JPH0471098B2 - - Google Patents
Info
- Publication number
- JPH0471098B2 JPH0471098B2 JP58089924A JP8992483A JPH0471098B2 JP H0471098 B2 JPH0471098 B2 JP H0471098B2 JP 58089924 A JP58089924 A JP 58089924A JP 8992483 A JP8992483 A JP 8992483A JP H0471098 B2 JPH0471098 B2 JP H0471098B2
- Authority
- JP
- Japan
- Prior art keywords
- polyethylene
- density
- low
- weight
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- -1 polyethylene Polymers 0.000 claims description 18
- 239000004698 Polyethylene Substances 0.000 claims description 17
- 229920000573 polyethylene Polymers 0.000 claims description 17
- 229920001684 low density polyethylene Polymers 0.000 claims description 15
- 239000004702 low-density polyethylene Substances 0.000 claims description 15
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 239000011342 resin composition Substances 0.000 claims description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 7
- 239000003431 cross linking reagent Substances 0.000 claims description 4
- 238000010526 radical polymerization reaction Methods 0.000 claims description 4
- 238000000034 method Methods 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- 238000004132 cross linking Methods 0.000 description 10
- 150000001451 organic peroxides Chemical class 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 239000011243 crosslinked material Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- XOUQAVYLRNOXDO-UHFFFAOYSA-N 2-tert-butyl-5-methylphenol Chemical compound CC1=CC=C(C(C)(C)C)C(O)=C1 XOUQAVYLRNOXDO-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 235000010893 Bischofia javanica Nutrition 0.000 description 1
- 240000005220 Bischofia javanica Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000011074 autoclave method Methods 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920003020 cross-linked polyethylene Polymers 0.000 description 1
- 239000004703 cross-linked polyethylene Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009778 extrusion testing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
Description
【発明の詳細な説明】
本発明は電力ケーブル用樹脂組成物に関し、特
に電力ケーブルに被覆したポリエチレン組成物を
架橋してなる架橋ポリエチレンの耐電気トリー
性、耐電圧特性や耐熱性、架橋性および加工性を
向上せしめ得る電力ケーブル用樹脂組成物に関す
る。
従来、高電圧用電力ケーブルとしてはOFケー
ブルが主体として使用されて来た。しかし、絶縁
材料であるポリエチレンの品質の向上やケーブル
製造法の改良等から架橋ポリエチレンケーブル
(以下単にCVケーブルという)が高電圧用電力ケ
ーブルとして使用され、最近では試験的にではあ
るが254KVという高電圧下においてもCVケーブ
ルが使用され始めてきている。CVケーブルは保
守点検の容易さ、コストダウン等の種々の優位性
から今後も更に高電圧化の方向に進むものと思わ
れる。
しかるに現在CVケーブルとして使用されてい
る高圧法ラジカル重合体法で製造される低密度ポ
リエチレン、すなわち高圧法ポリエチレンはその
加工性の良さが優れているものの結晶性の低さか
ら耐電気トリー性や耐電圧特性が低くく、特に高
温時での上記特性に劣るという欠点を有してい
る。
また、中低圧法で製造される高密度ポリエチレ
ンは結晶性が高く、かつ融点が高いため、高温時
での前記諸特性は優れている。しかし、一方では
中低圧法で製造される高密度ポリエチレンは融点
が高いため、有機過酸化物による架橋時において
は高温が必要となるため、押出機内等で均一に混
練する時に有機過酸化物が分解し、ゲル化すると
いうトラブルが生じ易い。また高密度ポリエチレ
ンにおいては架橋度を向上し、前記諸物性の向上
をはかるためには樹脂の分子量分布を狭く、すな
わち低分子量を少なくすることが好ましいが、分
子量分布を狭くすると押出し加工性が著しく悪
く、押出機の負荷が異常に高くなつたり、押出物
の表面が荒れてしまい、平滑な表面が得られず、
製品価値が下落し、諸物性の低下が懸念される。
一方加工性を上げるために分子量分布を広くした
場合においては架橋度が低下し、前記諸物性の低
下をまねき、高電圧用CVケーブルとしては使用
できないという問題点を有している。
また上記製品の表面荒れを改良する方法として
は特公昭38−15221号、同39−17410号、同44−
22904号、特開昭51−39744号、同52−14647号公
報等に多くの提案がなされている。しかしながら
いずれの場合においても架橋性が充分でなく、前
記諸物性を向上させることができない。
本発明は、上記問題点に鑑み鋭意検討した結果
なされたもので、加工性と架橋性を同時に満足
し、かつ耐電圧性、耐電気トリー性を向上せし
め、特に高温での電気特性に優れた電力ケーブル
用樹脂組成物を提供するものである。
すなわち、本発明は架橋性ポリエチレンと架橋
剤を必須成分とする架橋電力ケーブルの絶縁用樹
脂組成物において、該ポリエチレンが、(A)密度
0.92〜0.945g/c.c.の直鎖状中低密度ポリエチレ
ン90〜30重量%と、(B)高圧法ラジカル重合による
密度0.935g/c.c.以下の枝状低密度ポリエチレン
70〜10重量%とからなり、(A)+(B)のポリエチレン
が0.5〜5g/10分のメルトインデツクスとポリ
エチレン分子を構成する炭素原子1000個に対して
少なくとも0.13個の末端ビニル基を有することを
特徴とする架橋電力ケーブルの絶縁用樹脂組成物
に関するものである。
本発明の上記(A)成分である直鎖状中低密度ポリ
エチレンとはチグラー系触媒、クロム系触媒等の
各種の触媒を用い、中低圧下または高圧下におい
て、気相法、溶液法、懸濁重合法等の各種の重合
法によるエチレンを主成分とするα−オレフイン
との共重合体で、密度が0.92〜0.945g/c.c.のも
のである。
上記エチレンと共重合させるα−オレフインと
は炭素数3〜12、好ましくは炭素数4〜10の範囲
のものが選ばれ、例えばプロピレン、ブテン−
1、ヘキセン−1、ヘプテン−1、オクテン−
1、4−メチル−ペンテン−1等が挙げられる。
一方本発明の(B)成分である枝状低密度ポリエチ
レンとは、チユーブラー法、またはオートクレー
ブ法による高圧ラジカル重合で製造される低密度
ポリエチレンの単独重合体、エチレンを主成分と
しこれと少量の共重合可能なモノマーとの共重合
体、例えばエチレン−酢酸ビニル共重合体、エチ
レン−アクリル酸エチル等が包含される。
本発明の組成物は上記(A)成分が90〜30重量%、
好ましくは50〜70重量%、(B)成分が70〜10重量
%、好ましくは50〜30重量%の割合で混合され、
該混合物のメルトインデツクスが0.5〜5g/10
分、好ましくは1〜4g/10分、ポリエチレン組
成物の炭素原子1000個に対して少なくとも0.13個
の末端ビニル基を有することが肝要である。上記
(A)成分が30重量%未満においては電気的特性、特
に高温時での電気特性が悪く、90重量%を超える
場合においては加工性が不充分となり、該ポリエ
チレン混合物のメルトインデツクス(以下単に
MIと称する)が、0.5未満においては押出加工性
が悪く、押出機内での発熱が大きく、有機過酸化
物を用いた架橋においてはゲルの発生が多くなる
ばかりでなく表面の平滑さも失なわれる。MIが
5を超える場合においては溶融粘度が小さく、銅
線が偏心したり、樹脂の垂れ下りが起こり架橋管
への付着が生じる。
また本発明は分子内の末端ビニル基が架橋性に
最も大きく寄与していることに着眼し、これをポ
リエチレン組成物の炭素原子1000個に対して少な
くとも0.13個の末端ビニル基を有することにより
大幅に架橋性が改良され、分子量分布を広げて
も、上記の様に組成物中の炭素原子1000個に対し
て末端ビニル基の数を少なくとも0.13個とすると
により、加工性および架橋性を改良しうることを
見出したものである。
本発明のポリエチレン混合物の密度は、(B)成分
である枝状低密度ポリエチレン(以下単にB−
LDPEと称す)の密度が0.935以上のものを工業
的に製造し難いことから、実質的には(A)成分の直
鎖状中低密度ポリエチレン(以下単にL−LDPE
と称す)の密度に依存され、一般的には0.89〜
0.945、好ましくは0.90〜0.940g/c.c.の範囲で選
択される。
上記密度が0.945g/c.c.を超える場合において
は融点が高くなるため、有機過酸化物を用いて、
押出成形する場合においては押出機内でゲル化が
生じ、長時間の安定した押出し成形が難かしくな
る恐れを生じる。一方、0.89g/c.c.未満において
は耐熱性等の諸物性が低下する恐れを生じる。
また本発明のポリエチレン混合物における分子
量分布は大きい方が好ましいが、あまり大きすぎ
ると伸びが悪くなるのでN値としては1.8〜2.5、
更に好ましくは2.0〜2.3の範囲が良い。
前記「N値」(非ニユートン流動性値)とは、
ポリエチレンの分子量分布にほぼ相関し流動性の
尺度となるもので、本発明では、島津製作所製、
高化式フローテスター(HB−I型)を用い、ダ
イ:2mmΦ×40mm、170℃において150Kg及び20Kg
の荷重をかけた時のポリエチレンの流出量を測定
し、次の式に従つて算出したものをいう。
N値=log(γ150/γ20)/log(τ150/τ20)
ここで、γ:せん断速度(Sec-1)
τ:せん断応力(dyn/cm2)
本発明の組成物の架橋方法は無機あるいは有機
の過酸化物による方法、有機シラン化合物を用い
た水架橋方法等の架橋剤を用いる方法であれば限
定されないが、特に有機過酸化物を用いた架橋方
法は簡単で、押出加工性、架橋性、ケーブルの電
気特性等全ての点にわたつて秀れた特徴が表われ
るので最も好ましい。上記有機過酸化物としては
通常に使用されるもので良くベンゾイルパーオキ
サイド、ジクミルパーオキサイド等、特に限定さ
れない。
また本発明においては酸化防止剤、紫外線防止
剤、顔料、電圧安定剤、カーボンブラツク、無機
充填剤等の通例の添加剤をいずれの段階で配合し
てよい。
上述の様に本発明の組成物は加工性および架橋
性が良く、かつ耐電気トリー性、耐電圧性、耐熱
性等の電気的特性にもすぐれたものである。
以下本発明を実施例により更に詳述する。
実施例1〜5および比較例1〜8
(A)成分のL−LDPE樹脂として、エチレン−ブ
テン−1共重合体
(B)成分のB−LDPE樹脂として、高圧ラジカル
重合法によつて製造したもの
の種々の(A)および(B)成分をそれぞれ処方した組成
物に架橋剤としてジクミルパーオキサイド2重量
%、4,4チオビス(2−t−ブチル−5−メチ
ルフエノール)0.2重量%を添加し、160℃×30分
架橋し、シート状または円筒状にして該架橋につ
いてゲル分率、トリー発生電圧および、加熱変形
率を測定し、評価した結果を第1表に示した。
また、製造時の電力ケーブルの表面状態と相関
する小型ブロー成型機を用いたパリソン押出テス
トを行ない表面状態を観察し、評価した結果も第
1表に表示した。
この結果、本発明の組成物はゲル分率、トリー
発生電圧、加熱変形率、表面状態の全てにすぐれ
ている。
尚試験法は次の通りである。
<試験法>
電気トリー……曲率半径3μmの針を使用し、電
極間距離3m/m、初期印加電圧
5KV、10分間課電、1KVステツプア
ツプのシングルニードル試験で10サン
プル中5コにトリーが発生した電圧を
求めた。
加熱変形率……径10mmΦ、厚さ6mmの円筒を130
℃のオイルバス中で荷重2.63Kgで加圧
し、30分後の変形率を求めた。
ゲル分率……架橋生成物を20メツシユに粉砕し、
キシレンで120℃、10時間抽出し残率
を求めた。
末端ビニルの測定……厚さ0.6m/mシートを赤
外吸収スペクトルにより、波長が
11.03μの所の吸光度を求め次式より求
めた。
コ/1000c=k・logI0/I×1/dl
ここでk:定数(0.116)、
d:ポリエチレンの密度
l:シートの厚さ、
I0,I:特性吸収及びベースの吸光度
ブローパリソン評価方法……ブロー成形機を使用
し、内径9m/mΦ、外径10m/mΦ
のダイスを使用し、樹脂温度150℃で
電力ケーブルの被覆時と同じせん断速
度で押出した時の表面状態を評価し
た。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a resin composition for power cables, and in particular to the electrical resistance, voltage resistance, heat resistance, crosslinkability and The present invention relates to a resin composition for power cables that can improve processability. Conventionally, OF cables have been mainly used as high-voltage power cables. However, due to improvements in the quality of polyethylene, which is an insulating material, and improvements in cable manufacturing methods, cross-linked polyethylene cables (hereinafter simply referred to as CV cables) are being used as high-voltage power cables, and recently, although on a trial basis, CV cables are also beginning to be used under high voltage conditions. It is thought that CV cables will continue to move toward higher voltages in the future due to their various advantages, such as ease of maintenance and inspection and cost reduction. However, low-density polyethylene manufactured by the high-pressure radical polymer method, which is currently used for CV cables, has excellent workability, but its low crystallinity makes it difficult to maintain electrical tree resistance and durability. It has the disadvantage of poor voltage characteristics, particularly inferior to the above characteristics at high temperatures. In addition, high-density polyethylene produced by a medium-low pressure method has high crystallinity and a high melting point, so the above-mentioned properties at high temperatures are excellent. However, on the other hand, high-density polyethylene manufactured using a medium-low pressure method has a high melting point, so high temperatures are required during crosslinking with organic peroxides, so organic peroxides are mixed uniformly in an extruder, etc. Problems such as decomposition and gelation are likely to occur. In addition, in high-density polyethylene, in order to improve the degree of crosslinking and improve the above-mentioned physical properties, it is preferable to narrow the molecular weight distribution of the resin, that is, to reduce the low molecular weight. Unfortunately, the load on the extruder becomes abnormally high, and the surface of the extrudate becomes rough, making it impossible to obtain a smooth surface.
There are concerns that the product value will decline and various physical properties will decline.
On the other hand, when the molecular weight distribution is widened in order to improve processability, the degree of crosslinking decreases, resulting in a decrease in the above-mentioned physical properties, resulting in the problem that it cannot be used as a high-voltage CV cable. In addition, methods for improving the surface roughness of the above products include Japanese Patent Publications No. 38-15221, No. 39-17410,
Many proposals have been made in JP-A No. 22904, JP-A No. 51-39744, JP-A No. 52-14647, etc. However, in either case, the crosslinkability is insufficient and the above-mentioned physical properties cannot be improved. The present invention was made as a result of intensive studies in view of the above problems, and has achieved both processability and crosslinking properties, improved voltage resistance and electrical resistance, and has excellent electrical properties, especially at high temperatures. The present invention provides a resin composition for power cables. That is, the present invention provides a resin composition for insulating crosslinked power cables containing crosslinkable polyethylene and a crosslinking agent as essential components, wherein the polyethylene has (A) a density of
90-30% by weight of linear medium-low density polyethylene of 0.92-0.945 g/cc and (B) branched low-density polyethylene with a density of 0.935 g/cc or less obtained by high-pressure radical polymerization.
The polyethylene of (A) + (B) has a melt index of 0.5 to 5 g/10 minutes and at least 0.13 terminal vinyl groups per 1000 carbon atoms constituting the polyethylene molecule. The present invention relates to a resin composition for insulating a crosslinked power cable, which is characterized by having the following characteristics: Linear medium-low density polyethylene, which is the above component (A) of the present invention, is produced using various catalysts such as Ziegler catalysts and chromium catalysts, under medium-low pressure or high pressure, by gas phase method, solution method, suspension method, etc. It is a copolymer with α-olefin containing ethylene as a main component produced by various polymerization methods such as turbidity polymerization, and has a density of 0.92 to 0.945 g/cc. The α-olefin to be copolymerized with ethylene is selected from those having 3 to 12 carbon atoms, preferably 4 to 10 carbon atoms, such as propylene, butene-olefin, etc.
1, hexene-1, heptene-1, octene-
Examples include 1,4-methyl-pentene-1. On the other hand, branched low-density polyethylene, which is component (B) of the present invention, is a homopolymer of low-density polyethylene produced by high-pressure radical polymerization using a tubular method or an autoclave method, and is a homopolymer of low-density polyethylene that has ethylene as its main component and a small amount of co-polymerized ethylene. Copolymers with polymerizable monomers, such as ethylene-vinyl acetate copolymers, ethylene-ethyl acrylate, and the like are included. The composition of the present invention contains the above component (A) in an amount of 90 to 30% by weight;
Preferably 50 to 70% by weight, component (B) is mixed in a proportion of 70 to 10% by weight, preferably 50 to 30% by weight,
The melt index of the mixture is 0.5 to 5 g/10
It is essential to have at least 0.13 terminal vinyl groups per 1000 carbon atoms of the polyethylene composition. the above
If component (A) is less than 30% by weight, the electrical properties, especially at high temperatures, will be poor; if it exceeds 90% by weight, the processability will be insufficient, and the melt index of the polyethylene mixture (hereinafter simply referred to as
When the MI is less than 0.5, extrusion processability is poor, heat generation is large in the extruder, and in crosslinking using organic peroxides, not only does gel formation increase, but the surface smoothness is also lost. . If the MI exceeds 5, the melt viscosity is low, causing the copper wire to become eccentric or the resin to sag, resulting in adhesion to the crosslinked pipe. In addition, the present invention focuses on the fact that the terminal vinyl group in the molecule contributes most significantly to crosslinking properties, and this can be greatly improved by having at least 0.13 terminal vinyl groups per 1000 carbon atoms in the polyethylene composition. Even if the crosslinkability is improved and the molecular weight distribution is broadened, processability and crosslinkability are improved by setting the number of terminal vinyl groups to at least 0.13 per 1000 carbon atoms in the composition as described above. This is what we discovered. The density of the polyethylene mixture of the present invention is determined by the branched low-density polyethylene (hereinafter simply B-
Since it is difficult to industrially produce LDPE with a density of 0.935 or higher, it is practically used as component (A) linear medium-low density polyethylene (hereinafter simply L-LDPE).
), generally 0.89~
0.945, preferably in the range of 0.90 to 0.940 g/cc. When the above density exceeds 0.945 g/cc, the melting point becomes high, so using an organic peroxide,
In the case of extrusion molding, gelation may occur in the extruder, making it difficult to perform stable extrusion molding over a long period of time. On the other hand, if it is less than 0.89 g/cc, various physical properties such as heat resistance may deteriorate. In addition, it is preferable that the molecular weight distribution in the polyethylene mixture of the present invention is large, but if it is too large, the elongation will be poor, so the N value should be 1.8 to 2.5.
More preferably, it is in the range of 2.0 to 2.3. The above “N value” (non-Newtonian liquidity value) is
It roughly correlates with the molecular weight distribution of polyethylene and serves as a measure of fluidity.
Using Koka type flow tester (HB-I type), die: 2mmΦ x 40mm, 150Kg and 20Kg at 170℃
The amount of polyethylene flowing out when a load is applied is measured and calculated according to the following formula. N value = log(γ150/γ20)/log(τ150/τ20) where γ: shear rate (Sec -1 ) τ: shear stress (dyn/ cm2 ) The crosslinking method for the composition of the present invention may be inorganic or organic. There are no limitations as long as the method uses a crosslinking agent, such as a method using a peroxide, a water crosslinking method using an organic silane compound, etc., but a crosslinking method using an organic peroxide is particularly easy and has good extrusion processability and crosslinking properties. This is the most preferable because it exhibits excellent characteristics in all respects, including the electrical characteristics of the cable. The above-mentioned organic peroxides may be those commonly used and are not particularly limited, such as benzoyl peroxide and dicumyl peroxide. Further, in the present invention, customary additives such as antioxidants, ultraviolet inhibitors, pigments, voltage stabilizers, carbon black, and inorganic fillers may be added at any stage. As mentioned above, the composition of the present invention has good processability and crosslinkability, and also has excellent electrical properties such as electric tree resistance, voltage resistance, and heat resistance. The present invention will be explained in more detail below with reference to Examples. Examples 1 to 5 and Comparative Examples 1 to 8 Ethylene-butene-1 copolymer was used as L-LDPE resin as component (A). Produced by high-pressure radical polymerization as B-LDPE resin as component (B). 2% by weight of dicumyl peroxide and 0.2% by weight of 4,4thiobis(2-t-butyl-5-methylphenol) were added as crosslinking agents to a composition containing various components (A) and (B). The crosslinked material was then crosslinked at 160° C. for 30 minutes, formed into a sheet or cylindrical shape, and the gel fraction, tree generation voltage, and thermal deformation rate of the crosslinked material were measured. Table 1 shows the evaluation results. Table 1 also shows the results of a parison extrusion test using a small blow molding machine, which correlates with the surface condition of the power cable at the time of manufacture, to observe and evaluate the surface condition. As a result, the composition of the present invention has excellent gel fraction, tree generation voltage, thermal deformation rate, and surface condition. The test method is as follows. <Test method> Electrical tree...Using a needle with a radius of curvature of 3 μm, inter-electrode distance of 3 m/m, initial applied voltage
The voltage at which trees occurred in 5 out of 10 samples was determined in a single needle test with 5KV applied for 10 minutes and 1KV step-up. Heating deformation rate...Cylinder with diameter 10mmΦ and thickness 6mm is 130
It was pressurized with a load of 2.63 kg in an oil bath at ℃, and the deformation rate was determined after 30 minutes. Gel fraction...Crush the cross-linked product into 20 meshes,
Extraction was performed with xylene at 120°C for 10 hours, and the residual rate was determined. Measurement of vinyl terminals...The wavelength of a 0.6m/m thick sheet is measured using an infrared absorption spectrum.
The absorbance at 11.03μ was determined using the following formula. /1000c=k・logI 0 /I×1/dl where k: constant (0.116), d: density of polyethylene, l: thickness of sheet, I 0 , I: characteristic absorption and base absorbance blow parison evaluation method ...Using a blow molding machine, inner diameter 9m/mΦ, outer diameter 10m/mΦ
The surface condition was evaluated when the resin was extruded using a die at a resin temperature of 150°C and at the same shear rate as when covering power cables. 【table】
Claims (1)
る架橋電力ケーブルの絶縁用樹脂組成物におい
て、該ポリエチレンが、(A)密度0.92〜0.945g/
c.c.の直鎖状中低密度ポリエチレン90〜30重量%
と、(B)高圧法ラジカル重合による密度0.935g/
c.c.以下の枝状低密度ポリエチレン70〜10重量%と
からなり、(A)+(B)のポリエチレンが0.5〜5g/
10分のメルトインデツクスとポリエチレン分子を
構成する炭素原子1000個に対して少なくとも0.13
個の末端ビニル基を有することを特徴とする架橋
電力ケーブルの絶縁用樹脂組成物。1. In a resin composition for insulating crosslinked power cables containing crosslinkable polyethylene and a crosslinking agent as essential components, the polyethylene (A) has a density of 0.92 to 0.945 g/
cc linear medium-low density polyethylene 90-30% by weight
and (B) density 0.935g/ by high-pressure radical polymerization.
It consists of 70 to 10% by weight of branched low-density polyethylene of cc or less, and 0.5 to 5g of (A) + (B) polyethylene/
10 minute melt index and at least 0.13 per 1000 carbon atoms making up the polyethylene molecule
A resin composition for insulating a crosslinked power cable, characterized in that it has terminal vinyl groups.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8992483A JPS59215342A (en) | 1983-05-24 | 1983-05-24 | Resin composition for power cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8992483A JPS59215342A (en) | 1983-05-24 | 1983-05-24 | Resin composition for power cable |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59215342A JPS59215342A (en) | 1984-12-05 |
JPH0471098B2 true JPH0471098B2 (en) | 1992-11-12 |
Family
ID=13984244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8992483A Granted JPS59215342A (en) | 1983-05-24 | 1983-05-24 | Resin composition for power cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59215342A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61225235A (en) * | 1985-03-30 | 1986-10-07 | Mitsubishi Cable Ind Ltd | Resin composition |
JPH0819289B2 (en) * | 1987-02-25 | 1996-02-28 | 三菱電線工業株式会社 | Resin composition for power cable coating |
WO2018130191A1 (en) * | 2017-01-13 | 2018-07-19 | 杭州星庐科技有限公司 | Photocrosslinking rubber composite, applications, and manufacturing method for the applications |
CN108299742B (en) | 2017-01-13 | 2021-04-06 | 杭州星庐科技有限公司 | Photo-crosslinked rubber composition, use thereof, and method for producing the use |
CN108329602B (en) * | 2017-01-13 | 2021-04-06 | 杭州星庐科技有限公司 | Rubber composition and processing method, sealing element using rubber composition and production method |
WO2018130186A1 (en) * | 2017-01-13 | 2018-07-19 | 杭州星庐科技有限公司 | Rubber composite, processing method, sealing element applying composite, and manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5951408A (en) * | 1982-09-17 | 1984-03-24 | 昭和電線電纜株式会社 | Insulated wire |
JPS5966436A (en) * | 1982-10-08 | 1984-04-14 | Furukawa Electric Co Ltd:The | Semiconductive resin composition |
JPS59133238A (en) * | 1983-01-21 | 1984-07-31 | Mitsui Petrochem Ind Ltd | Ethylene/alpha-olefin copolymer composition |
-
1983
- 1983-05-24 JP JP8992483A patent/JPS59215342A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5951408A (en) * | 1982-09-17 | 1984-03-24 | 昭和電線電纜株式会社 | Insulated wire |
JPS5966436A (en) * | 1982-10-08 | 1984-04-14 | Furukawa Electric Co Ltd:The | Semiconductive resin composition |
JPS59133238A (en) * | 1983-01-21 | 1984-07-31 | Mitsui Petrochem Ind Ltd | Ethylene/alpha-olefin copolymer composition |
Also Published As
Publication number | Publication date |
---|---|
JPS59215342A (en) | 1984-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4599391A (en) | Coating composition for power cable | |
US3248359A (en) | Polyolefin compositions | |
CN102666602B (en) | There is crosslinkable polymer composition and the cable of favourable electrical property | |
US10290390B2 (en) | Polymer blends | |
EP1739110B9 (en) | Polyethylene composition of improved processability | |
US8330044B2 (en) | Insulation material for electric cables with superior flexibility and crosslinkability and electric cable produced with the same | |
US2993876A (en) | Ethylene polymer-polyisobutylene composition, method of making same, and electrical wire coated therewith | |
KR101583106B1 (en) | Multiphase polymeric composition useful for preparing cable insulation | |
EP0032804A2 (en) | Film-forming thermoplastic elastomeric polymer compositions | |
EP0318841A2 (en) | Polymeric composition useful in an electrical conduit covering and an electrical conduit covering process utilizing same | |
JPH0136497B2 (en) | ||
CN100498980C (en) | Water-tree-retardant cable insulation material | |
NO794077L (en) | COATING COPYLUMES OF PROPYLENE POLYMER AND ETHYLENE COPOLYMER | |
JPH0471098B2 (en) | ||
CN114163716B (en) | High carbon black photo-oxidative aging resistant silane crosslinked polyethylene insulating material and preparation method thereof | |
DE69712585T2 (en) | Cable resistant to dendrite formation | |
US3110623A (en) | Ethylene-propylene copolymer insulation on an electrical conductor | |
WO2001060871A1 (en) | Extrusion compositions with improved melt flow | |
US3267173A (en) | Product and process for making a polyethylene-maleate diester graft copolymer | |
US20020022697A1 (en) | Composition having improved thermomechanical properties, and a method of cross-linking it | |
JPS58157838A (en) | Polyethylene composition for electrical insulation | |
KR100561274B1 (en) | Crosslinkable polyolefine composition having excellent water tree resistance and thermal stability | |
JPS6215963B2 (en) | ||
KR102670642B1 (en) | Polyolefin Resin Composition with High Resistance to Tracking and Article Molded Therefrom | |
JPS62223249A (en) | Electrically insulating resin composition |