be passed through the conductor, the load current on the secondary side is limited, and the space factor decreases due to the subdivision of the winding.

■ 近接効果 第13図は近接効果の説明図で、(A)は二つ並んだ導
線に同一方向の電流が流れる場合、(B)は逆方向に流
れる場合を示している。近接効果は、近接した位置に電
流の流れる導体があると、この導体で作られる磁界は導
体断面で一様ではないため、導体内部の磁界が完全には
打ち消されずに損失が増大することを言う、同一方向に
流す場合には外側に電流が分布し、逆方向に流す場合に
は内側に電流が分布している。これを緩和するには隣り
合う導体同士の間隔を表皮の厚さ程度禦せばよい、しか
し、トランスの形状が大形化するという課題がある。
■ Proximity Effect Figure 13 is an explanatory diagram of the proximity effect, where (A) shows the case where current flows in the same direction in two lined up conductors, and (B) shows the case where the current flows in the opposite direction. Proximity effect refers to the fact that when there is a current-carrying conductor in close proximity, the magnetic field created by this conductor is not uniform across the conductor's cross section, so the magnetic field inside the conductor is not completely canceled out and losses increase. When flowing in the same direction, the current is distributed on the outside, and when flowing in the opposite direction, the current is distributed on the inside. To alleviate this problem, the distance between adjacent conductors can be reduced to about the thickness of the skin, but there is a problem in that the shape of the transformer becomes larger.

第14図は導体を銅箔としたもので、この二つの銅箔は
距離dを隔てて平行に位置している。第15図は第14
図の配置に於ける交流抵抗Racの説明図である。縦軸
には直流抵抗RdCを基準に交流抵抗RaCを表示し、
横釉には距離dをとっている。銅箔の寸法を幅Wが5m
m、厚さlが100μmとし、周波数IをIMHzとし
た場合の計算例である。銅箔単体ではRac/Rdcが
1.5になっているが、同一方向(例えばコイル状の巻
線を有するインダクタ)では2.2に増大し、逆方向(
例えば一次巻線と二次巻線を交互に巻いたトランス)で
は1.3に減少している。
In FIG. 14, the conductor is made of copper foil, and these two copper foils are located in parallel with a distance d between them. Figure 15 is the 14th
FIG. 3 is an explanatory diagram of AC resistance Rac in the arrangement shown in the figure. The vertical axis shows AC resistance RaC based on DC resistance RdC,
A distance d is placed between the horizontal glazes. The width W of the copper foil is 5m.
This is an example of calculation when m, thickness l are 100 μm, and frequency I is IMHz. Rac/Rdc is 1.5 for copper foil alone, but increases to 2.2 in the same direction (for example, in an inductor with a coil-shaped winding), and increases in the opposite direction (
For example, in a transformer with alternating primary and secondary windings, this decreases to 1.3.

〈発明が解決しようとする課題〉 上述したように、周波数が増大すると表皮効果・近接効
果により銅損が増大し、トランスの温度上昇を招来して
磁性体透磁率のブレークダウンや巻線絶縁物劣化の原因
となっていた。さらに、放熱を考慮するとトランスの小
形化が制限される課題があった。
<Problems to be Solved by the Invention> As mentioned above, as the frequency increases, copper loss increases due to the skin effect and proximity effect, leading to an increase in the temperature of the transformer, leading to breakdown of magnetic permeability and damage to the winding insulation. This caused deterioration. Furthermore, there is a problem in that miniaturization of the transformer is restricted when heat radiation is taken into consideration.

本発明はこのような課題を解決したもので、高周波化し
ても銅損の少ない巻線配置を有する高周波用トランスを
提供することを目的とする。
The present invention has solved these problems, and an object of the present invention is to provide a high-frequency transformer having a winding arrangement with low copper loss even when the frequency is increased.

く課題を解決するための手段〉 このような目的を達成する本発明は、銅箔を用いた一次
巻線及び二次巻線を交互に配置して磁心に][!付けた
高周波用トランスであって、次の構成としたものである
Means for Solving the Problems> The present invention achieves the above objects by alternately arranging primary windings and secondary windings using copper foil on a magnetic core. This is a high frequency transformer with the following configuration.

即ち、当該一次巻線と二次巻線の巻き数比を自然数若し
くは分数とし、当該一次巻線と二次巻線の各層を交互に
積層させ、隣接する一次巻線と二次巻線の各層の電流密
度を略一致させる状態で各層を接続すると共に、前記前
記一次巻線及び二次巻線の銅箔の厚さ(δ)を、 δ<3xK/J/ に:表皮効果の定数で、銅では66[−一]。
That is, the turns ratio of the primary winding and the secondary winding is a natural number or a fraction, and each layer of the primary winding and the secondary winding is laminated alternately, and each layer of the adjacent primary winding and secondary winding is stacked alternately. The layers are connected in a state where the current densities of are approximately the same, and the thickness (δ) of the copper foil of the primary winding and the secondary winding is set to δ<3xK/J/: a skin effect constant, 66[-1] for copper.

12巻線に印加される電流の周波数[H2]。12 Frequency of current applied to winding [H2].

とすることを特徴としている。It is characterized by the following.

〈作 用〉 本発明の各構成要素はつぎの作用をする。一次巻線と二
次巻線な銅箔とし、その厚さを表皮効果の厚さ相当とし
たので交流抵抗が少なくて済む。
<Function> Each component of the present invention has the following function. Since the primary and secondary windings are made of copper foil, and the thickness is equivalent to the thickness of the skin effect, AC resistance can be reduced.

また、一次巻線と二次巻線を交互に配置しているので、
電流の流れる方向が反対となって近接効果の影響が小さ
くなり、銅損が減少する。
In addition, since the primary and secondary windings are arranged alternately,
The direction of current flow is reversed, reducing the influence of the proximity effect and reducing copper loss.

〈実施例〉 以下図面を用いて、本発明を説明する。<Example> The present invention will be explained below using the drawings.

第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

図において、コア10は磁性材料よりなるもので、例え
ばBI形ココア使用される。一次巻線Npは巻数Np″
C″設計条件より与えられる。二次巻線NSは巻数Ns
で、基本的には一次巻線NPと交互に積層される。
In the figure, a core 10 is made of a magnetic material, such as BI type cocoa. The primary winding Np is the number of turns Np''
C″ is given by the design conditions.The number of turns of the secondary winding NS is Ns
Basically, they are stacked alternately with the primary winding NP.

第2図は巻数比が1:1の説明図で、(A)は巻線結線
図、(B)は巻線構成断面図で、ここでは3層の場合を
示している。一次巻線NPは1ターンが3層、二次巻線
Nsは1ターンが3層になっており、断面図に示すごと
く両者は単層で交互に巻かれ、結線により3層を実現し
ている。
FIG. 2 is an explanatory diagram in which the turns ratio is 1:1, (A) is a winding connection diagram, and (B) is a sectional view of the winding configuration, here showing the case of three layers. The primary winding NP has 3 layers per turn, and the secondary winding Ns has 3 layers per turn.As shown in the cross-sectional diagram, both are alternately wound in single layers, and the 3 layers are realized by wiring. There is.

第3図は巻数比が1=10の説明図で、(A)は巻線結
線図、(B)は巻線構成断面図である。
FIG. 3 is an explanatory diagram when the turns ratio is 1=10, in which (A) is a winding connection diagram and (B) is a sectional view of the winding configuration.

一次巻線Npは1ターンが10個の並列巻線(分路巻線
)、二次巻線Nsは10ターンの巻線よりなり、結線に
より並列巻線を二次巻線Nsの各ターンと交互に積層さ
せている。
The primary winding Np consists of 10 parallel windings (shunt winding), and the secondary winding Ns consists of 10 turns of winding, and the parallel winding is connected to each turn of the secondary winding Ns. They are layered alternately.

第4図は巻線比が2=3の説明図で、(A)は巻線結線
図、(B)は巻線構成断面図である。
FIG. 4 is an explanatory diagram when the winding ratio is 2=3, where (A) is a winding connection diagram and (B) is a winding configuration cross-sectional view.

次巻線Npは2ターン・3並列巻線の6層より構成され
、同様に二次巻線Nsは3ターン・2並列巻線の6層よ
り構成される。ここで1層は1枚の銅箔を用いるとよい
、各銅箔は一次巻線Npと二次巻線Nsの間で交互に積
層されると共に、結線により所望の巻線比を実現してい
る。一般に、巻線比がn:m(mは2以上の自然数でn
とは相違する)の場合は、n、rnの最小公倍数となる
銅箔により一次巻線Npと二次巻線Nsが構成される。
The secondary winding Np is composed of 6 layers of 2 turns and 3 parallel windings, and similarly the secondary winding Ns is composed of 6 layers of 3 turns and 2 parallel windings. Here, it is preferable to use one copper foil for one layer, and each copper foil is laminated alternately between the primary winding Np and the secondary winding Ns, and the desired winding ratio is achieved by wiring. There is. Generally, the turns ratio is n:m (m is a natural number of 2 or more, and n
), the primary winding Np and the secondary winding Ns are made of copper foil that is the least common multiple of n and rn.

例えば、巻線比が2=3では最小公倍数が6となるから
、一次巻線Npと二次巻線Nsはそれぞれ6枚の銅箔で
構成されることになる。もちろん、最小公倍数の自然数
倍である12枚等であっても差し支えない。
For example, when the winding ratio is 2=3, the least common multiple is 6, so the primary winding Np and the secondary winding Ns are each made of six pieces of copper foil. Of course, the number of sheets may be 12, which is a natural number multiple of the least common multiple.

続いて、交流抵抗や電流密度分布の解析について説明す
る。第5図は解析例となる多層トランスモデルの断面図
である。ここでは、5mm幅100μm厚さの銅箔10
枚を100μm間隔で積層し、中心を境にして上下対称
としている。
Next, analysis of AC resistance and current density distribution will be explained. FIG. 5 is a cross-sectional view of a multilayer transformer model as an analysis example. Here, 10 copper foils with a width of 5 mm and a thickness of 100 μm are used.
The sheets are stacked at intervals of 100 μm, and are vertically symmetrical with respect to the center.

第6図は各層毎に電流が反対に流れるもの場合、第7図
は上から3枚−2枚という順で電流が反対に流れる場合
の各銅箔の電流密度図である。一般にトランスの一次巻
線に流れる電流IPと巻数Nρの積は二次巻線のそれと
次の関係にある。
FIG. 6 is a current density diagram of each copper foil when current flows in opposite directions in each layer, and FIG. 7 shows a current density diagram of each copper foil when current flows in opposite directions in the order of 3 to 2 layers from the top. Generally, the product of the current IP flowing in the primary winding of a transformer and the number of turns Nρ has the following relationship with that of the secondary winding.

Np−1p=Ns−1s         (3)従っ
て、銅箔全体に流れる電流を加算するとゼロになる。第
6図では、各銅箔の上下両サイドの磁界の強さがほぼ同
じ為、それにより誘起される渦電流が打ち消し合い交流
抵抗も小さくなる(第2図の導体C0nduCter1
〜5に対応して、交流抵抗は1.05,1.01,1.
0G、1.01,1.06となった)、他方第7図では
、磁界の強さが不均一となるため、渦電流が残存して交
流抵抗が大きくなる( conducter1〜5に対
応して、交流抵抗は1.21,1.4G、1.97,1
.44゜1.24となった)。
Np-1p=Ns-1s (3) Therefore, when the current flowing through the entire copper foil is added, it becomes zero. In Figure 6, since the strength of the magnetic field on both the upper and lower sides of each copper foil is almost the same, the eddy currents induced thereby cancel each other out, reducing the AC resistance (conductor C0nduCter1 in Figure 2).
~5, the AC resistances are 1.05, 1.01, 1.
0G, 1.01, 1.06).On the other hand, in Fig. 7, the strength of the magnetic field becomes non-uniform, so eddy currents remain and AC resistance increases (corresponding to conductors 1 to 5). , AC resistance is 1.21, 1.4G, 1.97, 1
.. 44°1.24).

第8図は銅箔の厚さの説明図である。1枚の銅箔の厚さ
δと交流抵抗Rac(直流抵抗RdCとの比で表わす)
との関係を示している0周波数IがIMHzのとき表皮
効果の厚さは66μmである0図示するように、表皮効
果の厚さにほぼ等しい厚さδでは銅箔の幅方向に分布す
る磁界により誘起される渦電流が打ち消されるからであ
る。従って、表皮効果の厚さの3倍以下であれば交流抵
抗が2倍以下となって小さくて済み、好ましい。
FIG. 8 is an explanatory diagram of the thickness of copper foil. Thickness δ of one sheet of copper foil and AC resistance Rac (expressed as a ratio to DC resistance RdC)
0 When the frequency I is IMHz, the thickness of the skin effect is 66 μm. 0 As shown in the figure, at a thickness δ almost equal to the thickness of the skin effect, the magnetic field distributed in the width direction of the copper foil This is because the eddy currents induced by this are canceled out. Therefore, if the thickness is three times or less than the skin effect thickness, the AC resistance is two times or less, which is preferable.

第9図及び第10図はこの様な銅箔を巻線に用いたトラ
ンスの説明図である。第9図ではElコアの中心柱に同
心円状に銅箔が巻かれている。この場合、巻かれる層毎
に1周の長さが相違するために巻線の長さを決定するの
が困難で、製造上障害となる。第10図では、円板状に
銅箔を成型して積層させるもので、巻線長は全て同一と
なるが各巻線同士の接続作業が困難になると言う課題が
あった。この接続作業では各巻線がコイル状に接続され
る必要があるため、ハンダ付は作業では注意が必要とな
る。そこで、簡便に銅箔の巻線作業の行える巻線構造が
望まれていた。
FIGS. 9 and 10 are explanatory diagrams of a transformer using such copper foil for winding. In FIG. 9, copper foil is wrapped concentrically around the central pillar of the El core. In this case, it is difficult to determine the length of the winding wire because the length of one round is different for each layer to be wound, which poses an obstacle in manufacturing. In FIG. 10, copper foil is formed into a disk shape and laminated, and although all the winding lengths are the same, there is a problem in that it becomes difficult to connect the windings to each other. This connection work requires each winding to be connected in a coiled manner, so care must be taken when soldering. Therefore, there has been a desire for a winding structure that allows for easy winding of copper foil.

第11図はテープ状の銅箔巻線の説明図で、作業工程順
に(1)〜(4)を表わしている。最初、テープ状の銅
箔巻線に絶縁層を設ける(第11図(1))。
FIG. 11 is an explanatory diagram of a tape-shaped copper foil winding, showing (1) to (4) in the order of work steps. First, an insulating layer is provided on a tape-shaped copper foil winding (FIG. 11 (1)).

これには、銅箔の上下に絶縁テープを貼る手法や化学的
な手法が採用される0次にコアの形状に合わせて折り畳
んで行き(第11図C)〜(4))、必要なターン数の
巻線を得る。この場合、第1図で説明した一次巻線と二
次巻線の巻線構造を実現するため、二基列の銅箔テープ
を重なり合うように二重スパイラル状に巻いていぐとよ
い。
This involves applying insulating tape to the top and bottom of the copper foil, or using chemical methods to fold it to fit the shape of the zero-order core (Figure 11C-(4)), and make the necessary turns. Obtain several windings. In this case, in order to realize the winding structure of the primary winding and the secondary winding explained in FIG. 1, it is preferable to wind two rows of copper foil tapes in a double spiral shape so as to overlap each other.

このようにすると、製造法が簡単で自動ラインに乗り易
く、また手作業で作る場合も特別な治具も要らず簡単に
銅箔巻線作業ができる。
In this way, the manufacturing method is simple and easy to use on an automatic line, and even when manufacturing by hand, the copper foil winding work can be easily performed without requiring any special jig.

〈発明の効果〉 以上説明したように、本発明によれば一次巻線と二次巻
線に銅箔を用いる際に、両者を密結合に巻いて渦を流の
影響を少なくすると共に、銅箔の厚さを表皮効果の厚さ
程度にしているので、高周波数でも銅損が小さく、従っ
てトランス自体の温度上昇の少ないため小形化の出来る
高周波用トランスが提供されると言う効果がある。
<Effects of the Invention> As explained above, according to the present invention, when copper foil is used for the primary winding and the secondary winding, both are tightly coupled to reduce the influence of vortices, and the copper foil is Since the thickness of the foil is approximately the thickness of the skin effect, the copper loss is small even at high frequencies, and therefore the temperature rise of the transformer itself is small, so there is an effect that a high frequency transformer that can be miniaturized is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図乃至第
4図は巻線比による巻線構成と結線の説明図、第5図は
解析例となる多層トランスモデルの断面図、第6図は各
層毎に電流が反対に流れるもの場合、第7図は上から3
枚−2枚という順で電流が反対に流れる場合の各銅箔の
電流密度図、第8図は銅箔の厚さの説明図、第9図及び
第10図は銅箔を巻線に用いたトランスの説明図、第1
1図はテープ状の銅箔巻線の説明図である。 第12図は表皮効果の説明図、第13図は近接効果の説
明図、第14図及び第15図は銅箔を2枚平行に設!し
た場合の交流抵抗の説明図である。 10・・・コア、Np・・・一次巻線、Ns・・・二次
巻線。 (A/) 第 第 ? ノ ア70  コア 図 (B) (A) 叢 図 CB) 、丈慶緯 一更 7X3 Z;1 3丁x2 第 図 第 ろ 図 9ihつ厚? シ[umj 事 ワ 図 第 図 第 図 化 平行鋼1つ更流塾抗
Figure 1 is a configuration diagram showing an embodiment of the present invention, Figures 2 to 4 are explanatory diagrams of the winding configuration and connections according to the winding ratio, and Figure 5 is a cross-sectional view of a multilayer transformer model as an analysis example. , Figure 6 shows the case where the current flows in the opposite direction in each layer, and Figure 7 shows the three layers from the top.
The current density diagram of each copper foil when the current flows in the opposite direction in the order of one sheet and two sheets, Figure 8 is an explanatory diagram of the thickness of copper foil, and Figures 9 and 10 are when copper foil is used for winding. Explanatory diagram of the transformer, 1st
FIG. 1 is an explanatory diagram of a tape-shaped copper foil winding. Fig. 12 is an explanatory diagram of the skin effect, Fig. 13 is an explanatory diagram of the proximity effect, and Figs. 14 and 15 are two copper foils placed in parallel! FIG. 3 is an explanatory diagram of AC resistance in the case of 10...Core, Np...Primary winding, Ns...Secondary winding. (A/) No.? Noah 70 core diagram (B) (A) series diagram CB), Takeyoshi Ichikara 7X3 Z; 1 3 pieces x 2 Diagram 9ih thick? [umj

Claims (1)

【特許請求の範囲】  銅箔を用いた一次巻線及び二次巻線を交互に配置して
磁心に取付けた高周波用トランスであって、当該一次巻
線と二次巻線の巻き数比を自然数若しくは分数とし、当
該一次巻線と二次巻線の各層を交互に積層させ、隣接す
る一次巻線と二次巻線の各層の電流密度を略一致させる
状態で各層を接続すると共に、 前記前記一次巻線及び二次巻線の銅箔の厚さ(δ)を、 δ<3xK/√f K:表皮効果の定数で、銅では66[mm]、f:巻線
に印加される電流の周波数[Hz]、とすることを特徴
とする高周波用トランス。
[Claims] A high-frequency transformer in which a primary winding and a secondary winding made of copper foil are arranged alternately and attached to a magnetic core, the transformer having a turn ratio between the primary winding and the secondary winding. A natural number or a fraction, the layers of the primary winding and the secondary winding are alternately laminated, and the layers are connected in such a way that the current density of each layer of the adjacent primary winding and secondary winding is approximately the same, and The thickness (δ) of the copper foil of the primary winding and the secondary winding is δ<3xK/√f K: skin effect constant, 66 [mm] for copper, f: current applied to the winding A high frequency transformer characterized by having a frequency [Hz].
JP18656390A 1990-07-13 1990-07-13 High frequency transformer Pending JPH0473911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18656390A JPH0473911A (en) 1990-07-13 1990-07-13 High frequency transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18656390A JPH0473911A (en) 1990-07-13 1990-07-13 High frequency transformer

Publications (1)

Publication Number Publication Date
JPH0473911A true JPH0473911A (en) 1992-03-09

Family

ID=16190719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18656390A Pending JPH0473911A (en) 1990-07-13 1990-07-13 High frequency transformer

Country Status (1)

Country Link
JP (1) JPH0473911A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177486A (en) * 2007-01-22 2008-07-31 Matsushita Electric Works Ltd Transformer
CN101789308A (en) * 2010-03-19 2010-07-28 株洲南车时代电气股份有限公司 Winding method for high-frequency transformer winding and high-frequency transformer
CN104769686A (en) * 2012-11-16 2015-07-08 塞莫费雪科学(不来梅)有限公司 Rf transformer
JP2020047766A (en) * 2018-09-19 2020-03-26 株式会社豊田中央研究所 Transformer, battery charger and connector
DE102020100190A1 (en) * 2020-01-08 2021-07-08 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Inductive component with an operating frequency in the medium frequency range

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177486A (en) * 2007-01-22 2008-07-31 Matsushita Electric Works Ltd Transformer
CN101789308A (en) * 2010-03-19 2010-07-28 株洲南车时代电气股份有限公司 Winding method for high-frequency transformer winding and high-frequency transformer
CN104769686A (en) * 2012-11-16 2015-07-08 塞莫费雪科学(不来梅)有限公司 Rf transformer
JP2020047766A (en) * 2018-09-19 2020-03-26 株式会社豊田中央研究所 Transformer, battery charger and connector
DE102020100190A1 (en) * 2020-01-08 2021-07-08 Sts Spezial-Transformatoren-Stockach Gmbh & Co. Kg Inductive component with an operating frequency in the medium frequency range

Similar Documents

Publication Publication Date Title
US6087922A (en) Folded foil transformer construction
JP3311391B2 (en) Leakage inductance reducing transformer, high frequency circuit and power converter using the same, and method of reducing leakage inductance in transformer
KR101248499B1 (en) Plane coil
JP5307105B2 (en) COMPOSITE WINDING ELEMENT AND COMPOSITE WINDING ELEMENT FOR TRANSFORMER, TRANSFORMATION SYSTEM AND NOISE CUT FILTER USING SAME
JPH07263258A (en) Transformer
US4012706A (en) Sheet-wound transformer coils
WO2009105682A1 (en) Multilayer foil-wound inductors having alternating layers
Nymand et al. Reducing ac-winding losses in high-current high-power inductors
US7383625B2 (en) Method of manufacturing continuous disk winding for high-voltage superconducting transformers
JPH0473911A (en) High frequency transformer
JP3144913B2 (en) Thin transformer and power supply using the same
JP2004349562A (en) Transformer and coil for transformer
US3195088A (en) High current winding for electrical inductive apparatus
WO2014023233A1 (en) Power induction device and method for implementing shunting measurement through inductive winding
US8466770B2 (en) Multi-torroid transformer
JPH0456303A (en) High-frequency inductor
US11177066B2 (en) Egg-shaped continuous coils for inductive components
CN110660567A (en) Laminated coil and method for manufacturing same
US7471180B2 (en) Transformer having multi-layered winding structure
JPS6366045B2 (en)
RU2444076C1 (en) Transformer
WO2013054473A1 (en) Wound element coil and wound element
JPH03280409A (en) Flat transformer
JP7288651B2 (en) planar transformer
CN114255909B (en) Manufacturing method of heat-resistant grade 140 transposed conductor for vegetable oil transformer