JPH0466716A - Catalyst converter device for internal combustion engine - Google Patents
Catalyst converter device for internal combustion engineInfo
- Publication number
- JPH0466716A JPH0466716A JP2176272A JP17627290A JPH0466716A JP H0466716 A JPH0466716 A JP H0466716A JP 2176272 A JP2176272 A JP 2176272A JP 17627290 A JP17627290 A JP 17627290A JP H0466716 A JPH0466716 A JP H0466716A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- catalyst
- exhaust
- ratio sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 94
- 238000002485 combustion reaction Methods 0.000 title claims description 13
- 239000000446 fuel Substances 0.000 claims abstract description 144
- 238000000746 purification Methods 0.000 claims abstract description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000001301 oxygen Substances 0.000 claims abstract description 26
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims description 20
- 230000003197 catalytic effect Effects 0.000 claims description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000002347 injection Methods 0.000 description 15
- 239000007924 injection Substances 0.000 description 15
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 12
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 11
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、内燃機関の触媒コンバータ装置に関し、特に
空燃比センサを排気浄化触媒の上流側及び下流側に備え
、これら2つの空燃比センサの検出値に基づいて空燃比
を高精度にフィードバック制御する装置に用いられる内
燃機関の触媒コンバータ装置に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a catalytic converter device for an internal combustion engine, and in particular includes air-fuel ratio sensors upstream and downstream of an exhaust purification catalyst, The present invention relates to a catalytic converter device for an internal combustion engine used in a device that performs feedback control of an air-fuel ratio with high precision based on a detected value.
〈従来の技術〉
従来の一般的な内燃機関の空燃比制御装置としては例え
ば特開昭60−240840号公報に示されるようなも
のがある。<Prior Art> A conventional general air-fuel ratio control device for an internal combustion engine is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-240840.
このものの概要を説明すると、機関の吸入空気流量Q及
び回転数Nを検出してシリンダに吸入される空気量に対
応する基本燃料供給量T、 (=K・Q/N; Kは
定数)を演算し、この基本燃料供給量T、を機関温度等
により補正したものを排気中酸素濃度の検出によって混
合気の空燃比を検出する空燃比センサ(酸素センサ)か
らの信号によって設定される空燃比フィードバック補正
係数(空燃比補正量)を用いてフィードバック補正を施
し、バッテリ電圧による補正等をも行って最終的に燃料
供給量T1を設定する。To give an overview of this, the intake air flow rate Q and rotational speed N of the engine are detected, and the basic fuel supply amount T, (=K・Q/N; K is a constant) corresponding to the amount of air taken into the cylinder, is calculated. This basic fuel supply amount T is calculated and corrected based on engine temperature, etc., and then the air-fuel ratio is set by a signal from an air-fuel ratio sensor (oxygen sensor) that detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. Feedback correction is performed using a feedback correction coefficient (air-fuel ratio correction amount), and correction based on battery voltage is also performed to finally set the fuel supply amount T1.
そして、このようにして設定された燃料供給量T、に相
当するパルス巾の駆動パルス信号を所定タイミングで燃
料噴射弁に出力することにより、機関に所定量の燃料を
噴射供給するようにしている。Then, by outputting a drive pulse signal with a pulse width corresponding to the fuel supply amount T thus set to the fuel injection valve at a predetermined timing, a predetermined amount of fuel is injected and supplied to the engine. .
上記空燃比センサからの信号に基づく空燃比フィードバ
ック補正は空燃比を目標空燃比(理論空燃比)付近に制
御するように行われる。これは、排気系に介装され、排
気中のCo、 HC(炭化水素)を酸化すると共にNO
工を還元して浄化する排気浄化触媒(三元触媒)の転化
効率(浄化効率)が理論空燃比燃焼時の排気状態で有効
に機能するように設定されているからである。The air-fuel ratio feedback correction based on the signal from the air-fuel ratio sensor is performed to control the air-fuel ratio to around the target air-fuel ratio (stoichiometric air-fuel ratio). This is installed in the exhaust system and oxidizes Co and HC (hydrocarbons) in the exhaust, as well as NO
This is because the conversion efficiency (purification efficiency) of the exhaust purification catalyst (three-way catalyst) that reduces and purifies the exhaust gas is set so that it functions effectively in the exhaust state during combustion at the stoichiometric air-fuel ratio.
前記、空燃比センサの発生起電力(出力電圧)は理論空
燃比近傍で急変する特性を有しており、この出力電圧v
0と理論空燃比相当の基準電圧(スライスレベル)SL
とを比較して混合気の空燃比か理論空燃比に対してリッ
チかリーンかを判定する。そして、例えば空燃比がリー
ン(リッチ)の場合には、前記基本燃料供給量TPに乗
じるフィードバック補正係数αをリーン(リッチ)に転
じた初回に大きな比例定数Pを増大(減少)した後、所
定の積分定数Iずつ徐々に増大(減少)していき燃料供
給量T、を増量(減量)補正することで空燃比を理論空
燃比近傍に制御する。As mentioned above, the electromotive force (output voltage) generated by the air-fuel ratio sensor has a characteristic that it changes suddenly near the stoichiometric air-fuel ratio, and this output voltage v
0 and the reference voltage (slice level) SL equivalent to the stoichiometric air-fuel ratio
It is determined whether the air-fuel ratio of the air-fuel mixture is rich or lean with respect to the stoichiometric air-fuel ratio. For example, when the air-fuel ratio is lean (rich), the feedback correction coefficient α to be multiplied by the basic fuel supply amount TP is increased (decreased) by a large proportionality constant P the first time the basic fuel supply amount TP is changed to lean (rich), and then a predetermined value is set. The air-fuel ratio is controlled to be close to the stoichiometric air-fuel ratio by gradually increasing (decreasing) the fuel supply amount T by an integral constant I.
ところで、上記のような通常の空燃比フィードバック制
御装置では1個の空燃比センサを応答性を高めるため、
できるたけ燃焼室に近い排気マニホールドの集合部分に
設けているか、この部分は排気温度が高いため空燃比セ
ンサか熱的影響や劣化により特性か変化し易く、また、
気筒毎の排気の混合か不十分であるため全気筒の平均的
な空燃比を検出しにくく空燃比の検出精度に難かあり、
引いては空燃比制御精度を悪くしていた。By the way, in the above-mentioned normal air-fuel ratio feedback control device, one air-fuel ratio sensor is used to improve responsiveness.
The air-fuel ratio sensor should be installed in the gathering part of the exhaust manifold as close to the combustion chamber as possible, since the exhaust temperature is high in this part, and the characteristics of the air-fuel ratio sensor are likely to change due to thermal effects and deterioration.
Because the exhaust gas from each cylinder is insufficiently mixed, it is difficult to detect the average air-fuel ratio of all cylinders, and the air-fuel ratio detection accuracy is difficult.
This in turn worsened the accuracy of air-fuel ratio control.
この点に鑑み、排気浄化触媒(以下第1排気浄化触媒と
称する)の下流側にも空燃比センサを設け、2つの空燃
比センサの検出値を用いて空燃比をフィードバック制御
するものか提案されている(特開昭58−48756号
公報参照)。In view of this point, it has been proposed to provide an air-fuel ratio sensor also on the downstream side of the exhaust purification catalyst (hereinafter referred to as the first exhaust purification catalyst) and to feedback-control the air-fuel ratio using the detected values of the two air-fuel ratio sensors. (Refer to Japanese Unexamined Patent Publication No. 58-48756).
即ち、下流側の空燃比センサ(以下第2空燃比センサと
称する)は燃焼室から離れているため応答性には難かあ
るか、第1排気浄化触媒の下流であるため、排気成分バ
ランスの影響(CO,HC。In other words, the air-fuel ratio sensor on the downstream side (hereinafter referred to as the second air-fuel ratio sensor) may have difficulty in responding because it is far from the combustion chamber, or it may have difficulty in responding because it is downstream of the first exhaust purification catalyst. Impact (CO, HC.
N Ox 、 CO*等)を受は難く、排気中の毒性
成分による被毒量が少ないため被毒による特性変化も受
けに(く、しかも排気の混合状態かよいため金気筒の平
均的な空燃比を検出できる等、上流側の空燃比センサ(
以下第1空燃比センサと称する)に比較して、高精度で
安定した検出性能か得られる。NOx, CO*, etc.), and the amount of poisoning by toxic components in the exhaust is small, making it less susceptible to changes in characteristics due to poisoning.Moreover, because the mixture state of the exhaust is good, the average air-fuel ratio of the gold cylinder is Upstream air-fuel ratio sensor (
(hereinafter referred to as the first air-fuel ratio sensor), highly accurate and stable detection performance can be obtained.
そこで、2つの空燃比センサの検出値に基づいて前記同
様の演算によって夫々設定される2つの空燃比フィード
バック補正係数を組み合わせたり、或いは第1空燃比セ
ンサにより設定される空燃比フィードバック補正係数の
制御定数(比例分や積分分)、第1空燃比センサの出力
電圧の比較電圧や遅延時間を補正すること等によって上
流側空燃比センサの出力特性のばらつきを第2空燃比セ
ンサによって補償して高精度な空燃比フィードバック制
御を行うようにしている。Therefore, it is possible to combine two air-fuel ratio feedback correction coefficients that are respectively set by calculations similar to those described above based on the detected values of the two air-fuel ratio sensors, or to control the air-fuel ratio feedback correction coefficient that is set by the first air-fuel ratio sensor. The variation in the output characteristics of the upstream air-fuel ratio sensor is compensated for by the second air-fuel ratio sensor by correcting the constant (proportional component or integral component), the comparison voltage of the output voltage of the first air-fuel ratio sensor, and the delay time. Accurate air-fuel ratio feedback control is performed.
ところで、上記のような2つの空燃比センサの検出値を
用いて空燃比をフィードバック制御するものにあっては
、第2空燃比センサによるフィードバック制御に伴い、
空燃比か前記2つの空燃比センサ間に配設される第1排
気浄化触媒の酸素吸着能力限界まで振られることとなる
。By the way, in the case where the air-fuel ratio is feedback-controlled using the detection values of the two air-fuel ratio sensors as described above, along with the feedback control by the second air-fuel ratio sensor,
The air-fuel ratio will fluctuate up to the oxygen adsorption capacity limit of the first exhaust purification catalyst disposed between the two air-fuel ratio sensors.
ここで、該第1排気浄化触媒の一酸化炭素(CO)、炭
化水素(HC)等の酸化効率、また窒素酸化物(NO,
)等の還元効率は前記空燃比の限界付近においては低下
するため、前述のように空燃比か限界付近まで振られた
場合は十分に排気中の未燃成分を浄化できずエミッショ
ンか増加するという惧れがある。Here, the oxidation efficiency of carbon monoxide (CO), hydrocarbons (HC), etc. of the first exhaust purification catalyst, as well as the oxidation efficiency of nitrogen oxides (NO,
) etc. decreases near the limit of the air-fuel ratio, so when the air-fuel ratio is swung to near the limit as mentioned above, unburned components in the exhaust cannot be sufficiently purified and emissions increase. There is a fear.
この点に鑑み、第2空燃比センサの下流側にも更に排気
浄化触媒(以下第2排気浄化触媒と称する)を設け、前
述のように空燃比が限界付近まで振られた場合にも、当
該第2排気浄化触媒において排気中の未燃成分を浄化し
、もって良好な排気エミッションが得られるようにした
ものがある。In view of this, an exhaust purification catalyst (hereinafter referred to as the second exhaust purification catalyst) is further provided downstream of the second air-fuel ratio sensor, so that even when the air-fuel ratio swings to near the limit as described above, the There is a second exhaust gas purification catalyst that purifies unburned components in the exhaust gas, thereby achieving good exhaust emissions.
近年、排気浄化触媒として、一体成形型のセラミック質
モノリス担体に、機関排気を浄化する貴金属等の触媒成
分を担持させたモノリス触媒が用いられている。ところ
で、モノリス触媒に担持されている三元触媒を用いて機
関排気を浄化する場合、機関の設定空燃比により浄化特
性か大きく変わる。即ち空燃比が薄いときには燃焼後も
酸素の量か多くなり酸化作用が活発になり、還元作用が
不活発になる。また、空燃比が濃いときにはこの逆に酸
化作用が不活発になり、還元作用か活発になる。In recent years, monolith catalysts have been used as exhaust purification catalysts, in which catalyst components such as precious metals for purifying engine exhaust gas are supported on an integrally molded ceramic monolith carrier. By the way, when engine exhaust gas is purified using a three-way catalyst supported on a monolithic catalyst, the purification characteristics vary greatly depending on the set air-fuel ratio of the engine. That is, when the air-fuel ratio is low, the amount of oxygen increases even after combustion, and the oxidizing action becomes active, while the reducing action becomes inactive. Conversely, when the air-fuel ratio is high, the oxidizing action becomes inactive and the reducing action becomes active.
このため、従来は空燃比か変動しても、三元触媒の触媒
活性を十分維持しさらには触媒活性を高める目的で、酸
素ストレージ能力を有するセリア(Ce02)が担持さ
れている。For this reason, conventionally, ceria (Ce02) having an oxygen storage ability has been supported in order to sufficiently maintain the catalytic activity of the three-way catalyst and further increase the catalytic activity even if the air-fuel ratio fluctuates.
〈発明が解決しようとする課題〉
ところで、上記従来の2つの排気浄化触媒を排気通路に
設けるものにあっては、第1排気浄化触媒は機関本体に
近いため高温の排気が通過することになる。ここで前記
セリアは耐熱性能を向上させる作用も有しているため、
セラミック質モノリス担体を前記排気の高温から守るた
めに、第1排気浄化触媒には多めのセリアか担持されて
いる。<Problem to be Solved by the Invention> By the way, in the above-mentioned conventional system in which two exhaust purification catalysts are provided in the exhaust passage, the first exhaust purification catalyst is close to the engine body, so high-temperature exhaust gas passes through it. . Here, since the ceria also has the effect of improving heat resistance,
In order to protect the ceramic monolith support from the high temperature of the exhaust gas, a large amount of ceria is supported on the first exhaust purification catalyst.
しかるに、第1排気浄化触媒か多めのセリアを担持して
いると、該第1排気浄化触媒の酸素吸着能力限界か大き
くなってくる。このため、第2空燃比センサのフィード
バック周期か長くなり、空燃比の理論空燃比からの最大
ずれ量か大きくなって転換効率の低い部分での使用割合
が増加し、エミッションも増加するという慣れがある。However, if the first exhaust purification catalyst supports a large amount of ceria, the oxygen adsorption capacity limit of the first exhaust purification catalyst becomes large. As a result, the feedback cycle of the second air-fuel ratio sensor becomes longer, the maximum deviation of the air-fuel ratio from the stoichiometric air-fuel ratio becomes larger, the usage rate in areas with low conversion efficiency increases, and emissions increase. be.
一方、第1排気浄化触媒の容積を第2排気触媒に比較し
て小さくすると、第1排気浄化触媒に係る転換効率か低
下して、第2空燃比センサによる第1空燃比センサの出
力特性の補償か不可能となり、もって高精度な空燃比フ
ィードバック制御を行うことができなくなる。On the other hand, when the volume of the first exhaust purification catalyst is made smaller than that of the second exhaust catalyst, the conversion efficiency of the first exhaust purification catalyst decreases, and the output characteristics of the first air-fuel ratio sensor by the second air-fuel ratio sensor are reduced. Compensation becomes impossible, making it impossible to perform highly accurate air-fuel ratio feedback control.
そこで、本発明は以上のような従来の実情に鑑み、良好
なエミッションを確保しつつ、高精度な空燃比フィード
バック刺部を行える内燃機関の触媒コンバータ装置を提
供することを目的とする。SUMMARY OF THE INVENTION In view of the above-mentioned conventional circumstances, it is an object of the present invention to provide a catalytic converter device for an internal combustion engine that can perform highly accurate air-fuel ratio feedback while ensuring good emissions.
く課題を解決するための手段〉
このため、本発明に係る内燃機関の触媒コンバータ装置
は、機関排気通路の上流側及び下流側にそれぞれ備えら
れた排気浄化用の第1および第2触媒と、前記第1触媒
よりも上流側及び該第1触媒と前記第2触媒との間にそ
れぞれ配設され、空燃比によって変化する排気中特定気
体成分の濃度比に感応して出力値が変化する第1および
第2の空燃比センサと、を備えて、吸気系への燃料供給
量あるいは空気供給量を補正して空燃比を制御する内燃
機関の空燃比制御装置において、第1触媒に係る酸素ス
トレージ能力を第2触媒に係る酸素ストレージ能力に較
べて小さくする構成とした。Means for Solving the Problems> Therefore, the catalytic converter device for an internal combustion engine according to the present invention includes first and second catalysts for exhaust purification, which are provided on the upstream side and the downstream side of the engine exhaust passage, respectively; A second catalyst is disposed upstream of the first catalyst and between the first catalyst and the second catalyst, and whose output value changes in response to the concentration ratio of a specific gas component in the exhaust gas that changes depending on the air-fuel ratio. 1 and a second air-fuel ratio sensor, the air-fuel ratio control device for an internal combustion engine controls the air-fuel ratio by correcting the amount of fuel supplied to the intake system or the amount of air supplied to the intake system. The configuration is such that the capacity is smaller than the oxygen storage capacity of the second catalyst.
〈作用〉
酸素ストレージ能力か小さいと空燃比か大きく振れた場
合は触媒の転換効率は悪くなるが、第1および第2の空
燃比センサを備えて空燃比を制御する内燃機関の空燃比
制御装置にあっては、第1触媒に係る酸素ストレージ能
力を小さくすることにより、第1排気浄化触媒の酸素吸
着能力限界は小さくなる。このため、第2空燃比センサ
のフィードバック周期は短くなり、空燃比の理論空燃比
からの最大ずれ量も小さくなって触媒において転換効率
の高い部分での使用割合か増加し、エミッションも低下
する。<Function> If the oxygen storage capacity is small and the air-fuel ratio fluctuates greatly, the conversion efficiency of the catalyst will deteriorate. In this case, by reducing the oxygen storage capacity of the first catalyst, the oxygen adsorption capacity limit of the first exhaust purification catalyst becomes smaller. Therefore, the feedback cycle of the second air-fuel ratio sensor becomes shorter, the maximum deviation of the air-fuel ratio from the stoichiometric air-fuel ratio becomes smaller, and the proportion of the catalyst used in the portions with high conversion efficiency increases, resulting in lower emissions.
さらに第2触媒は酸素ストレージ能力か大きいので、空
燃比か振れた場合の排気中の未燃成分の浄化能力は十分
である。Furthermore, since the second catalyst has a large oxygen storage capacity, its ability to purify unburned components in the exhaust gas is sufficient even when the air-fuel ratio fluctuates.
従って、良好なエミッションを確保しつつ、高精度な空
燃比フィードバック制御を行うことか可能となる。Therefore, it is possible to perform highly accurate air-fuel ratio feedback control while ensuring good emissions.
〈実施例〉 以下に、本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.
一実施例の構成を示す第1図において、機関11の吸気
通路12には吸入空気流量Qを検出するエアフローメー
タ13及びアクセルペダルと連動して吸入空気流量Qを
制御する絞り弁14が設けられ、下流のマニホールド部
分には気筒毎に燃料供給手段としての電磁式の燃料噴射
弁15か設けられる。In FIG. 1 showing the configuration of one embodiment, an air flow meter 13 for detecting an intake air flow rate Q and a throttle valve 14 for controlling the intake air flow rate Q in conjunction with an accelerator pedal are provided in an intake passage 12 of an engine 11. An electromagnetic fuel injection valve 15 serving as a fuel supply means is provided for each cylinder in the downstream manifold portion.
燃料噴射弁15は、マイクロコンピュータを内蔵したコ
ントロールユニット16からの噴射パルス信号によって
開弁駆動し、図示しない燃料ポンプから圧送されてプレ
ッシャレギュレータにより所定圧力に制御された燃料を
噴射供給する。更に、機関11の冷却ジャケット内の冷
却水温度Twを検出する水温センサ17か設けられる。The fuel injection valve 15 is driven to open by an injection pulse signal from a control unit 16 having a built-in microcomputer, and injects fuel that is pressure-fed from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator. Furthermore, a water temperature sensor 17 for detecting the temperature Tw of the cooling water in the cooling jacket of the engine 11 is provided.
一方、排気通路18にはマニホールド集合部に排気中酸
素濃度を検出することによって吸入混合気の空燃比を検
出する第1の空燃比センサ19か設けられ、その下流側
の排気管に排気中のCo、HCの酸化とNOxの還元を
行って浄化する排気浄化触媒としての第1の三元触媒2
0が設けられ、更に該第1の三元触媒20の下流側に第
1空燃比センサと同一の機能を持つ第2の空燃比センサ
21が設けられ、更に該第2の空燃比センサ2Xの下流
側に第1の三元触媒20と同一の機能を有すると共に、
前記第1の三元触媒20より容積が若干小さい第2の三
元触媒22が設けられている。On the other hand, the exhaust passage 18 is provided with a first air-fuel ratio sensor 19 that detects the air-fuel ratio of the intake air-fuel mixture by detecting the oxygen concentration in the exhaust gas at the manifold gathering part, and the exhaust gas First three-way catalyst 2 as an exhaust purification catalyst that oxidizes Co and HC and reduces NOx.
Further, a second air-fuel ratio sensor 21 having the same function as the first air-fuel ratio sensor is provided downstream of the first three-way catalyst 20, and furthermore, a second air-fuel ratio sensor 21 having the same function as the first air-fuel ratio sensor is provided. It has the same function as the first three-way catalyst 20 on the downstream side, and
A second three-way catalyst 22 having a slightly smaller volume than the first three-way catalyst 20 is provided.
即ち、第1の三元触媒20.第2の三元触媒22等によ
り触媒コンバータ装置か構成されている。That is, the first three-way catalyst 20. A catalytic converter device is constituted by the second three-way catalyst 22 and the like.
また、第1図で図示しないディストリビュータには、ク
ランク角センサ23が内蔵されており、該クランク角セ
ンサ23から機関回転と同期して出力されるクランク単
位角信号を一定時間カウントして、又は、クランク基準
角信号の周期を計測して機関回転数Nを検出する。Further, the distributor (not shown in FIG. 1) has a built-in crank angle sensor 23, and a crank angle signal outputted from the crank angle sensor 23 in synchronization with engine rotation is counted for a certain period of time, or The engine rotation speed N is detected by measuring the period of the crank reference angle signal.
次に、コントロールユニット16による空燃比制御ルー
チンを第2図のフローチャートに従って説明する。第2
図は燃料噴射量設定ルーチンを示し、このルーチンは所
定周期(例えば10m5)毎に行われる。Next, the air-fuel ratio control routine by the control unit 16 will be explained according to the flowchart shown in FIG. Second
The figure shows a fuel injection amount setting routine, and this routine is performed at predetermined intervals (for example, every 10 m5).
ステップ(図ではSと記す)lでは、エアフローメータ
13によって検出された吸入空気流量Qとクランク角セ
ンサ24からの信号に基づいて算出した機関回転数Nと
に基づき、単位回転当たりの吸入空気量に相当する基本
燃料噴射量T、を次式によって演算する。In step (denoted as S in the figure) l, the intake air amount per unit rotation is determined based on the intake air flow rate Q detected by the air flow meter 13 and the engine rotation speed N calculated based on the signal from the crank angle sensor 24. The basic fuel injection amount T, which corresponds to T, is calculated using the following equation.
T p = K x Q / N (Kは定数)ス
テップ2では、水温センサ17によって検出された冷却
水温度Tw等に基づいて各種補正係数C0EFを設定す
る。T p = K x Q / N (K is a constant) In step 2, various correction coefficients C0EF are set based on the cooling water temperature Tw etc. detected by the water temperature sensor 17.
ステップ3では、別ルーチンにより設定されたフィード
バック補正係数αを読み込む。In step 3, the feedback correction coefficient α set by another routine is read.
即ち、第1及び第2の空燃比センサ19.21の検出値
に基づいて夫々設定される2つの空燃比フィードバック
補正係数を組み合わせたり、或いは第1空燃比センサ1
9により設定される空燃比フィードバック補正係数の制
御定数(比例分や積分分)を補正すること等によって第
1の空燃比センサ19の出力特性のばらつきを第2の空
燃比センサ22によって補償した値を読み込む。That is, the two air-fuel ratio feedback correction coefficients set respectively based on the detected values of the first and second air-fuel ratio sensors 19.21 are combined, or the first air-fuel ratio sensor 1
A value obtained by compensating for variations in the output characteristics of the first air-fuel ratio sensor 19 by the second air-fuel ratio sensor 22 by correcting the control constant (proportional component or integral component) of the air-fuel ratio feedback correction coefficient set by 9. Load.
ステップ4では、バッテリ電圧値に基づいて電圧補正分
子、を設定する。これは、バッテリ電圧変動による燃料
噴射弁15の噴射流量変化を補正するためのものである
。In step 4, a voltage correction numerator is set based on the battery voltage value. This is to correct changes in the injection flow rate of the fuel injection valve 15 due to battery voltage fluctuations.
ステップ5では、最終的な燃料噴射量(燃料供給量)T
1を次式に従って演算する。In step 5, the final fuel injection amount (fuel supply amount) T
1 is calculated according to the following formula.
T+ =Tp xCOEFxa+Ts
ステップ6では、演算された燃料噴射弁T1を出力用レ
ジスタにセットする。T+=Tp xCOEFxa+Ts In step 6, the calculated fuel injection valve T1 is set in the output register.
これにより、予め定められた機関回転同期の燃料噴射タ
イミングになると、演算した燃料噴射量T1のパルス巾
をもつ駆動パルス信号か燃料噴射弁15に与えられて燃
料噴射が行われる。As a result, when the predetermined fuel injection timing is synchronized with the engine rotation, a drive pulse signal having a pulse width of the calculated fuel injection amount T1 is applied to the fuel injection valve 15 to perform fuel injection.
ここで、本発明に係る排気浄化用の第1および第2触媒
としての第1の三元触媒20および第2の三元触媒22
はモノリス型触媒であり、例えば第3図及び第4図に示
すようなものである。Here, the first three-way catalyst 20 and the second three-way catalyst 22 are used as the first and second catalysts for exhaust purification according to the present invention.
is a monolith type catalyst, for example as shown in FIGS. 3 and 4.
即ち、耐熱合金等によって形成される円柱状の担体31
には、その軸方向両端を直線的に連通ずるハニカム状の
処理気体通路32か隔壁32aによって形成されている
。この担体31の処理気体通路32を形成する隔壁32
aの内周壁面には、後述する成分のウォッシュコート3
3が塗布されており、これによってモノリス型触媒34
か構成されている。That is, a cylindrical carrier 31 made of a heat-resistant alloy or the like.
is formed by a honeycomb-shaped processing gas passage 32 or partition wall 32a that linearly communicates both ends in the axial direction. A partition wall 32 forming a processing gas passage 32 of this carrier 31
Wash coat 3 of the components described below is applied to the inner peripheral wall surface of a.
3 is coated, thereby forming a monolithic catalyst 34.
or configured.
ここで、本発明に係る第1実施例としてウォッシュコー
ト33の成分を表1に示す。Here, Table 1 shows the components of the wash coat 33 as a first example according to the present invention.
即ち、第1触媒20の酸素ストレージ能力を有する成分
であるセリアCeO□の含有量か、第2触媒22におけ
るセリアCeO□の含有量に較べて、1/3となってい
る。That is, the content of ceria CeO□, which is a component having an oxygen storage ability, in the first catalyst 20 is 1/3 compared to the content of ceria CeO□ in the second catalyst 22.
表1
従って、第1触媒20の酸素ストレージ能力は小さく、
第1触媒20の酸素吸着能力限界及び前述の吸着てきな
い酸素量も小さ(なる。このため、本実施例に係る構成
によれば、第1の空燃比センサ19及び第2の空燃比セ
ンサ21を備えて空燃比を制御しているので、第2の空
燃比センサ21のフィードバック周期は短くなり、第5
図(b)に示す従来例に較べ第5図(a)に示すように
、空燃比が大きくふれることが防止される。Table 1 Therefore, the oxygen storage capacity of the first catalyst 20 is small;
The oxygen adsorption capacity limit of the first catalyst 20 and the aforementioned amount of oxygen that cannot be adsorbed are also small. Therefore, according to the configuration of this embodiment, the first air-fuel ratio sensor 19 and the second air-fuel ratio sensor 21 Since the air-fuel ratio is controlled by the second air-fuel ratio sensor 21, the feedback period of the second air-fuel ratio sensor 21 becomes short, and
Compared to the conventional example shown in FIG. 5(b), as shown in FIG. 5(a), the air-fuel ratio is prevented from fluctuating greatly.
さらに第2触媒22はセリアCeO2の含有量が多いの
で酸素ストレージ能力が大きく、空燃比か振れた場合も
排気中の未燃成分の浄化能力か十分あるので、第2触媒
22出口のエミッションか十分低減できる(第5図参照
)。Furthermore, the second catalyst 22 has a large content of ceria CeO2, so it has a large oxygen storage capacity, and even if the air-fuel ratio fluctuates, it has sufficient ability to purify unburned components in the exhaust gas, so the emission at the outlet of the second catalyst 22 is sufficient. can be reduced (see Figure 5).
従って、本実施例によれば、良好なエミッションを確保
しつつ、高精度な空燃比フィードバック制御を行うこと
か可能となる。Therefore, according to this embodiment, it is possible to perform highly accurate air-fuel ratio feedback control while ensuring good emissions.
次に本発明に係る第2実施例について説明するが、第2
実施例に係る触媒コンバータ装置に係る排気浄化用の第
1および第2触媒としての第1の:元触媒20および第
2の三元触媒22は、第1実施例と同様であるので、構
成については説明を省略する。Next, a second embodiment according to the present invention will be described.
The first primary catalyst 20 and the second three-way catalyst 22 as the first and second catalysts for exhaust purification in the catalytic converter device according to the embodiment are the same as those in the first embodiment, so the configuration is as follows. The explanation will be omitted.
第2実施例では、表2に示す成分のつオツシュコート3
3を塗布した。In the second example, Otsushu Coat 3 with the ingredients shown in Table 2 was used.
3 was applied.
表2
本実施例においても、第1触媒20のセリアCeO□の
含有量か第2触媒22における含有量に較へて少なく、
さらに本実施例では触媒貴金属の熱劣化を補償する目的
でジルコニア(Zr02)や酸化バリウム(Bad)の
含有量を増やして、当該触媒貴金属の熱劣化を補償して
いる。Table 2 Also in this example, the content of ceria CeO□ in the first catalyst 20 is smaller than the content in the second catalyst 22.
Furthermore, in this example, the content of zirconia (Zr02) and barium oxide (Bad) is increased to compensate for the thermal deterioration of the catalyst noble metal.
次に本発明に係る第3実施例について説明する。Next, a third embodiment of the present invention will be described.
第3実施例に係る排気浄化用触媒コンバータ装置30は
、第6図に示すように、容器33に第1の三元触媒31
および第2の三元触媒32が直列に設けられており、該
第1の三元触媒31と第2の三元触媒32との間の排気
通路34に第2の空燃比センサ21か設けられるもので
ある。As shown in FIG. 6, the exhaust purification catalytic converter device 30 according to the third embodiment includes a first three-way catalyst 31 in a container 33.
and a second three-way catalyst 32 are provided in series, and a second air-fuel ratio sensor 21 is provided in the exhaust passage 34 between the first three-way catalyst 31 and the second three-way catalyst 32. It is something.
そして第3実施例では、表3に示す成分のウォッシュコ
ート33を塗布した。In the third example, a wash coat 33 having the components shown in Table 3 was applied.
表3
本実施例においても、第1触媒31のセリアCeO2の
含有量が、第2触媒32における含有量に較べて少なく
、さらに本実施例においてもジルコニア(ZrO2)や
酸化バリウム(Bad)の含有量を増やして、触媒貴金
属の熱劣化を補償している。Table 3 Also in this example, the content of ceria CeO2 in the first catalyst 31 is smaller than the content in the second catalyst 32, and also in this example, the content of zirconia (ZrO2) and barium oxide (Bad) is The amount is increased to compensate for thermal degradation of the catalytic precious metal.
〈発明の効果〉
以上説明したように、本発明によれば、機関排気通路に
おいて上流側より、第1空燃比センサ。<Effects of the Invention> As described above, according to the present invention, the first air-fuel ratio sensor is arranged from the upstream side in the engine exhaust passage.
排気浄化用第1触媒、第2空燃比センサ、排気浄化用第
2触媒の順で備えたものにおいて、第1触媒に係る酸素
ストレージ能力を第2触媒に係る酸素ストレージ能力に
較へて小さくしたので、第2空燃比センサのフィードバ
ック周期を短くでき、空燃比の理論空燃比からの最大ず
れ量を小さくすることかできると共に、第2触媒による
排気中の未燃成分浄化能力も十分確保することかできる
。In a device equipped with a first catalyst for exhaust purification, a second air-fuel ratio sensor, and a second catalyst for exhaust purification in this order, the oxygen storage capacity of the first catalyst is made smaller than the oxygen storage capacity of the second catalyst. Therefore, the feedback cycle of the second air-fuel ratio sensor can be shortened, the maximum deviation of the air-fuel ratio from the stoichiometric air-fuel ratio can be reduced, and the ability of the second catalyst to purify unburned components in the exhaust gas can also be sufficiently ensured. I can do it.
従って、良好なエミッションを確保しつつ、高精度な空
燃比フィードバック制御を行うことか可能となるという
効果がある。Therefore, it is possible to perform highly accurate air-fuel ratio feedback control while ensuring good emissions.
第1図は本発明の実施例に係るシステム構成図、第2商
工実施例の燃料噴射量設定ルーチンを示すフローチャー
ト、第3図はモノリス型触媒の斜視図、第4図は第3図
の部分拡大図、第5図は本11・・・機関 18・・
・排気通路 19・・・第1の空燃比センサ 20
・・・第1の三元触媒2021・・・第2の空燃比セン
サ 22・・・第2の三元触媒 3I・・・担体
32a・・・隔壁 33・・・ウォッシュコート特
許出願人 日産自動車株式会社
代理人 弁理士 笹 島 富二雄
11・・・機関
18・・・排気通路
19・・・第1の空燃比センサ
20・・・第1の三元触媒2゜
×
23〈Rや
第2図
第1
第5図
(a)
第2慰祥出口
(b)
第2先媒巳口Fig. 1 is a system configuration diagram according to an embodiment of the present invention, a flowchart showing a fuel injection amount setting routine of the second commercial embodiment, Fig. 3 is a perspective view of a monolith catalyst, and Fig. 4 is a portion of Fig. 3. Enlarged view, Figure 5 is Book 11... Engine 18...
-Exhaust passage 19...first air-fuel ratio sensor 20
...First three-way catalyst 2021...Second air-fuel ratio sensor 22...Second three-way catalyst 3I...Carrier
32a...Partition wall 33...Wash coat patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima 11...Engine 18...Exhaust passage 19...First air-fuel ratio sensor 20... First three-way catalyst 2゜× 23
Claims (1)
た排気浄化用の第1および第2触媒と、前記第1触媒よ
りも上流側及び該第1触媒と前記第2触媒との間にそれ
ぞれ配設され、空燃比によって変化する排気中特定気体
成分の濃度比に感応して出力値が変化する第1および第
2の空燃比センサと、を備える内燃機関の触媒コンバー
タ装置において、 第1触媒に係る酸素ストレージ能力を第2触媒に係る酸
素ストレージ能力に較べて小さくしたことを特徴とする
内燃機関の触媒コンバータ装置。[Scope of Claims] First and second catalysts for exhaust purification provided on the upstream side and downstream side of an engine exhaust passage, respectively, and the first catalyst and the second catalyst on the upstream side of the first catalyst, and the first catalyst and the second catalyst. a catalytic converter device for an internal combustion engine, comprising first and second air-fuel ratio sensors that are respectively disposed between the air-fuel ratio sensor and the air-fuel ratio sensor and whose output value changes in response to the concentration ratio of a specific gas component in the exhaust gas that changes depending on the air-fuel ratio. A catalytic converter device for an internal combustion engine, characterized in that the oxygen storage capacity of the first catalyst is smaller than the oxygen storage capacity of the second catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2176272A JP2623926B2 (en) | 1990-07-05 | 1990-07-05 | Catalytic converter device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2176272A JP2623926B2 (en) | 1990-07-05 | 1990-07-05 | Catalytic converter device for internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0466716A true JPH0466716A (en) | 1992-03-03 |
JP2623926B2 JP2623926B2 (en) | 1997-06-25 |
Family
ID=16010675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2176272A Expired - Fee Related JP2623926B2 (en) | 1990-07-05 | 1990-07-05 | Catalytic converter device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2623926B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06336916A (en) * | 1993-05-31 | 1994-12-06 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
US7305820B2 (en) | 2003-10-16 | 2007-12-11 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control apparatus for internal combustion engine |
JP2009101360A (en) * | 1995-12-21 | 2009-05-14 | Basf Catalysts Llc | Engine exhaust treatment apparatus and method of use |
JP2013127251A (en) * | 2006-02-28 | 2013-06-27 | Johnson Matthey Plc | Exhaust system for spark-ignited internal combustion engine |
JP2019183703A (en) * | 2018-04-05 | 2019-10-24 | スズキ株式会社 | Exhaust emission control device |
CN112576343A (en) * | 2019-09-30 | 2021-03-30 | 株式会社斯巴鲁 | Exhaust gas purification device |
-
1990
- 1990-07-05 JP JP2176272A patent/JP2623926B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06336916A (en) * | 1993-05-31 | 1994-12-06 | Toyota Motor Corp | Exhaust emission control device of internal combustion engine |
JP2009101360A (en) * | 1995-12-21 | 2009-05-14 | Basf Catalysts Llc | Engine exhaust treatment apparatus and method of use |
US7305820B2 (en) | 2003-10-16 | 2007-12-11 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas control apparatus for internal combustion engine |
JP2013127251A (en) * | 2006-02-28 | 2013-06-27 | Johnson Matthey Plc | Exhaust system for spark-ignited internal combustion engine |
JP2019183703A (en) * | 2018-04-05 | 2019-10-24 | スズキ株式会社 | Exhaust emission control device |
CN112576343A (en) * | 2019-09-30 | 2021-03-30 | 株式会社斯巴鲁 | Exhaust gas purification device |
Also Published As
Publication number | Publication date |
---|---|
JP2623926B2 (en) | 1997-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3799824B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR19990037048A (en) | Engine emission control system with nitric oxide catalyst | |
JP4186259B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0466716A (en) | Catalyst converter device for internal combustion engine | |
JP4155662B2 (en) | Three-way catalyst oxygen storage control device | |
JPH01458A (en) | Oxygen sensor for internal combustion engine | |
JPH06294342A (en) | Air-fuel ratio feedback controller of internal combustion engine | |
JP3150679B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2687654B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0713608B2 (en) | Oxygen sensor for internal combustion engine | |
WO2023223504A1 (en) | Device and method for controlling oxygen storage amount in three-way catalyst | |
JP3470405B2 (en) | Air-fuel ratio controller for lean-burn engines | |
JP2917431B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP4072412B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP2609129B2 (en) | Exhaust purification system for internal combustion engine | |
JP3624689B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2807554B2 (en) | Air-fuel ratio control method for internal combustion engine | |
JPH0518235A (en) | Secondary air control device for internal combustion engine | |
JP3635711B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH02264139A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH02204649A (en) | Air-fuel ratio controller for internal combustion engine | |
JP3922893B2 (en) | Engine air-fuel ratio control device | |
JPH01159436A (en) | Air-fuel ratio controller for internal combustion engine | |
JPH0835420A (en) | Exhaust emission control device of internal combustion engine | |
JP2022100067A (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090411 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100411 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |