JPH0470718A - Optical amplification device equipped with gain control means - Google Patents
Optical amplification device equipped with gain control meansInfo
- Publication number
- JPH0470718A JPH0470718A JP2183387A JP18338790A JPH0470718A JP H0470718 A JPH0470718 A JP H0470718A JP 2183387 A JP2183387 A JP 2183387A JP 18338790 A JP18338790 A JP 18338790A JP H0470718 A JPH0470718 A JP H0470718A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- gain
- optical amplification
- signal
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 117
- 230000003321 amplification Effects 0.000 title claims abstract description 32
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 abstract description 25
- 239000013307 optical fiber Substances 0.000 abstract description 15
- 230000005540 biological transmission Effects 0.000 abstract description 14
- 238000004891 communication Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Lasers (AREA)
- Semiconductor Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光信号を伝送、交換する光通信ネットワーク
などに8いて光信号の減衰を補償する為に用いられるl
ljl制得手段を捕えた光増幅装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is an optical communication network that transmits and exchanges optical signals, and is used to compensate for attenuation of optical signals.
The present invention relates to an optical amplification device incorporating means for obtaining ljl.
[従来の技術]
近年、光ファイバを伝迭路とする光フアイバ伝送システ
ムは、広帯域、低損失、耐電FiB誘導性等の多くの利
点を有することから、従来の同軸ケーブルによる伝送シ
ステムに代わり幹線系、LANの分野で導入が進められ
ている。[Prior Art] In recent years, optical fiber transmission systems that use optical fibers as transmission paths have many advantages such as wide bandwidth, low loss, and electrically resistant FiB inductivity. Its introduction is progressing in the fields of systems and LANs.
この中で、光LANの分野では、各ノードにおいて光信
号の再生・中継を電気的に行なう能動型が玉流であるが
、光の特徴をより生かすことのできる受動型も研究開発
が進められている。しかし、この受動型の光LANでは
光信号の減衰の為、システムに接続するノード数を多(
することが困難である。この為、光信号の減衰を補償す
る様に光の直接増幅を行なう光増幅器が注目されている
しかし、一般に光増幅器は時間の経過に伴い、環境の変
化、素子特性の変化などに起因してその利得が若干変動
する。この変動を抑える為に、般に自動利得側@(以下
、AGC(automatjc gain con
trol)と呼ぶ)が行なわれる。光増幅器のAGCは
、光信号が光増幅器に入力された時に出力される光出力
が所定の値にある様に制御されて行なわれる。Among these, in the field of optical LAN, the active type that electrically regenerates and relays optical signals at each node is popular, but research and development is also progressing on the passive type that can make better use of the characteristics of light. ing. However, in this passive optical LAN, the number of nodes connected to the system must be increased due to the attenuation of the optical signal.
difficult to do. For this reason, optical amplifiers that directly amplify light to compensate for optical signal attenuation are attracting attention. However, optical amplifiers generally suffer from changes in the environment and element characteristics over time. The gain will vary slightly. In order to suppress this fluctuation, the automatic gain side (hereinafter referred to as AGC) is generally used.
trol) is carried out. AGC of an optical amplifier is controlled so that the optical output output when an optical signal is input to the optical amplifier is a predetermined value.
第4図は光増幅器のAGCを行なう光増幅装置の従来例
を示すブロック図である。この例では光増幅部として、
発振しきい値以下の範囲でバイアス電流が注入される半
導体レーザ増幅器が用いられている。同図において、4
1−1.41−2は光ファイバ、42は半導体レーザ増
幅器、43は光分岐器、44は受光回路、49は駆動回
路である。光ファイバ41−1を伝搬する光信号は、半
導体レーザ増幅器42において増幅され、その出力は光
分岐器43で分岐されて一部は受光回路44へ、残りは
光ファイバ41−2へ送出される。FIG. 4 is a block diagram showing a conventional example of an optical amplification device that performs AGC of an optical amplifier. In this example, the optical amplification section is
A semiconductor laser amplifier is used in which a bias current is injected in a range below the oscillation threshold. In the same figure, 4
1-1.41-2 is an optical fiber, 42 is a semiconductor laser amplifier, 43 is an optical splitter, 44 is a light receiving circuit, and 49 is a drive circuit. The optical signal propagating through the optical fiber 41-1 is amplified by the semiconductor laser amplifier 42, and its output is branched by the optical splitter 43, so that part of the signal is sent to the light receiving circuit 44 and the rest is sent to the optical fiber 41-2. .
受光回路44に入射した光信号は電気信号に変換され、
適当に処理されて駆動回路49に入力される。駆動回路
はこの入力された電気信号に応じて半導体レーザ!′1
幅器42のバイアス電流を変化させ、半導体レーザ増幅
器42の光出力が一定になる様にこれを駆動する。The optical signal incident on the light receiving circuit 44 is converted into an electrical signal,
It is appropriately processed and input to the drive circuit 49. The drive circuit operates a semiconductor laser according to this input electrical signal! '1
The bias current of the amplifier 42 is changed to drive the semiconductor laser amplifier 42 so that its optical output becomes constant.
[発明が解決しようとする課H]
しかし、従来の光増幅装置では、AGCの為に常に光信
号が該装置に入力されている必要があり、また、AGC
の時定数をファイバ伝送路上の光信号の変調速度に応じ
て最適化する必要があった。これは、AGCが常に働い
ているので光信号が実質的に入力されなくなるなどする
と光増幅器が途方もなく大きな利得を持ったりして誤動
作を起こすからである。[Problem H to be solved by the invention] However, in the conventional optical amplifying device, it is necessary that an optical signal is always input to the device for AGC, and
It was necessary to optimize the time constant according to the modulation speed of the optical signal on the fiber transmission path. This is because the AGC is always working, so if no optical signal is substantially input, the optical amplifier will have an enormous gain and malfunction.
従って、一定の変調速度の光信号が伝送路上に常にある
幹線系の光通信ネットワークではこうした誤動作を起こ
さず問題がないが1例えばイーサネット(Ethern
et)の様に伝送路上にバースト的に不連続に信号があ
るネットワークや、伝送路上の光信号の変調速度が変化
するネットワークでは、上記の如き従来例を適用するこ
とが困難である。Therefore, in trunk optical communication networks where optical signals with a constant modulation rate are always on the transmission path, such malfunctions do not occur and there is no problem.
It is difficult to apply the above-mentioned conventional example to a network in which there are discontinuous burst-like signals on a transmission path, such as et), or a network in which the modulation speed of an optical signal on a transmission path changes.
よって、本発明の目的は、上記の課題に鑑み、伝送路上
に不連続に信号があるネットワークや信号の変調速度が
変化するネットワークなどにおいても使用できる利得制
御手段を備えた光増幅装置を提供することにある。Therefore, in view of the above-mentioned problems, an object of the present invention is to provide an optical amplification device equipped with a gain control means that can be used even in a network where signals are discontinuously present on a transmission path or a network where the signal modulation rate changes. There is a particular thing.
[課題を解決する為の手段]
上記目的を達成する本発明においては、半導体レーザ増
幅器や光フアイバ増幅器などの光増幅部と、光増幅部の
光出力の一部を受光する手段と、受光手段からの出力を
用いて光増幅部の利得を制御する手段と、光増幅部の利
得を制御した後の状態を保持する手段と、この保持され
た利得を間欠的に更改する様に間欠的に利得制御手段が
光増幅部に働くようにする(例えば間欠的に利得制御手
段が作動状態にされることにより)手段が備えられてい
る。[Means for Solving the Problems] The present invention that achieves the above object includes an optical amplifying section such as a semiconductor laser amplifier or an optical fiber amplifier, a means for receiving a part of the optical output of the optical amplifying section, and a light receiving means. means for controlling the gain of the optical amplification section using the output from the optical amplification section; means for maintaining the state after controlling the gain of the optical amplification section; Means is provided for causing the gain control means to act on the optical amplification section (for example, by intermittently activating the gain control means).
また、和1得制御手段が光増幅部に動(ようにされるの
に合わせて間欠的に所定の光信号を光増幅部に入力させ
る手段を設けても良い。Furthermore, means may be provided for intermittently inputting a predetermined optical signal to the optical amplifying section in accordance with the operation of the optical amplifying section by the sum-1 gain control means.
これにより、光増幅部のAGCが必要なら所定の光信号
を用いて間欠的にのみ行なわれるようになり、通常はそ
の利得状態が保持されているので、上記従来例で困難で
あった不連続信号や変調速度が変化するような信号でも
安定的に光増幅できるようになる。As a result, AGC in the optical amplification section can be performed only intermittently using a predetermined optical signal if necessary, and since the gain state is normally maintained, discontinuous It becomes possible to stably amplify optical signals even when the signal or modulation speed changes.
[実施例]
第1図は本発明の光増幅装置の第1実施例を示すブロッ
ク図である。本実施例では、光増幅部として半導体レー
ザ増幅器2を用い、光増幅部の利得を制御する利得制御
手段と制御した後の状態を保持する手段はデジタル回路
により構成されている。[Embodiment] FIG. 1 is a block diagram showing a first embodiment of the optical amplification device of the present invention. In this embodiment, a semiconductor laser amplifier 2 is used as the optical amplification section, and a gain control means for controlling the gain of the optical amplification section and a means for maintaining the state after the control are constituted by digital circuits.
第1図において、図中の矢印は光信号の伝送方向を示し
、1−1、■−2は伝送路であるところの光ファイバ、
2は光信号を増幅する半導体しザ増幅器、3は半導体レ
ーザ増幅器2からの光出力を分配する光分岐器、4は光
信号を受光してそれを電気信号に変換する受光回路、5
はその電気信号をアナログ信号からデジタル信号に変換
するA/D変換器、6はA/D変換器5からのデジタル
信号等に基づいて半導体レーザ増幅器2の利得を制御す
るデジタル信号を出力する演算回路、7は利得制御に必
要なデータを記憶する記憶回路、8は演算回路6からの
デジタル信号をアナログ信号に変換するD/A変換器、
9はD/A変換器8からのアナログ信号に基づいて利得
を調整して半導体レーザ増幅器2を駆動する駆動回路、
10は通信の制御等を行なう通信制御回路である。In Fig. 1, the arrows in the figure indicate the transmission direction of optical signals, and 1-1, -2 are optical fibers which are transmission lines,
2 is a semiconductor laser amplifier that amplifies the optical signal; 3 is an optical branching device that distributes the optical output from the semiconductor laser amplifier 2; 4 is a light receiving circuit that receives the optical signal and converts it into an electrical signal; 5;
6 is an A/D converter that converts the electrical signal from an analog signal to a digital signal, and 6 is an operation that outputs a digital signal that controls the gain of the semiconductor laser amplifier 2 based on the digital signal from the A/D converter 5. circuit; 7 is a storage circuit that stores data necessary for gain control; 8 is a D/A converter that converts the digital signal from the arithmetic circuit 6 into an analog signal;
9 is a drive circuit that adjusts the gain based on the analog signal from the D/A converter 8 and drives the semiconductor laser amplifier 2;
10 is a communication control circuit that controls communication and the like.
半導体レーザ増幅器2の利得は、駆動回路9により半導
体レーザ増幅器2の電極を介して活性領域に注入される
バイアス電流により決まり、一方この駆動回路9の出力
するバイアス電流はD/A変換器から駆動回路9へ入力
される入力信号の大きさにより制御される。記憶回路7
には、半導体レーザ増幅器2の光出力が所定の値となっ
た時のA/D変換器5の出力データ(以下、Doと呼ぶ
)が記憶されている。このデータD0は適宜書き換えら
れる様になっていても良い。The gain of the semiconductor laser amplifier 2 is determined by the bias current injected into the active region by the drive circuit 9 through the electrodes of the semiconductor laser amplifier 2, while the bias current output from the drive circuit 9 is determined by the bias current that is driven from the D/A converter. It is controlled by the magnitude of the input signal input to the circuit 9. Memory circuit 7
Stores therein the output data (hereinafter referred to as Do) of the A/D converter 5 when the optical output of the semiconductor laser amplifier 2 reaches a predetermined value. This data D0 may be rewritten as appropriate.
以上の構成に基づいて本実施例の動作を説明する。光増
幅装置の利得設定時の動作は次の様に行なわれる。The operation of this embodiment will be explained based on the above configuration. The operation when setting the gain of the optical amplifier is performed as follows.
先ず、演算回路6は、通信制御回路10がら利得設定の
命令があると以下の一連の手順で利得設定を行なう。こ
の命令は、一定間隔毎に発せられる様に設定されていて
も良いし、何らかの検知器(例えば、温度などの環境条
件を検知するもの)からの信号に応じて発せられてもよ
いし、外部的に人による操作で発せられても良く5種々
の態様があり得る。First, when the arithmetic circuit 6 receives a gain setting command from the communication control circuit 10, it sets the gain using the following series of steps. This command may be set to be issued at regular intervals, may be issued in response to a signal from some kind of detector (for example, one that detects environmental conditions such as temperature), or may be issued from an external device. It may be issued by manual operation by a person, and there are five different modes.
この時、半導体レーザ増幅器2には通信に用いられる信
号とデユーティ比が等しい所定の光信号が入力されてい
る。この光信号は、光増幅装置が用いられている光ノー
ド、或は光通信システムのシステム管理装置等の光源か
ら送出される様に設定する。いずれにせよ、少なくとも
利得制御時に合わせて所定の信号として増幅器2に入力
されることが必要である。At this time, a predetermined optical signal having the same duty ratio as a signal used for communication is input to the semiconductor laser amplifier 2. This optical signal is set to be sent out from a light source such as an optical node using an optical amplification device or a system management device of an optical communication system. In any case, it is necessary to input the signal to the amplifier 2 as a predetermined signal at least at the time of gain control.
上記命令が入力されると、演算回路6は上記所定の信号
に関するA/D変換器5の出力を基に半導体レーザ増幅
器2の光出力をモニターする。比較の結果、A/D変換
器5からの出力データが記憶回路7に予め設定されてい
る値り。からずれていることが分かった場合には、演算
回路6はこのずれ量及びずれ方向を判断してD/A変換
器8を通して駆動回路10を制御し、半導体レーザ増幅
器2の利得を調整してその光出力を調整する。この調整
は、A/D変換器5の出力データが記憶回路7に予め設
定されている値D0に等しくなる様に行なわれる。そし
て、この調整が終了したならば、演算回路6はD/A変
換器8の出力をこの調整終了時の値に保持する様な信号
をD/A変換器8に送り、利得設定が終了したことを通
信制御回路10に知らせる。When the above command is input, the arithmetic circuit 6 monitors the optical output of the semiconductor laser amplifier 2 based on the output of the A/D converter 5 regarding the above predetermined signal. As a result of the comparison, the output data from the A/D converter 5 is equal to the value preset in the storage circuit 7. If it is found that there is a deviation from the laser diode, the arithmetic circuit 6 determines the amount and direction of the deviation, controls the drive circuit 10 through the D/A converter 8, and adjusts the gain of the semiconductor laser amplifier 2. Adjust its light output. This adjustment is performed so that the output data of the A/D converter 5 becomes equal to the value D0 preset in the storage circuit 7. When this adjustment is completed, the arithmetic circuit 6 sends a signal to the D/A converter 8 to hold the output of the D/A converter 8 at the value at the end of this adjustment, and the gain setting is completed. This is notified to the communication control circuit 10.
こうしてD/A変換器8の出力は、次に利得設定の命令
が通信制御回路10から出力されるまで保持し続けられ
る。利得設定の命令が所定間隔で発せられ本実施例が光
通信ネットワークシステムに用いられている場合などは
、設定と次の設定の時間間隔は、パケット通信等の不連
続信号の伝送時間より充分長くしておき、通信はこの時
間間隔内に行なえばよい。In this way, the output of the D/A converter 8 continues to be held until the next gain setting command is output from the communication control circuit 10. When gain setting commands are issued at predetermined intervals and this embodiment is used in an optical communication network system, the time interval between one setting and the next setting is sufficiently longer than the transmission time of discontinuous signals such as packet communication. Communication may be performed within this time interval.
第1実施例において、受光回路4は受光手段に相当し、
演算回路6は利得制御手段と利得保持手段を含み、記憶
回路7け利得制御手段の一部を成し、通信制御回路10
は間欠的に利得制御千円を光増幅部に対して作動状態に
する手段を含む。In the first embodiment, the light receiving circuit 4 corresponds to light receiving means,
The arithmetic circuit 6 includes gain control means and gain holding means, forms part of the storage circuit 7 gain control means, and the communication control circuit 10
includes means for intermittently activating the gain control for the optical amplification section.
第2図は第2実施例を示すブロック図である。FIG. 2 is a block diagram showing a second embodiment.
本実施例においては、光増幅部として半導体レザ増幅器
2を用い、光増幅部の利得を制御する制御手段と制御し
た後の状態を保持する手段をデジタル回路とアナログ回
路との混成により構成している。In this embodiment, a semiconductor laser amplifier 2 is used as the optical amplification section, and the control means for controlling the gain of the optical amplification section and the means for maintaining the state after the control are configured by a hybrid of a digital circuit and an analog circuit. There is.
第2図において、第1図のものと同じ機能を持つ要素は
第1図と同一の番号が付されている。第1実施例と第2
実施例が異なる点は、受光回路4の出力と基準電圧とを
比較する比較器11.比較器11に基準電圧を与える基
準電圧源12、D/A変換器8にデジタル信号を与える
計数器13を設けて、一部をアナログ化していることで
ある。In FIG. 2, elements having the same functions as those in FIG. 1 are numbered the same as in FIG. First example and second example
The difference between the embodiments is that a comparator 11. which compares the output of the light receiving circuit 4 with a reference voltage. A reference voltage source 12 that provides a reference voltage to the comparator 11 and a counter 13 that provides a digital signal to the D/A converter 8 are provided to convert a part of the circuit into an analog version.
第2実施例では、通信制御回路10は、第1実施例の機
能に加えて、比較器11、計数器13、D/A変換器8
を制御して、光増幅器2の利得設定の為の制御を行なう
機能を有する。In the second embodiment, the communication control circuit 10 includes a comparator 11, a counter 13, a D/A converter 8, in addition to the functions of the first embodiment.
It has a function of controlling the gain of the optical amplifier 2 by controlling the gain of the optical amplifier 2.
次に、第2実施例の動作について説明する。光信号は光
ファイバ1−1を介して半導体レーザ増幅器2に入り、
その光出力は、光分岐器3により一部は受光回路4へ、
残りは光ファイバ1−2へ送出される。受光回路4に入
力した光信号は電気信号に変換され、比較器11に入力
される。比較器11は受光回路4の出力と基準電圧源1
2の電圧を比較し、その結果(ずれ量、ずれ方向など)
は通信制御回路10に入力される0通信制御回路lOは
比較器11の出力を基に、計数器工3とD/A変換器8
を制御し、計数器13のデジタル出力はD/A変換器8
に人力される。基準電圧源12の出力電圧は、上記所定
の光信号が入射したときの半導体レーザ増幅器2の光出
力が所定の値となった時の受光回路4の出力電圧と等し
く設定されている。Next, the operation of the second embodiment will be explained. The optical signal enters the semiconductor laser amplifier 2 via the optical fiber 1-1,
A part of the light output is sent to the light receiving circuit 4 by the optical splitter 3,
The remainder is sent out to optical fiber 1-2. The optical signal input to the light receiving circuit 4 is converted into an electrical signal and input to the comparator 11. A comparator 11 connects the output of the light receiving circuit 4 and the reference voltage source 1.
Compare the voltages of 2 and check the results (amount of deviation, direction of deviation, etc.)
is input to the communication control circuit 10. The communication control circuit lO inputs the counter 3 and the D/A converter 8 based on the output of the comparator 11.
The digital output of the counter 13 is sent to the D/A converter 8.
is man-powered. The output voltage of the reference voltage source 12 is set equal to the output voltage of the light receiving circuit 4 when the optical output of the semiconductor laser amplifier 2 reaches a predetermined value when the predetermined optical signal is input.
半導体レーザ増幅器2の利得設定は以下の手順で行なわ
れる。この際2先ず5第1実施例と同じく、半導体レー
ザ増幅器2には所定の光信号が入力されている5通信制
御回路10は計数器13を動作させ始め、比較器11の
圧力を監視しながら駆動回路9の出力電流をD/A変換
器8を介して徐々に増加または減少させていく、それに
伴い受光回路4の出力電圧は太き(または小さくなり、
基準電圧源12の電圧を越えたまたは下回ったところで
比較器11の出刃がONになる。この時、通信制御回路
10は計数器13を停止させ、D/A変換器8の出力を
その時の値に保持する。こうして、第1実施例と同様に
半導体し・−ザ増幅器2の利得が調整されて光出力の調
整が行なわれる。Gain setting of the semiconductor laser amplifier 2 is performed by the following procedure. At this time, 2 First, as in the first embodiment, a predetermined optical signal is input to the semiconductor laser amplifier 2.5 The communication control circuit 10 starts operating the counter 13, and while monitoring the pressure of the comparator 11, As the output current of the drive circuit 9 is gradually increased or decreased via the D/A converter 8, the output voltage of the light receiving circuit 4 increases (or decreases).
When the voltage exceeds or falls below the voltage of the reference voltage source 12, the output of the comparator 11 is turned on. At this time, the communication control circuit 10 stops the counter 13 and holds the output of the D/A converter 8 at the value at that time. In this way, as in the first embodiment, the gain of the semiconductor amplifier 2 is adjusted and the optical output is adjusted.
他の点については第1実施例と実質的に同様である。第
2実施例では、受光回路4は受光手段に相当し、比較器
11.基準電圧源12、計数器13は利得制御手段の一
部を成し、通信制御回路10は利得制御手段の一部、利
得保持手段、間欠的に利得制御手段を光増幅部に対して
作動状態にする手段を含む。The other points are substantially the same as the first embodiment. In the second embodiment, the light receiving circuit 4 corresponds to the light receiving means, and the comparators 11. The reference voltage source 12 and the counter 13 form part of the gain control means, and the communication control circuit 10 forms part of the gain control means, the gain holding means, and the gain control means is intermittently activated for the optical amplification section. including the means to
第3図は本発明の第3実施例を示すブロック図である。FIG. 3 is a block diagram showing a third embodiment of the present invention.
本実施例においては、光増幅部として光ファイバ増幅器
14を用い、光増幅部の利得を制御する制御手段と制御
した後の状態を保持する手段はデジタル回路により構成
されている。第3図において、第1図のものと同じ機能
を持つブロックは第1図と同一の番号が付され、第1実
施例と本実施例が異なる点は、光増幅部として光フアイ
バ増幅器14を使用し、それに伴い該増幅器14を励起
駆動する為の光源を含む発光回路15と、発光回路5か
らの出力光を光フアイバ増幅器14へ合流する為の光合
流器16が設けられていることである。光フアイバ増幅
器14の利得は発光回路15の出力光により制御される
が、この利得制御の手続きは本発明の第1実施例で述べ
た手順と同様にして行なわれる。In this embodiment, an optical fiber amplifier 14 is used as the optical amplification section, and the control means for controlling the gain of the optical amplification section and the means for maintaining the state after the control are constituted by digital circuits. In FIG. 3, blocks having the same functions as those in FIG. 1 are numbered the same as in FIG. A light emitting circuit 15 including a light source for exciting and driving the amplifier 14 and an optical combiner 16 for joining the output light from the light emitting circuit 5 to the optical fiber amplifier 14 are provided. be. The gain of the optical fiber amplifier 14 is controlled by the output light of the light emitting circuit 15, and this gain control procedure is performed in the same manner as described in the first embodiment of the present invention.
ところで以上の実施例は例示であって、f!々の変更が
可能である。By the way, the above embodiment is just an example, and f! Various changes are possible.
受光手段からの出力を用いて光増幅器の利得を制御する
制御手段と、光増幅器の利得を制御した後の状態を保持
する手段は、前述の実施例と同様の作用をするものであ
れば、デジタル回路、アナログ回路、及びその混成から
成るいずれの構成でもよい。また、光増幅装置の適用は
光通信ネットワークに限らず、他の光伝送系においても
、光伝送路上に不連続な光信号がある場合や光信号の変
調速度が変化する場合などには効果的に使用できる。If the control means for controlling the gain of the optical amplifier using the output from the light receiving means and the means for maintaining the state after controlling the gain of the optical amplifier have the same function as in the above embodiment, Any configuration consisting of a digital circuit, an analog circuit, or a hybrid thereof may be used. In addition, the application of optical amplification equipment is not limited to optical communication networks, but also in other optical transmission systems, where it is effective when there are discontinuous optical signals on the optical transmission path or when the modulation speed of the optical signal changes. Can be used for
[発明の効果]
以上説明した様に、本発明によれば、光通信ネットワー
クなどに用いられる光増幅装置に、受光手段からの出力
に基づいて光増幅器の利得を制御する利得制御手段と、
光増幅器の利得を制御した後の状態に保持する手段と、
この保持された利得状態を間欠的に更改する様に間欠的
に利得制御手段が光増幅器に働く様にする手段が設けら
れているので、光増幅装置の間欠的なAGCが可能とな
り、伝送路上に不連続に信号があるネットワークや信号
の変調速度が変化するネットワークなどにおいても使用
できる光出力の安定した光増幅装置が実現される。[Effects of the Invention] As explained above, according to the present invention, an optical amplifier used in an optical communication network etc. includes a gain control means for controlling the gain of the optical amplifier based on the output from the light receiving means;
means for maintaining the gain of the optical amplifier in the controlled state;
Since a means is provided for causing the gain control means to act on the optical amplifier intermittently so as to intermittently update this maintained gain state, intermittent AGC of the optical amplifier becomes possible, and the transmission line An optical amplification device with stable optical output that can be used even in networks where signals are discontinuously distributed or where the signal modulation speed changes is realized.
第1図は本発明の第1実施例のブロック図、第2図は第
2実施例のブロック図、第3図は第3実施例のブロック
図、第4図は従来例のブロック図である。
1−1.1−2・・・・・光ファイバ、2・・・・・・
半導体レーザ増幅器、3・・・・・光分岐器、4・・・
・・受光回路、5・・・・・A/D変換器、6・・・・
・演算回路、7・・・・・記憶回路、8・・・・・D/
A変換器、9・・・・・駆動回路、10・・・・・通信
制御回路、11・・・−・比較器、12・・・・・基準
電圧源13・・・・・計数器、14・・・・・光フアイ
バ増幅器・15・・・・・発光回路、16・・・光合流
器Fig. 1 is a block diagram of the first embodiment of the present invention, Fig. 2 is a block diagram of the second embodiment, Fig. 3 is a block diagram of the third embodiment, and Fig. 4 is a block diagram of the conventional example. . 1-1.1-2...Optical fiber, 2...
Semiconductor laser amplifier, 3... Optical splitter, 4...
...Light receiving circuit, 5...A/D converter, 6...
・Arithmetic circuit, 7...Memory circuit, 8...D/
A converter, 9... Drive circuit, 10... Communication control circuit, 11... Comparator, 12... Reference voltage source 13... Counter, 14... Optical fiber amplifier, 15... Light emitting circuit, 16... Optical combiner
Claims (1)
手段と、該受光手段からの出力に基づいて該光増幅部の
利得を制御する手段と、該光増幅部の利得を制御した後
の状態を保持する手段と、この保持された利得を間欠的
に更改する様に間欠的に該利得制御手段が該光増幅部に
働く様にする手段を有することを特徴とする光増幅装置
。 2、更に前記利得制御手段が光増幅部に働く様にされる
のに合わせて間欠的に所定の光信号を前期光増幅部に入
力させる手段を有する請求項1記載の光増幅装置。 3、前記利得制御手段と利得保持手段はデジタル回路に
より構成されている請求項1記載の光増幅装置。 4、前記利得制御手段と利得保持手段はデジタル及びア
ナログ回路の混成により構成されている請求項1記載の
光増幅装置。[Scope of Claims] 1. An optical amplifying section, means for receiving a part of the optical output of the optical amplifying section, and means for controlling the gain of the optical amplifying section based on the output from the light receiving means; means for maintaining the state after controlling the gain of the optical amplifying section; and means for causing the gain control means to act on the optical amplifying section intermittently so as to intermittently update the maintained gain. An optical amplification device comprising: 2. The optical amplifying device according to claim 1, further comprising means for intermittently inputting a predetermined optical signal to the optical amplifying section in accordance with the operation of the optical amplifying section by the gain control means. 3. The optical amplification device according to claim 1, wherein the gain control means and the gain holding means are constituted by digital circuits. 4. The optical amplification device according to claim 1, wherein the gain control means and the gain holding means are constructed by a hybrid of digital and analog circuits.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2183387A JP2787819B2 (en) | 1990-07-11 | 1990-07-11 | Optical amplifying device provided with gain control means |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2183387A JP2787819B2 (en) | 1990-07-11 | 1990-07-11 | Optical amplifying device provided with gain control means |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0470718A true JPH0470718A (en) | 1992-03-05 |
JP2787819B2 JP2787819B2 (en) | 1998-08-20 |
Family
ID=16134885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2183387A Expired - Fee Related JP2787819B2 (en) | 1990-07-11 | 1990-07-11 | Optical amplifying device provided with gain control means |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2787819B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687123A (en) * | 1993-10-14 | 1997-11-11 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US5805519A (en) * | 1995-01-10 | 1998-09-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
JP2007088111A (en) * | 2005-09-21 | 2007-04-05 | Fujitsu Ltd | Optical amplifier |
-
1990
- 1990-07-11 JP JP2183387A patent/JP2787819B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5687123A (en) * | 1993-10-14 | 1997-11-11 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US5943273A (en) * | 1993-10-14 | 1999-08-24 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US6272055B1 (en) | 1993-10-14 | 2001-08-07 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US6414883B2 (en) | 1993-10-14 | 2002-07-02 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
US6859403B2 (en) | 1993-10-14 | 2005-02-22 | Renesas Technology Corp. | Semiconductor memory device capable of overcoming refresh disturb |
US5805519A (en) * | 1995-01-10 | 1998-09-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory device |
JP2007088111A (en) * | 2005-09-21 | 2007-04-05 | Fujitsu Ltd | Optical amplifier |
JP4714535B2 (en) * | 2005-09-21 | 2011-06-29 | 富士通株式会社 | Optical amplifier |
Also Published As
Publication number | Publication date |
---|---|
JP2787819B2 (en) | 1998-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2787820B2 (en) | WDM optical communication system and optical amplifier used therein | |
JP4480273B2 (en) | Improved optical fiber amplifier control | |
KR100416975B1 (en) | Auto gain control device of a fiber amplifier | |
US20040062557A1 (en) | Optical receiver | |
US5809049A (en) | Method and apparatus for monitoring the RF drive circuit of a linear laser transmitter | |
US6757099B2 (en) | Optical power transient control scheme for EDFA amplifiers | |
JPH0645682A (en) | Optical amplifier | |
US6515796B2 (en) | Saturated amplifier generating burst support signal | |
US6606447B2 (en) | Optical attenuator including dual control loops | |
JPH0470718A (en) | Optical amplification device equipped with gain control means | |
JPH08236850A (en) | Luminescence controller of optical device | |
US6721089B1 (en) | Method and apparatus for expanding the dynamic range of optical amplifiers | |
US6614588B1 (en) | Optical amplifier having various control circuitry | |
WO2004023610B1 (en) | System for controlling bias current in laser diodes with improved switching rates | |
US5768011A (en) | Optical amplifying repeater | |
CN214544323U (en) | Variable gain optical amplifier | |
CN116155374A (en) | Optical module SOA input/output optical power monitoring method based on PID algorithm | |
US7844185B2 (en) | Method and apparatus for suppressing optical surge in optical burst switching network | |
JP3606183B2 (en) | Semiconductor optical amplifier and gain adjustment method used therefor | |
JP2626215B2 (en) | Gain stabilization control method for semiconductor optical amplifier | |
JPH0818136A (en) | Optical amplifier | |
JPH04364790A (en) | Fiber type optical amplifier | |
JP3033515B2 (en) | Optical fiber amplifier and driving method thereof | |
JP4773703B2 (en) | Optical amplifier | |
JP3082409B2 (en) | Optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090605 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090605 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100605 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |