[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH046766B2 - - Google Patents

Info

Publication number
JPH046766B2
JPH046766B2 JP22535287A JP22535287A JPH046766B2 JP H046766 B2 JPH046766 B2 JP H046766B2 JP 22535287 A JP22535287 A JP 22535287A JP 22535287 A JP22535287 A JP 22535287A JP H046766 B2 JPH046766 B2 JP H046766B2
Authority
JP
Japan
Prior art keywords
dust
supply pipe
reduction furnace
gas
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22535287A
Other languages
Japanese (ja)
Other versions
JPS6470691A (en
Inventor
Katsutoshi Igawa
Takeya Okayama
Isao Funatsu
Kanemitsu Kitajima
Takeshi Osezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22535287A priority Critical patent/JPS6470691A/en
Publication of JPS6470691A publication Critical patent/JPS6470691A/en
Publication of JPH046766B2 publication Critical patent/JPH046766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、粉状鉱石の竪型溶融還元炉から発生
するダストを高温のまま回収、リサイクルして竪
型溶融還元炉に供給する方法及び装置に関するも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for collecting and recycling dust generated from a vertical smelting-reduction furnace for powdered ore at a high temperature and supplying the same to a vertical smelting-reduction furnace. It is related to the device.

<従来の技術> 高炉によらない製鉄法は従来から多数の研究開
発が行なわれてきており、そのひとつとして溶融
還元法がある。
<Conventional Technology> A large number of research and developments have been conducted on iron manufacturing methods that do not involve blast furnaces, and one of them is the smelting reduction method.

溶融還元法は鉱石を溶融状態で還元する方法で
あるため、炉内温度は1600℃以上の高温状態とな
り、スラグ成分が蒸発しやすくダスト発生量が多
くなる欠点を有している。方式により発生する量
は異なるが炉頂温度が高いほどダスト発生は増加
する。このため溶融還元炉ではダストのリサイク
ル、とりわけ高温のままダストをリサイクル使用
することが大きな課題となつている。
Since the smelting reduction method is a method of reducing ore in a molten state, the temperature inside the furnace is high above 1600°C, which has the disadvantage that slag components tend to evaporate and a large amount of dust is generated. The amount of dust generated differs depending on the method, but the higher the furnace top temperature, the more dust generated. For this reason, recycling dust in melting reduction furnaces, especially recycling dust while still at high temperatures, has become a major issue.

この対策として特開昭60−258021号公報に、上
部に通過スリツトを有する仕切板で分けられた筒
体内の供給側と排出側との下部に粉体の傾斜供給
管と排出管とをそれぞれ接続し、筒体の下部を横
断する多孔板とその下方に接続された粉体流動化
用のガス送入管とを設けることによりガス送入量
を調整するだけで高温条件下における粉体の定量
供給を可能とした粉体の定量供給装置が開示され
ている。
As a countermeasure to this, Japanese Patent Application Laid-open No. 60-258021 discloses that a slanted powder supply pipe and a powder discharge pipe are connected to the lower part of the supply side and the discharge side of the cylinder, which are separated by a partition plate having a passage slit at the upper part. However, by providing a perforated plate that crosses the bottom of the cylinder and a gas feed pipe for powder fluidization connected below the plate, it is possible to quantify powder under high temperature conditions by simply adjusting the gas feed rate. A device for quantitatively supplying powder is disclosed.

<発明が解決しようとする問題点> 上記特開昭60−258021号公報の方法は、圧力の
低い予備還元炉側から圧力の高い溶融還元炉側へ
予備還元鉱石を吹込む場合に、粉体の嵩比重が
1.5〜2.5g/cm3程度の鉱石のように大きい場合に
は、傾斜供給管内を降下する粉体流はスムーズで
あり、傾斜供給管に棚つりや吹抜けは発生しな
い。
<Problems to be Solved by the Invention> The method disclosed in Japanese Patent Application Laid-open No. 60-258021 has the disadvantage that when injecting pre-reduced ore from the low-pressure pre-reduction furnace side to the high-pressure smelting reduction furnace side, powder The bulk specific gravity of
When the powder is large, such as an ore of about 1.5 to 2.5 g/cm 3 , the powder flow descending in the inclined supply pipe is smooth, and no shelving or blow-through occurs in the inclined supply pipe.

ところが、カーボンやスラグ成分を主体とした
ダストの嵩比重は0.4〜0.6g/cm3程度であり、嵩
比重が小さいダストの場合には、傾斜供給管内を
降下するダストの流れが不安定で棚つりが頻発
し、安定した吹込みができなかつた。第3図は傾
斜供給管の棚つりの模式図である。
However, the bulk specific gravity of dust mainly composed of carbon and slag components is about 0.4 to 0.6 g/ cm3 , and in the case of dust with a small bulk specific gravity, the flow of dust descending in the inclined supply pipe is unstable and the shelf Dragging occurred frequently and stable blowing was not possible. FIG. 3 is a schematic diagram of the shelf suspension of the inclined supply pipe.

本発明は、竪型溶融還元炉において発生するダ
ストをリサイクル使用するに際して、従来法にお
いて発生する重力輸送管内におけるダストの棚つ
りの発生を防止し、安定したダストのリサイクル
使用を可能とすることを目的とするものである。
The present invention aims to prevent dust shelving in a gravity transport pipe, which occurs in conventional methods, when recycling dust generated in a vertical smelting reduction furnace, and to enable stable dust recycling. This is the purpose.

<問題点を解決するための手段> 本発明者らは実験により、粉体の嵩比重が小さ
いダストの場合に棚つりが頻発するのは、吹込速
度調整のために多孔板の下方から流入する粉体流
動化用ガスの40〜50%が重力輸送式の傾斜供給管
内へ流入し、傾斜供給管内でダストと向流接触す
ることが原因であることを見出した。
<Means for solving the problem> The present inventors have found through experiments that shelving occurs frequently in the case of dust with a small bulk specific gravity because the powder flows in from below the perforated plate to adjust the blowing speed. It was found that 40-50% of the powder fluidizing gas flows into the gravity-transported inclined feed pipe and comes into countercurrent contact with the dust in the inclined feed pipe.

なお嵩比重が大きい鉱石粉の場合には、粉体流
動化用ガスはその5%以下が傾斜供給管内に流入
することが分かつた。
In the case of ore powder having a large bulk specific gravity, it was found that less than 5% of the powder fluidizing gas flows into the inclined supply pipe.

本発明は上記の知見に基いてなされたものであ
り、傾斜供給管側へ流入するガス流と降下ダスト
流をできる限り分離する方法が有効と考え、傾斜
供給管内を流れるガスの大半が気泡状となつて傾
斜供給管の上面側の壁に沿つて通過する事実を利
用することにより、本発明は完成されたものであ
る。
The present invention has been made based on the above knowledge, and it is believed that it is effective to separate the gas flow flowing into the inclined supply pipe side from the falling dust flow as much as possible, and the majority of the gas flowing inside the inclined supply pipe is in the form of bubbles. The present invention has been completed by taking advantage of the fact that the supply pipe passes along the upper wall of the inclined supply pipe.

本発明は、竪型溶融還元炉から発生するダスト
を高温のまま捕集し、該ダストを傾斜供給管によ
り重力輸送して定量切出装置に導き、該定量切出
装置で切出量を制御しつつ、該ダストを竪型溶融
還元炉にガスを吹込む羽口に供給して該ガスと共
に竪型溶融還元炉内に吹込む竪型溶融還元炉のダ
ストのリサイクル方法において、上記傾斜供給管
内を逆流するガスを除去しつつ該ダストの重力輸
送するものであり、更に、上記のダストのリサイ
クル方法の発明を好適に実施するための装置とし
て、竪型溶融還元炉から発生するダストを高温の
まま捕集するサイクロンと、捕集されたダストを
一時貯留するダストホツパーと、該ダストホツパ
ーより下方に位置する定量切出装置と、該ダスト
ホツパーから該定量切出装置へダストを重量輸送
する傾斜供給管と、該定量切出装置から切出され
たダストを、竪型溶融還元炉の羽口へ吹込む供給
管から成る竪型溶融還元炉のダストのリサイクル
装置において、上記傾斜供給管の上面側の壁に複
数のガス取出口を設け、さらに該ガス取出口から
上記ダストホツパーのフリーボードに接続してガ
ス経路を設けかつ上記傾斜供給管に加震器を設け
たものである。
The present invention collects dust generated from a vertical smelting reduction furnace while still at high temperature, transports the dust by gravity through an inclined supply pipe, guides it to a quantitative cutting device, and controls the cutting amount with the quantitative cutting device. In the method for recycling dust of a vertical smelting reduction furnace, the dust is supplied to a tuyere for blowing gas into the vertical smelting reduction furnace, and the dust is blown into the vertical smelting reduction furnace together with the gas. This device transports the dust by gravity while removing the gas flowing backwards.Furthermore, as a device for suitably carrying out the invention of the dust recycling method described above, the dust generated from the vertical melting reduction furnace is transported by high temperature. A cyclone that collects the dust as it is, a dust hopper that temporarily stores the collected dust, a quantitative cutting device located below the dust hopper, and an inclined supply pipe that transports the dust by weight from the dust hopper to the quantitative cutting device. , a dust recycling device for a vertical smelting-reduction furnace comprising a supply pipe that blows the dust cut out from the quantitative cutting device into the tuyeres of the vertical smelting-reduction furnace; A plurality of gas outlet ports are provided in the dust hopper, a gas path is provided connecting the gas outlet ports to the freeboard of the dust hopper, and a vibrator is provided in the inclined supply pipe.

<作用> 傾斜供給管を逆流するガスを分離除去しつつダ
ストを重力輸送することにより、傾斜供給管にお
けるダスト流とガス流の向流接触を防ぐことがで
き、これにより棚つりの発生を防ぐことができ
る。
<Operation> By transporting dust by gravity while separating and removing gas flowing backward through the inclined supply pipe, it is possible to prevent countercurrent contact between the dust flow and the gas flow in the inclined supply pipe, thereby preventing the occurrence of shelving. be able to.

<実施例> 本発明の一実施例を第1図、第2図により説明
する。第1図は本発明の説明図であり、第2図は
第1図の要部拡大図である。
<Example> An example of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is an explanatory diagram of the present invention, and FIG. 2 is an enlarged view of the main part of FIG. 1.

図において、Aは竪型溶融還元炉、1はサイク
ロン、2はダストホツパー、3は傾斜供給管、4
は定量切出装置、5は吹込管、6は送風管、7は
炭素質固体還元材ホツパー、8は上下2段に設置
された複数の羽口群である。この羽口群8を通し
て、例えは高温の空気を加熱下に吹込むことによ
り炭素質固体還元材が燃焼し炉内に高温の還元雰
囲気をつくることができる。
In the figure, A is a vertical smelting reduction furnace, 1 is a cyclone, 2 is a dust hopper, 3 is an inclined supply pipe, 4
5 is a quantitative cutting device, 5 is a blowing pipe, 6 is a blowing pipe, 7 is a carbonaceous solid reducing material hopper, and 8 is a plurality of tuyere groups installed in upper and lower stages. For example, by blowing high-temperature air under heating through the tuyere group 8, the carbonaceous solid reducing material is combusted and a high-temperature reducing atmosphere can be created in the furnace.

炉内より発生するダストは、サイクロン1で捕
集修されダストホツパー2に蓄積され、傾斜供給
管3から定量切出装置4をへて吹込管5を通じて
炉内へ吹込まれてリサイクル使用される。
Dust generated from inside the furnace is collected by a cyclone 1 and accumulated in a dust hopper 2, and is blown into the furnace from an inclined supply pipe 3 through a quantitative cutting device 4 through a blowing pipe 5 for recycling.

炉内圧力とダストホツパー2の圧力では前者の
圧力が高いので、送風管6からのガスの逆流を防
止するために、傾斜供給管3内はダストで常に充
満され粉体シールの働きが行なわれる。
Since the pressure in the furnace and the pressure in the dust hopper 2 are higher, the inclined supply pipe 3 is constantly filled with dust to prevent the gas from flowing back from the blower pipe 6, thereby acting as a powder seal.

本発明では傾斜供給管3側へ流入するガス流と
降下ダスト流をできる限り分離するために、傾斜
供給管3内のガス流の大半が気泡状となつて傾斜
供給管3の上面側の内壁に沿つて通過する事実を
利用して、傾斜供給管3の上面側の壁に複数のガ
ス取出管9とこれを集合するガスバイパス管10
を設置した。第2図において矢印はガス流の方向
を示す。
In the present invention, in order to separate the gas flow flowing into the inclined supply pipe 3 side from the descending dust flow as much as possible, most of the gas flow inside the inclined supply pipe 3 becomes bubbles and is formed on the inner wall of the upper surface side of the inclined supply pipe 3. Taking advantage of the fact that the supply pipe passes along
was installed. In FIG. 2, arrows indicate the direction of gas flow.

また、特に気泡とダストの向流接触で棚つりが
生じやすいダストホツパー2の落し口には専用の
ガスバイパス管11を設けた。
In addition, a dedicated gas bypass pipe 11 was provided at the outlet of the dust hopper 2, where shelf suspension is likely to occur due to countercurrent contact between air bubbles and dust.

なお、傾斜供給管3の上面側の壁に設けたガス
取出口からダストホツパーのフリーボードにまで
接続するガス経路の設置のし方は、特に本実施例
の形態にのみ限定されるものではなく、棚吊りを
効果的に防ぐことができるものであればいかなる
形態であつても良い。
Note that the method of installing the gas path connecting the gas outlet provided on the upper wall of the inclined supply pipe 3 to the freeboard of the dust hopper is not limited to the form of this embodiment. Any form may be used as long as it can effectively prevent shelf hanging.

ガスバイパス管10,11の径dが小さすぎる
と効果は小さく、傾斜供給管3の径Dに対し、
d/D≧0.15であれば問題ない。またガス取出管
9の位置は大略1m間隔に設置すればよい。
If the diameter d of the gas bypass pipes 10 and 11 is too small, the effect will be small, and with respect to the diameter D of the inclined supply pipe 3,
There is no problem if d/D≧0.15. Further, the gas outlet pipes 9 may be installed at approximately 1 m intervals.

さらに傾斜供給管3内のガス流と粉体の分離を
促すためには傾斜供給管3の角度は水平方向に対
し50〜80゜が良好である。
Furthermore, in order to promote separation of the gas flow and the powder in the inclined supply pipe 3, the angle of the inclined supply pipe 3 is preferably 50 to 80 degrees with respect to the horizontal direction.

また、傾斜供給管3に加震器12を設置する
と、気泡の分離効果はさらに改善される。加震器
12は上前傾斜供給管3に効果的に震動を与える
ものであれば、特にその形式、設置位置や台数に
こだわるものではないが、好ましい設置位置、台
数としては少なくともホツパー2の下に1台、傾
斜供給管3に1台、定量切出装置4の入口に1台
を設ければよい。
Furthermore, if a vibrator 12 is installed on the inclined supply pipe 3, the bubble separation effect is further improved. The type, installation position, and number of vibration exciters 12 are not particularly limited as long as they can effectively vibrate the upper-front inclined supply pipe 3, but the preferred installation position and number of vibration exciters 12 are at least below the hopper 2. One unit may be installed at the inclined supply pipe 3, and one unit at the entrance of the quantitative cutting device 4.

次に、本発明の具体的実施例を説明する。第1
図に示した実施例による試験炉で、下記の操業条
件下に、粉状クロム鉱石からのフエロクロム製錬
及び粉状鉄鉱石からの製錬操業を行つた。なお、
傾斜供給管内の一部に透明耐熱ガラスを入れ内部
の状況を観察できるようにした。
Next, specific examples of the present invention will be described. 1st
In the test furnace according to the example shown in the figure, ferrochrome smelting from powdered chromium ore and smelting from powdered iron ore were carried out under the following operating conditions. In addition,
Transparent heat-resistant glass was placed in a part of the inclined supply pipe to allow observation of the internal situation.

(1) 溶融還元炉内径:1.2m 圧力:1.3Kg/cm2 (2) サイクロンダストホツパー圧力:1.1Kg/cm2 (3) 粉体吹込羽口:上段3本、下段3本、計6本 (4) 送風量:1650Nm3/h (5) 傾斜供給管内径:80mm 角度:53゜ 高さ:4.5m (6) ガスバイパス管内径:25mm ガス取出管径:15mm (7) 加震器、衝撃力:28Kg 振動数:6000回/分 (8) 粉体流動化用ガス量:100N/分 (9) 炉から発生するダスト性状はサンプリングし
たい結果、 嵩比重:0.6g/cm3 調和平均径:1.5mm 尚、比較例としてガスバイパス管と傾斜供給管
との接続部に盲板を入れたケースも実施した。そ
の結果、本発明ケースでは操業全期間中傾斜供給
管内に棚つりが生じることは全くなく、流動化ガ
スの30〜50%を排ガス系へスムーズに流すことが
可能となり、ダストの供給、吹込みは極めてスム
ーズに進行し安定したダストのリサイクル使用の
下で溶融還元炉の操業を行うことができた。更
に、羽口先への不活性ガス量を低下でき、羽口先
の粉体摩耗及び炉内温度低下などに対する改善も
合わせておこなうことが可能となつた。しかし、
ガスバイパス管の機能を停止させた比較例では傾
斜供給管内を降下するダストの棚つりが頻発し吹
込が断続的に停止し、停止期間が長時間に至つた
場合では、羽口への送風ガスの吹抜けが生じて操
業が極めて危険な状態となつた。
(1) Melting reduction furnace inner diameter: 1.2m Pressure: 1.3Kg/cm 2 (2) Cyclone dust hopper pressure: 1.1Kg/cm 2 (3) Powder injection tuyere: 3 on upper stage, 3 on lower stage, total 6 (4) Air flow rate: 1650Nm 3 /h (5) Inclined supply pipe inner diameter: 80mm Angle: 53° Height: 4.5m (6) Gas bypass pipe inner diameter: 25mm Gas extraction pipe diameter: 15mm (7) Shaker , Impact force: 28Kg Vibration frequency: 6000 times/min (8) Powder fluidization gas amount: 100N/min (9) As a result of sampling the dust properties generated from the furnace, bulk specific gravity: 0.6g/cm 3 Harmonic average Diameter: 1.5mm As a comparative example, a case was also conducted in which a blind plate was inserted at the connection between the gas bypass pipe and the inclined supply pipe. As a result, in the case of the present invention, no shelving occurs in the inclined supply pipe during the entire operation period, and it is possible to smoothly flow 30 to 50% of the fluidized gas to the exhaust gas system, allowing dust to be supplied and blown. The process proceeded extremely smoothly and the operation of the smelting reduction furnace was possible using stable dust recycling. Furthermore, the amount of inert gas to the tuyere tip can be reduced, and it has also become possible to improve the powder abrasion at the tuyere tip and the temperature drop in the furnace. but,
In a comparative example in which the function of the gas bypass pipe was stopped, the dust falling down the inclined supply pipe frequently became suspended, and the blowing stopped intermittently.If the stopping period reached a long time, the blowing gas to the tuyere A blow-through occurred, making operations extremely dangerous.

<発明の効果> 以上述べたように本発明によれば高温ダストの
傾斜供給管内での棚つりを防止でき、また不活性
ガスを主とする流動化ガスの30〜50%を排ガス系
へ流すことができ、羽口先の粉体摩耗防止や炉内
への無駄な不活性ガスの混入を低下できるなどダ
ストをリサイクル使用しながら円滑な竪型溶融還
元炉の操業の遂行を達成できる。
<Effects of the Invention> As described above, according to the present invention, it is possible to prevent shelf suspension of high-temperature dust in the inclined supply pipe, and also to allow 30 to 50% of the fluidizing gas, which is mainly inert gas, to flow to the exhaust gas system. It is possible to achieve smooth operation of the vertical smelting reduction furnace while recycling dust, such as preventing powder abrasion at the tip of the tuyeres and reducing the ingress of wasteful inert gas into the furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明図、第2図は
第1図の要部拡大図、第3図は棚つりの模式図で
ある。 1……サイクロン、2……ダストホツパー、3
……傾斜供給管、4……定量切出装置、5……吹
込管、6……送風管、7……炭素質固体還元材ホ
ツパー、8……羽口、9……ガス取出管、10,
11……ガスバイパス管、12……加震器、A…
…竪型溶融還元炉。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, FIG. 2 is an enlarged view of the main part of FIG. 1, and FIG. 3 is a schematic diagram of a hanging shelf. 1...Cyclone, 2...Dust hopper, 3
... Inclined supply pipe, 4 ... Quantitative cutting device, 5 ... Blow pipe, 6 ... Blow pipe, 7 ... Carbonaceous solid reducing material hopper, 8 ... Tuyere, 9 ... Gas take-off pipe, 10 ,
11... Gas bypass pipe, 12... Vibrator, A...
...Vertical melting reduction furnace.

Claims (1)

【特許請求の範囲】 1 竪型溶融還元炉から発生するダストを高温の
まま捕集し、該ダストを傾斜供給管により重力輸
送して定量切出装置に導き、該定量切出装置で切
出量を制御しつつ、該ダストを竪型溶融還元炉に
ガスを吹込む羽口に供給して該ガスと共に竪型溶
融還元炉内に吹込む竪型溶融還元炉のダストのリ
サイクル方法において、上記傾斜供給管を逆流す
るガスを除去しつつ該ダストを重力輸送すること
を特徴とする、竪型溶融還元炉のダストリサイク
ル方法。 2 竪型溶融還元炉から発生するダストを高温の
まま補修するサイクロンと、捕集されたダストを
一時貯留するダストホツパーと、該ダストホツパ
ーより下方に位置する定量切出装置と、該ダスト
ホツパーから該定量切出装置へダストを重力輸送
する傾斜供給管と、該定量切出装置から切出され
たダストを、竪型溶融還元炉の羽口へ吹込む供給
管から成る竪型溶融還元炉のダストのリサイクル
装置において、上記傾斜供給管の上面側の壁に複
数のガス取出口を設け、さらに該ガス取出口から
上記ダストホツパーのフリーボードに接続してガ
ス経路を設け、かつ上記傾斜供給管に加震器を設
けたことを特徴とする竪型溶融還元炉のダストリ
サイクル装置。
[Claims] 1. Dust generated from a vertical melting reduction furnace is collected while still at high temperature, and the dust is transported by gravity through an inclined supply pipe to a quantitative cutting device, and is cut out by the quantitative cutting device. In the method for recycling dust in a vertical smelting reduction furnace, the dust is supplied to a tuyere for blowing gas into the vertical smelting reduction furnace while controlling the amount, and is blown into the vertical smelting reduction furnace together with the gas. A method for recycling dust in a vertical melting reduction furnace, characterized by transporting the dust by gravity while removing gas flowing backward through an inclined supply pipe. 2. A cyclone that repairs the dust generated from the vertical melting reduction furnace while it is still at high temperature, a dust hopper that temporarily stores the collected dust, a quantitative cutting device located below the dust hopper, and a quantitative cutting device that removes the quantitative cutting from the dust hopper. Recycling of dust from a vertical smelting-reduction furnace, which consists of an inclined supply pipe that transports dust by gravity to the extraction device, and a supply pipe that blows the dust cut out from the quantitative cutting device into the tuyere of the vertical smelting-reduction furnace. In the apparatus, a plurality of gas outlet ports are provided on the upper wall of the inclined supply pipe, a gas path is provided by connecting the gas outlet ports to the freeboard of the dust hopper, and a vibration exciter is provided in the inclined supply pipe. A dust recycling device for a vertical melting reduction furnace, which is characterized by being equipped with.
JP22535287A 1987-09-10 1987-09-10 Dust recycle method and device for vertical type melting reducing furnace Granted JPS6470691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22535287A JPS6470691A (en) 1987-09-10 1987-09-10 Dust recycle method and device for vertical type melting reducing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22535287A JPS6470691A (en) 1987-09-10 1987-09-10 Dust recycle method and device for vertical type melting reducing furnace

Publications (2)

Publication Number Publication Date
JPS6470691A JPS6470691A (en) 1989-03-16
JPH046766B2 true JPH046766B2 (en) 1992-02-06

Family

ID=16827992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22535287A Granted JPS6470691A (en) 1987-09-10 1987-09-10 Dust recycle method and device for vertical type melting reducing furnace

Country Status (1)

Country Link
JP (1) JPS6470691A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427604A (en) * 1993-12-03 1995-06-27 Amsted Industries Incorporated Alloy material addition method and apparatus for smelting and melting furnaces

Also Published As

Publication number Publication date
JPS6470691A (en) 1989-03-16

Similar Documents

Publication Publication Date Title
JP3529317B2 (en) Operating method of copper smelting furnace
ES2003550A6 (en) Apparatus for producing ferrous or non-ferrous metals from self-fluxing or not, self-reducing agglomerates or ores.
JP4946119B2 (en) Drying and preheating equipment for hopper and blast furnace raw materials
JPH046766B2 (en)
CA2200323A1 (en) Process for producing liquid pig iron or semi-finished steel products and installation for implementing it
US6454833B1 (en) Process for producing liquid pig iron or semifinished steel products from iron-containing materials
JP4090219B2 (en) Apparatus for charging iron content into copper smelting furnace and method of using the same
JPH01149912A (en) Method for charging exhaust gas dust in smelting reduction furnace
JP3510472B2 (en) Melting furnace
UA46849C2 (en) MELTING AND GASIFICATION APPARATUS FOR OBTAINING METAL MELT AND INSTALLATION FOR METAL MELTING
CN1061688C (en) Method of charging metalliferous material into smelting-gasification zone
JPH11310814A (en) Smelting reduction furnace
JP2009213973A (en) Bug filter type dust collector
KR20010072469A (en) Shaft furnace
JPH11131117A (en) Smelting reduction process for vertical cupola and blast furnace
JPS59159907A (en) Method for preventing clogging in transfer pipe for preliminarily reduced high temperature granular ore
KR840006505A (en) Method and facility for directly producing sponge iron particles and liquid crude iron from bulk iron ore
JPH07197114A (en) Coke packing layer type vertical smelting furnace
JPS59159908A (en) Method for preventing clogging in transfer pipe for preliminarily reduced high temperature granular ore
JP2001056183A (en) Vertical shaft cupola/blast furnace/melting furnace method
SU1186675A1 (en) Method of smelting sulfide concentrates
US3219437A (en) Method of making oxygen steel
JPH10311682A (en) Method for preventing adhesion of charging material to shoot
JPH04297510A (en) Method for operating blast furnace
JPH09157719A (en) Smelting reduction apparatus of iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees