[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0466002B2 - - Google Patents

Info

Publication number
JPH0466002B2
JPH0466002B2 JP57200037A JP20003782A JPH0466002B2 JP H0466002 B2 JPH0466002 B2 JP H0466002B2 JP 57200037 A JP57200037 A JP 57200037A JP 20003782 A JP20003782 A JP 20003782A JP H0466002 B2 JPH0466002 B2 JP H0466002B2
Authority
JP
Japan
Prior art keywords
film
thickness
polyester
haze
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57200037A
Other languages
Japanese (ja)
Other versions
JPS5988719A (en
Inventor
Shigeo Uchiumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP20003782A priority Critical patent/JPS5988719A/en
Publication of JPS5988719A publication Critical patent/JPS5988719A/en
Publication of JPH0466002B2 publication Critical patent/JPH0466002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 本発明は液晶パネル基材用ポリエステルフイル
ムに関するものである。 液晶パネル基材としては、従来からガラス板が
もつぱら用いられてきた。ガラス板は性能的には
優れた基材であるが、衝撃に対して脆く、かつ機
械的強度の点よりして薄くすることが困難であ
る。従つてガラス板の代りにプラスチツクフイル
ムを液晶パネルの基材として用いることが検討さ
れている。プラスチツクフイルムを基材とする液
晶パネルは、可撓性、軽量性、加工性、耐衝撃
性、薄型化など、ガラスでは達成できない特性を
発揮することが期待される。 液晶パネル基材用のプラスチツクフイルムには
各種のものが提案されているが、耐熱性、耐湿
性、耐薬品性、機械的強度等の点よりしてテレフ
タレートまたは2,6−ナフタレート系ポリエス
テルが有望である。 液晶パネル基材用のプラスチツクフイルムは、
パネルとしての適正視角を狭めず、かつ液晶表示
装置としての判読性を低下させないものでなけれ
ばならない。 そのためにはフイルムを2枚の偏光板で挾んだ
ときに、どの方向から見ても干渉縞が発生しない
ことが必要である。従来、この条件を満足させる
ためには、フイルムのレターデーシヨン値(R
値)が80mμ以下であることが必要とされていた
(特開昭57−118220号公報参照)。しかし、本発明
者の検討によれば、テレフタレートまたは2,6
−ナフタレート系ポリエステルのフイルムを基材
とする液晶パネルでは、フイルムのR値が80mμ
以下の場合には、真上から見たときには干渉縞が
無くても、方向を変えて見ると干渉縞による着色
があることが判明した。本発明者はこの点につい
て検討した結果、驚くべきことに、高配向させ
た、すなわちR値の大きいフイルムを、偏光板の
偏光軸とフイルムの主軸とが一致するようにパネ
ルに組込んだならば、いかなる方向から見ても干
渉縞による着色が発生しないことを見出し、本発
明を完成した。 すなわち、本発明の要旨は、テレフタレートま
たは2,6−ナフタレート系ポリエステルよりな
り、複屈折率が30×10-3〜110×10-3であり、か
つ100μの厚さでのヘーズが5%以下であること
を特徴とする液晶パネル基材用ポリエステルフイ
ルムに存する。 本発明について詳細に説明すると、本発明で用
いるテレフタレートまたは2,6−ナフタレート
系ポリエステルとは、テレフタル酸または2,6
−ナフタレンジカルボン酸を主たる酸成分とし、
エチレングリコールを主たるグリコール成分とす
るポリエステルである。テレフタル酸および2,
6−ナフタレンジカルボン酸の一部は、イソフタ
ル酸、フタル酸、アジピン酸、セバシン酸、コハ
ク酸、p−ヒドロキシ安息香酸、ω−ヒドロキシ
カプロン酸等の多官能のカルボン酸で置換されて
いてもよい。同様にエチレングリコールの一部
も、トリメチレングリコール、ヘキサメチレング
リコール、シクロヘキサンジメタノール(1,
4)、ポリエチレングリコール等の多価アルコー
ルで置換されていてもよい。通常はテレフタル酸
または2,6−ナフタレンジカルボン酸成分およ
びエチレングリコール成分が、それぞれ80モル%
以上、好ましくは90モル%以上であるポリエステ
ルを用いる。最も一般的に用いられるのは、テレ
フタル酸または2,6−ナフタレンジカルボン酸
成分とエチレングリコールとから製造されるポリ
エステルである。 本発明で用いるポリエステル中には、エステル
交換触媒や重合触媒などエステル製造工程で必然
的に混入する成分に加えて、安定剤、紫外線吸収
剤、滑剤などポリエステルフイルムの製造に際し
常用されている各種の添加剤を含んでいてもよ
い。しかし、本発明に係るフイルムは透明性と表
面の平滑性が要求されるので、ポリエステルとし
ては粒子を実質的に含まないか、または極めて微
細な粒子のみを含むものが好ましい。このような
ポリエステルは、例えばエステル交換反応生成物
の重縮合工程において、エチレンアミドホスフエ
ート等の燐化合物を添加し、エステル交換触媒と
して用いたカルシウムまたはカルシウムおよびリ
チウムと燐とを含む微細な粒子を析出させること
により製造することができる。また、シリカやカ
オリン等の超微粒子を、粒子を含まないポリエス
テルに微量添加する方法によつても透明性と表面
の平滑性に優れたフイルムを与えるポリエステル
を製造することができる。 本発明に係るポリエステルフイルムは、上述の
ポリエステルを用いて通常のフイルム製造方法、
すなわち押出機から溶融ポリエステルをシート状
に押出し、これを冷却ロールに接触させて急冷固
化し、次いで延伸したのち熱固定する方法により
製造することができる。溶融ポリエステルシート
を冷却ロールに接触させる際は、厚み精度のよい
フイルムを高速で製造し得るようにいわゆる静電
印加冷却法を適用することが好ましい(特公昭37
−6142号公報参照)。静電印加冷却法は溶融時の
比抵抗の大きいポリエステルには適用し難いの
で、ポリエステルとしては溶融時の比抵抗が5×
108Ω−cm以下のものを用いるのが好ましい。 延伸および熱固定は、得られるフイルムの複屈
折率が30×10-3〜110×10-3であり、かつ100μの
厚さでのヘーズが5%以下となるように行なう。
この条件は、例えば未延伸フイルムを縦方向に面
配向度が30×10-3以上でかつ厚み斑の少ないフイ
ルムが得られるまで延伸し、これをテンタークリ
ツプで把持して横延伸をしないで熱固定すること
により達成される。面配向度が30×10-3よりも小
さいと、熱固定の際にフイルムに不均一収縮が発
生して厚み斑が大きくなつたり、球晶が生成して
フイルムが白化したりしやすい。なお、縦延伸倍
率が大きくなりすぎると、延伸方向にさけ易くな
るので注意を要する。これを避けるため、縦方向
に延伸したのち横方向にも若干延伸する方法を採
用することもできる。 また別法として、縦方向に応力一歪曲線で降伏
点を示す以前の低倍率で延伸し、次いでテンター
で横方向に延伸したのち熱固定して、横方向の屈
折率が縦方向の屈折率よりも大きいフイルムとし
てもよい。また、かくして得られるフイルムは厚
み斑が8%以下、特に5%以下であることが好ま
しい。厚み斑が大きいフイルムは、フイルム中で
良好な部分を選択して使用しなければならないの
で不利である。 フイルムの厚さは10〜500μが適当であり、好
ましくは50〜200μである。 薄すぎるフイルムでは、いわゆる“こし”が弱
くなるし、逆に厚すぎると液晶パネルを薄くする
という要望にそぐわなくなる。 また、本発明に係るフイルムは、ヘーズが5%
以下で複屈折率が30×10-3〜110×10-3でなけれ
ばならない。ヘーズが5%よりも大きいフイルム
では透明性が悪く、液晶パネルとしたときに、表
示された文字、図形、記号等の判読が困難であ
る。また、複屈折率が30×10-3より小さいと、液
晶パネルとしたときに干渉縞を生じて判読性を低
下させる。しかし、複屈折率が110×10-3よりも
大きくなると、フイルムがさけ易くなり、製造時
に製品中にスリツトする際とか、液晶パネル板に
スリツトする際因難となり好ましくない。 本発明に係るフイルムは、さらに耐熱性のよい
ことが望ましい。すなわち液晶パネルの製作に際
しては、フイルム上への導電被膜の形成その他で
フイルムが加熱条件下におかれることが多いの
で、加熱により透明性が低下したり、寸法が変化
したりしないものであることが望ましい。実用的
見地からは、150℃の雰囲気中に30分間保持した
ときの収縮率が5%以下であり、かつ100μの厚
さでのヘーズが5%以下であることが望ましい。
本発明者の検討によれば、この条件はフイルムの
製造工程において、面配向度か30×10-3以上のフ
イルムを平均屈折率が1.595以上となるように熱
処理することにより達成される。 以上、詳述したように、本発明に係る液晶パネ
ル基材用フイルムは、100μの厚さで5%以下の
ヘーズと30×10-3〜110×10-3の複屈折率を有し
ており、これを用いて製作した液晶パネルは見る
方向によつて干渉縞が発生することがなく、かつ
判読性にすぐれている。 以下に実施例により本発明をさらに具体的に説
明するが、本発明はその要旨を超えない限り、以
下の実施例に限定されるものではない。 なお、本明細書における厚さ斑、熱収縮率、平
均屈折率、面配向度、複屈折率、フイルムヘーズ
および干渉縞の測定は下記の方法による。 (イ) 厚み斑 安定電気社製連続フイルム厚さ測定器(電子
マイクロメーター使用)により、フイルムの主
軸方向に沿つて2m測定し、次式により算出し
た。 厚み斑=フイルム最大厚さ−フイルム最小厚さ/フイル
ム平均厚さ×100(%) (ロ) 熱収縮率 フイルムの主軸方向およびこれに直角な方向
に沿つてそれぞれ300mm×15mmの試験片を切り
出し、これを150℃に保持した熱風循環炉にそ
の一端を挾持して吊り下げ、30分間熱処理し
た。熱処理の前後における試験片の長さ方向の
寸法を測定し、次式により熱収縮率を算出し
た。 熱収縮率=(熱処理前の長さ−熱処理後の長さ)/熱処
理前の長さ×100(%) (ハ) 平均屈折率、複屈折率および面配向度 フイルムの屈折率の測定は、アタゴ(株)製アツ
ベの屈折計を使用し、光源にはナトリウムラン
プを用いて行なつた。 フイルム面内の最大の屈折率nγ、それに直
角方向の屈折率nβ及び厚さ方向の屈折率nαを
求め、平均屈折率、複屈折率及び面配向度を次
式に従つて算出した。 平均屈折率=nγ+nβ+nα/3 複屈折率=nγ−nβ 面配向度=nγ+nβ/2−nα (ニ) フイルムヘーズ ASTM−D−1003に準じ、日本電色工業社
製積分球式デジタル濁度(曇度)計NDH−
20Dにより求めた。 フイルムの厚さをd(μ)、フイルムヘーズの
測定値をH1(%)、フイルム表面に流動パラフ
インを塗布してフイルム表面の寄与をなくして
測定したヘーズの測定値をH2(%)とすると、
100μの厚さのフイルムヘーズH(%)は下式で
定義される。 H=H2×100/d+H1−H2 なお、フイルムヘーズは、フイルム表面ヘー
ズ(H1−H2)とフイルム内部ヘーズ(H2)と
の和で示され、上記式中の(H2×100/d)が 100μm厚さに換算したフイルム内部ヘーズと
なる。 (ホ) 干渉縞 2枚の偏光板をまずそれぞれ偏光軸が直交す
る方向に重ね、その偏光板の間にフイルムをは
さみ、偏光板の偏光軸とフイルムの主軸方向が
一致するようにする。このような状態で太陽光
にかざし、あらゆる角度からながめた時、干渉
による色がつかないものを良、角度によつてつ
くものを不良とした。 実施例 1 ジメチルテレフタレート100部(重量部、以下、
特記しない限り部は重量部を示す。)、エチレング
リコール60部及び酢酸マグネシウム四水塩0.09部
を反応器にとり加熱昇温すると共に、メタノール
を留去させ、約4時間を要して、230℃にし、エ
ステル交換反応を終了した。次に、この反応物
に、エチルアシドホスフエート0.04部および三酸
化アンチモン0.04部を添加し、常法に従つて重合
し、比抵抗が3.0×10-7Ω/cmのポリエステルチツ
プを得た。 このチツプを160℃で10時間真空乾燥後、290℃
で溶融し、Tダイから押出して静電印加冷却法に
て急冷して350μの未延伸フイルムを得た。この
未延伸フイルムを87℃で縦方向に3.5倍延伸した。
このフイルムを横延伸機のレールを真すぐにして
延伸がかからないようにしたテンターに送り込み
220℃で10秒間熱固定して、厚さ100μの一軸延伸
フイルムを得た。得られたフイルムの物性を第1
表に示した。 比較例 1 厚さ150μの未延伸フイルムの縦延伸倍率を1.5
倍とした以外は実施例1と同様にして厚さ100μ
の一軸延伸フイルムを得た。このフイルムの物性
を第1表に示す。 実施例 2 実施例1において、厚さ450μの未延伸フイル
ムを87℃で縦方向に1.5倍延伸し、次いで100℃で
横方向に3.3倍延伸したのち、220℃で10秒間熱固
定して、厚さ100μの二軸延伸フイルムを得た。
このフイルムの物性を第1表に示す。 実施例 3 熱固定を160℃で10秒間行なつた以外は、実施
例2と同様にして二軸延伸フイルムを得た。この
フイルムの物性を第1表に示す。 比較例 2 実施例1において、1400μの未延伸フイルムを
87℃で縦方向に3.6倍延伸し、次いで100℃で縦方
向に3.7倍延伸したのち、220℃で10秒間熱固定し
て厚さ105μの二軸延伸フイルムを得た。このフ
イルムの物性を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyester film for liquid crystal panel substrates. Glass plates have traditionally been used as substrates for liquid crystal panels. Although a glass plate is a base material with excellent performance, it is brittle against impact, and it is difficult to make it thin from the viewpoint of mechanical strength. Therefore, it is being considered to use plastic film as a base material for liquid crystal panels instead of glass plates. Liquid crystal panels based on plastic film are expected to exhibit properties that cannot be achieved with glass, such as flexibility, lightness, processability, impact resistance, and thinness. Various types of plastic films have been proposed for use as substrates for LCD panels, but terephthalate or 2,6-naphthalate polyesters are promising in terms of heat resistance, moisture resistance, chemical resistance, mechanical strength, etc. It is. Plastic films for LCD panel substrates are
It must be something that does not narrow the appropriate viewing angle as a panel and does not reduce readability as a liquid crystal display device. To this end, it is necessary that no interference fringes occur when the film is sandwiched between two polarizing plates, no matter which direction it is viewed from. Conventionally, in order to satisfy this condition, the retardation value (R
value) was required to be 80 mμ or less (see Japanese Patent Application Laid-Open No. 118220/1983). However, according to the inventor's study, terephthalate or 2,6
-For liquid crystal panels based on naphthalate polyester film, the R value of the film is 80 mμ.
It has been found that in the following cases, even if there are no interference fringes when viewed from directly above, there is coloration due to interference fringes when viewed from a different direction. As a result of considering this point, the present inventor surprisingly found that if a highly oriented film, that is, a film with a large R value, is incorporated into a panel so that the polarization axis of the polarizing plate and the main axis of the film coincide, For example, the present invention was completed based on the discovery that coloring due to interference fringes does not occur when viewed from any direction. That is, the gist of the present invention is that the polyester is made of terephthalate or 2,6-naphthalate type polyester, has a birefringence of 30 x 10 -3 to 110 x 10 -3 , and has a haze of 5% or less at a thickness of 100 μ. A polyester film for a liquid crystal panel substrate, characterized in that: To explain the present invention in detail, the terephthalate or 2,6-naphthalate polyester used in the present invention refers to terephthalic acid or 2,6-naphthalate polyester.
- Naphthalene dicarboxylic acid is the main acid component,
A polyester whose main glycol component is ethylene glycol. terephthalic acid and 2,
A part of 6-naphthalene dicarboxylic acid may be substituted with a polyfunctional carboxylic acid such as isophthalic acid, phthalic acid, adipic acid, sebacic acid, succinic acid, p-hydroxybenzoic acid, and ω-hydroxycaproic acid. . Similarly, some of ethylene glycol is trimethylene glycol, hexamethylene glycol, cyclohexanedimethanol (1,
4) may be substituted with a polyhydric alcohol such as polyethylene glycol. Usually the terephthalic acid or 2,6-naphthalene dicarboxylic acid component and the ethylene glycol component are each 80 mol%.
As mentioned above, preferably polyester having a content of 90 mol% or more is used. Most commonly used are polyesters made from terephthalic acid or 2,6-naphthalene dicarboxylic acid components and ethylene glycol. In addition to components that are inevitably mixed in the ester manufacturing process, such as transesterification catalysts and polymerization catalysts, the polyester used in the present invention contains various components that are commonly used in the production of polyester films, such as stabilizers, ultraviolet absorbers, and lubricants. It may contain additives. However, since the film according to the present invention is required to have transparency and surface smoothness, it is preferable that the polyester be substantially free of particles or contain only extremely fine particles. Such polyesters are produced by adding a phosphorus compound such as ethyleneamide phosphate in the polycondensation process of transesterification products, and adding calcium or fine particles containing calcium and lithium and phosphorus used as a transesterification catalyst. It can be manufactured by precipitation. Furthermore, a polyester that provides a film with excellent transparency and surface smoothness can also be produced by adding a small amount of ultrafine particles such as silica or kaolin to a polyester that does not contain particles. The polyester film according to the present invention can be produced by a normal film manufacturing method using the above-mentioned polyester.
That is, it can be produced by extruding molten polyester into a sheet form from an extruder, bringing it into contact with a cooling roll to rapidly solidify it, then stretching it, and then heat-setting it. When bringing the molten polyester sheet into contact with a cooling roll, it is preferable to apply the so-called electrostatic cooling method so that a film with good thickness accuracy can be produced at high speed (Japanese Patent Publication No. 37
-Refer to Publication No. 6142). The electrostatic application cooling method is difficult to apply to polyester, which has a high specific resistance when melted, so polyester with a specific resistance when melted of 5×
It is preferable to use one having a resistance of 10 8 Ω-cm or less. Stretching and heat setting are carried out so that the resulting film has a birefringence index of 30×10 −3 to 110×10 −3 and a haze of 5% or less at a thickness of 100 μm.
These conditions include, for example, stretching an unstretched film in the longitudinal direction until a film with a degree of plane orientation of 30 × 10 -3 or more and little thickness unevenness is obtained, then gripping it with tenter clips and heating it without transverse stretching. This is achieved by fixing. If the degree of plane orientation is less than 30×10 -3 , non-uniform shrinkage occurs in the film during heat setting, resulting in increased thickness unevenness, or spherulites are likely to form, causing the film to become white. Note that if the longitudinal stretching ratio becomes too large, it will be easy to avoid in the stretching direction, so care must be taken. In order to avoid this, it is also possible to adopt a method in which the film is stretched in the vertical direction and then slightly stretched in the horizontal direction. Another method is to stretch in the longitudinal direction at a low magnification before the yield point is reached on the stress-strain curve, then stretch in the transverse direction with a tenter, and then heat set, so that the refractive index in the transverse direction changes from the refractive index in the longitudinal direction. It is also possible to use a larger film. Further, it is preferable that the film thus obtained has a thickness unevenness of 8% or less, particularly 5% or less. A film with large thickness unevenness is disadvantageous because a good portion of the film must be selected for use. The thickness of the film is suitably 10-500μ, preferably 50-200μ. If the film is too thin, the so-called "stiffness" will be weakened, and if it is too thick, it will not meet the demand for thinner LCD panels. Further, the film according to the present invention has a haze of 5%.
The birefringence must be between 30×10 −3 and 110×10 −3 . A film with a haze greater than 5% has poor transparency, and when used as a liquid crystal panel, it is difficult to read displayed characters, figures, symbols, etc. Furthermore, if the birefringence is smaller than 30×10 −3 , interference fringes occur when used as a liquid crystal panel, reducing readability. However, if the birefringence is greater than 110×10 −3 , the film becomes easy to avoid, causing problems when slitting it into a product during manufacturing or into a liquid crystal panel plate, which is undesirable. It is desirable that the film according to the present invention further has good heat resistance. In other words, when manufacturing liquid crystal panels, the film is often subjected to heating conditions for purposes such as forming a conductive film on the film, so the film must not lose transparency or change dimensions due to heating. is desirable. From a practical standpoint, it is desirable that the shrinkage rate be 5% or less when held in an atmosphere at 150° C. for 30 minutes, and that the haze at a thickness of 100 μm be 5% or less.
According to studies by the present inventors, this condition can be achieved by heat-treating a film with a plane orientation of 30×10 -3 or more so as to have an average refractive index of 1.595 or more during the film manufacturing process. As detailed above, the film for liquid crystal panel substrate according to the present invention has a haze of 5% or less and a birefringence of 30×10 -3 to 110×10 -3 at a thickness of 100 μ. A liquid crystal panel manufactured using this method does not produce interference fringes depending on the viewing direction, and has excellent readability. EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. In this specification, thickness unevenness, thermal shrinkage rate, average refractive index, degree of plane orientation, birefringence, film haze, and interference fringes are measured by the following methods. (a) Thickness irregularities Measurements were made for 2 m along the main axis direction of the film using a continuous film thickness measuring device manufactured by Stable Denki Co., Ltd. (using an electronic micrometer), and the thickness was calculated using the following formula. Thickness unevenness = Maximum film thickness - Minimum film thickness / Average film thickness x 100 (%) (b) Heat shrinkage rate Cut out test pieces of 300 mm x 15 mm along the main axis direction of the film and the direction perpendicular to this. This was suspended by holding one end in a hot air circulating oven maintained at 150°C, and heat treated for 30 minutes. The longitudinal dimension of the test piece before and after the heat treatment was measured, and the heat shrinkage rate was calculated using the following formula. Heat shrinkage rate = (Length before heat treatment - Length after heat treatment) / Length before heat treatment x 100 (%) (c) Average refractive index, birefringence and degree of plane orientation To measure the refractive index of the film, The measurements were carried out using an Atsube refractometer manufactured by Atago Co., Ltd. and a sodium lamp as the light source. The maximum refractive index nγ in the film plane, the refractive index nβ in the direction perpendicular to it, and the refractive index nα in the thickness direction were determined, and the average refractive index, birefringence, and degree of plane orientation were calculated according to the following equations. Average refractive index = nγ + nβ + nα / 3 Birefringence = nγ - nβ Plane orientation = nγ + nβ / 2 - nα (d) Film haze According to ASTM-D-1003, Nippon Denshoku Kogyo Co., Ltd. integrating sphere type digital turbidity (haze) degree) Total NDH−
Obtained using 20D. The thickness of the film is d (μ), the measured value of film haze is H 1 (%), and the measured value of haze measured by applying liquid paraffin to the film surface to eliminate the contribution of the film surface is H 2 (%). Then,
The film haze H (%) with a thickness of 100μ is defined by the following formula. H=H 2 ×100/d+H 1 −H 2 Film haze is expressed as the sum of film surface haze (H 1 −H 2 ) and film internal haze (H 2 ), and (H 2 ×100/d) is the internal haze of the film converted to a thickness of 100 μm. (E) Interference fringes First, two polarizing plates are stacked so that their polarizing axes are perpendicular to each other, and a film is sandwiched between the polarizing plates so that the polarizing axis of the polarizing plate and the principal axis of the film coincide. When held up to sunlight and viewed from all angles in this condition, those that did not show any color due to interference were considered good, and those that appeared depending on the angle were judged to be poor. Example 1 100 parts of dimethyl terephthalate (parts by weight, hereinafter referred to as
Unless otherwise specified, parts are by weight. ), 60 parts of ethylene glycol, and 0.09 part of magnesium acetate tetrahydrate were placed in a reactor and heated to raise the temperature, and methanol was distilled off, and the temperature was raised to 230° C. over about 4 hours to complete the transesterification reaction. Next, 0.04 part of ethyl acid phosphate and 0.04 part of antimony trioxide were added to this reaction product, and polymerization was carried out according to a conventional method to obtain a polyester chip having a specific resistance of 3.0×10 -7 Ω/cm. After vacuum drying this chip at 160℃ for 10 hours, it was dried at 290℃.
The film was melted, extruded through a T-die, and rapidly cooled by an electrostatic cooling method to obtain an unstretched film of 350 μm. This unstretched film was stretched 3.5 times in the machine direction at 87°C.
This film is fed into a tenter with the rails of the horizontal stretching machine straightened to prevent stretching.
Heat setting was performed at 220° C. for 10 seconds to obtain a uniaxially stretched film with a thickness of 100 μm. The physical properties of the obtained film are
Shown in the table. Comparative Example 1 The longitudinal stretching ratio of an unstretched film with a thickness of 150μ was 1.5.
The thickness was 100μ in the same manner as in Example 1 except that it was doubled.
A uniaxially stretched film was obtained. The physical properties of this film are shown in Table 1. Example 2 In Example 1, an unstretched film with a thickness of 450μ was stretched 1.5 times in the machine direction at 87°C, then 3.3 times in the transverse direction at 100°C, and then heat-set at 220°C for 10 seconds. A biaxially stretched film with a thickness of 100μ was obtained.
The physical properties of this film are shown in Table 1. Example 3 A biaxially stretched film was obtained in the same manner as in Example 2, except that heat setting was performed at 160° C. for 10 seconds. The physical properties of this film are shown in Table 1. Comparative Example 2 In Example 1, a 1400μ unstretched film was
The film was stretched 3.6 times in the machine direction at 87°C, then 3.7 times in the machine direction at 100°C, and then heat set at 220°C for 10 seconds to obtain a biaxially stretched film with a thickness of 105 μm. The physical properties of this film are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 テレフタレートまたは2,6−ナフタレート
系ポイエステルよりなり、複屈折率が30×10-3
110×10-3であり、かつ100μの厚さでのヘーズが
5%以下であることを特徴とする液晶パネル基材
用ポリエステルフイルム。 2 平均屈折率が1.595以上であることを特徴と
する特許請求の範囲第1項記載のポリエステルフ
イルム。 3 150℃で30分間保持したときの100μの厚さで
のヘーズが5%以下であり、かつ収縮率が5%以
下であることを特徴とする特許請求の範囲第1項
または第2項記載のポリエステルフイルム。 4 面配向度が30×10-3以上の一軸または二軸延
伸ポリエステルフイルムを180℃〜245℃で熱固定
したものであることを特徴とする特許請求の範囲
第1項ないし第3項のいずれかに記載のポリエス
テルフイルム。
[Claims] 1. Made of terephthalate or 2,6-naphthalate polyester, and has a birefringence of 30×10 -3 ~
A polyester film for a liquid crystal panel substrate having a size of 110×10 -3 and a haze of 5% or less at a thickness of 100 μ. 2. The polyester film according to claim 1, which has an average refractive index of 1.595 or more. 3. Claims 1 or 2 characterized in that the haze at a thickness of 100μ when held at 150°C for 30 minutes is 5% or less, and the shrinkage rate is 5% or less. polyester film. 4. Any one of claims 1 to 3, characterized in that it is a uniaxially or biaxially stretched polyester film with a degree of plane orientation of 30×10 -3 or higher, heat-set at 180°C to 245°C. Polyester film described in Crab.
JP20003782A 1982-11-15 1982-11-15 Polyester film for base material of liquid crystal panel Granted JPS5988719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20003782A JPS5988719A (en) 1982-11-15 1982-11-15 Polyester film for base material of liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20003782A JPS5988719A (en) 1982-11-15 1982-11-15 Polyester film for base material of liquid crystal panel

Publications (2)

Publication Number Publication Date
JPS5988719A JPS5988719A (en) 1984-05-22
JPH0466002B2 true JPH0466002B2 (en) 1992-10-21

Family

ID=16417770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20003782A Granted JPS5988719A (en) 1982-11-15 1982-11-15 Polyester film for base material of liquid crystal panel

Country Status (1)

Country Link
JP (1) JPS5988719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166442A (en) * 2008-01-18 2009-07-30 Mitsubishi Plastics Inc Method for producing uniaxially oriented polyester film

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135338A (en) * 1985-12-09 1987-06-18 Diafoil Co Ltd Monoaxially high-orientated film of polyethylene-naphthalate for liquid crystal panel substrate
JPH0743445B2 (en) * 1985-12-09 1995-05-15 ダイアホイルヘキスト株式会社 Polyethylene naphthalate uniaxial highly oriented film for polarizing plate
JPH064276B2 (en) * 1985-12-10 1994-01-19 ダイアホイルヘキスト株式会社 Polyester film for membrane switch
JPS6342845A (en) * 1986-08-11 1988-02-24 Diafoil Co Ltd Polyester film for liquid crystal indication
US7101627B2 (en) 2001-09-11 2006-09-05 Dupont Teijin Films U.S. Limited Partnership Heat-stabilised poly(ethylene naphthalate) film for flexible electronic and opto-electronics devices
KR102183677B1 (en) 2018-04-26 2020-11-27 주식회사 엘지화학 Optical device and use thereof
JP2021081743A (en) * 2021-02-22 2021-05-27 凸版印刷株式会社 Light control film, light control device using the same, and screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697318A (en) * 1980-01-07 1981-08-06 Hitachi Ltd Liquid-crystal display element
JPS5711319A (en) * 1980-06-23 1982-01-21 Toyobo Co Ltd Transparent conductive film for liquid crystal display device
JPS57118220A (en) * 1981-01-13 1982-07-23 Toyobo Co Ltd Polarizing plate having transparent conductive layer
JPS57128319A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Display panel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5697318A (en) * 1980-01-07 1981-08-06 Hitachi Ltd Liquid-crystal display element
JPS5711319A (en) * 1980-06-23 1982-01-21 Toyobo Co Ltd Transparent conductive film for liquid crystal display device
JPS57118220A (en) * 1981-01-13 1982-07-23 Toyobo Co Ltd Polarizing plate having transparent conductive layer
JPS57128319A (en) * 1981-02-02 1982-08-09 Hitachi Ltd Display panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166442A (en) * 2008-01-18 2009-07-30 Mitsubishi Plastics Inc Method for producing uniaxially oriented polyester film

Also Published As

Publication number Publication date
JPS5988719A (en) 1984-05-22

Similar Documents

Publication Publication Date Title
US4799772A (en) Uniaxially high-oriented polyethylene naphthalate film for liquid crystal panel substrates
JPH0743445B2 (en) Polyethylene naphthalate uniaxial highly oriented film for polarizing plate
JP5346495B2 (en) Method for producing optical film having optical anisotropy
JP2009042653A (en) Polyester film for protecting polarizing film
JP5123704B2 (en) Biaxially oriented polyester film for flexible display substrates
WO2016084568A1 (en) Polyester film
JPH0466002B2 (en)
JPH03216B2 (en)
KR970010466B1 (en) Biaxially stretched polyester film and process for producing the same
JP7095211B2 (en) Highly transparent film for optics
JPH02163155A (en) Polyester film
JPH03134052A (en) Orientated polyester film
JP2011235601A (en) Biaxially oriented polyester film
JPS60162222A (en) Uniaxially oriented polyester film for liquid crystal display plate
JP2611425B2 (en) Method for producing low shrinkage polyester film
JPH054218B2 (en)
JPS6151323A (en) Preparation of uniaxially stretched polyester film for liquid crystal display
JP2692273B2 (en) Biaxially oriented polyester film
TWI858364B (en) Method for manufacturing biaxially oriented polyester film
JP2692269B2 (en) Low shrinkage polyester film
JP2010013569A (en) Longitudinally monoaxially oriented polyethylene naphthalate film and method for producing the same
JPH08245771A (en) Polyester film for packaging
JPH03258835A (en) Oriented polyester film
JPH0314055B2 (en)
JPH0415729B2 (en)