JPH0465302A - Pressure-swing hydrogen purification method - Google Patents
Pressure-swing hydrogen purification methodInfo
- Publication number
- JPH0465302A JPH0465302A JP2177528A JP17752890A JPH0465302A JP H0465302 A JPH0465302 A JP H0465302A JP 2177528 A JP2177528 A JP 2177528A JP 17752890 A JP17752890 A JP 17752890A JP H0465302 A JPH0465302 A JP H0465302A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- adsorption
- adsorption stage
- pressure
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 84
- 239000001257 hydrogen Substances 0.000 title claims abstract description 82
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 19
- 238000000746 purification Methods 0.000 title claims description 13
- 238000001179 sorption measurement Methods 0.000 claims abstract description 83
- 239000003463 adsorbent Substances 0.000 claims abstract description 36
- 239000007789 gas Substances 0.000 claims abstract description 31
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 7
- 239000002994 raw material Substances 0.000 claims description 9
- 238000003795 desorption Methods 0.000 claims description 2
- 230000001172 regenerating effect Effects 0.000 claims description 2
- 238000000629 steam reforming Methods 0.000 abstract description 2
- 230000000274 adsorptive effect Effects 0.000 abstract 6
- 238000011084 recovery Methods 0.000 description 19
- 230000008929 regeneration Effects 0.000 description 7
- 238000011069 regeneration method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- JTJMJGYZQZDUJJ-UHFFFAOYSA-N phencyclidine Chemical compound C1CCCCN1C1(C=2C=CC=CC=2)CCCCC1 JTJMJGYZQZDUJJ-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000002760 rocket fuel Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野〕
アンモニアプラント、都市ガスプラント、水素製造プラ
ント等の水原気改質炉による水茎気改質ガス又はコーク
ス炉オブガス等の水素ガスとこれに随伴するco、 c
o2等よりなるガスからの圧力スイング式水素精製方法
に間する。[Detailed Description of the Invention] [Industrial Application Field] Hydrogen gas such as water-stalk-gas reformed gas from a water-based air-to-air reformer in an ammonia plant, city gas plant, hydrogen production plant, etc. or coke oven gas, and accompanying hydrogen gas. co, c
A pressure swing type hydrogen purification method from a gas such as O2 is used.
コークス炉、石油精製プラントオフガス、天然ガス、液
化石油ガス、ナフサ原料とする水蕉気改質炉等ではH2
,Co、 Co、、 H2O等を主成分とするガスを生
成する。この混合ガスからのH2の選択的な濃縮は、H
2の広範な用途を考えると極めて有意義かつ重要である
。H2 in coke ovens, oil refining plant off-gas, natural gas, liquefied petroleum gas, water vapor reforming furnaces used as raw materials for naphtha, etc.
, Co, Co, , H2O, etc. are produced as main components. Selective enrichment of H2 from this gas mixture is
This is extremely meaningful and important considering the wide range of uses of 2.
H7は従来高級炭化水素に触媒の共存条件下で接触させ
て低級化する水添反応に用いられる他、メタノール合成
、アンモニア合成等化学工業上の基礎!1171質とし
て広く用いられている。H7 is conventionally used in hydrogenation reactions in which higher hydrocarbons are lowered by contacting them in the presence of a catalyst, and is also used as a basis for chemical industry applications such as methanol synthesis and ammonia synthesis! It is widely used as 1171 quality.
他の用途としてはH2の02との燃焼反応により瞬時に
多量のエネルギーを生成するために、燃料電池、水素エ
ンジン等ロケット燃料との燃料としてン王目されている
。As for other uses, since a large amount of energy is instantaneously generated by the combustion reaction of H2 with 02, it is being used as a fuel with rocket fuel in fuel cells, hydrogen engines, etc.
従来のH2の精製の代表的な方法の概要を述べると装置
は3塔又は4塔又はそれ以上の吸着塔、開閉弁、流量制
御弁から構成される。To give an overview of a typical conventional H2 purification method, the apparatus is composed of three or four or more adsorption towers, an on-off valve, and a flow rate control valve.
この装置に於いてl塔に供給されたf(z、 CO,C
0zH20等を主成分とする高圧の混合ガスは、人口側
より逐次)120. CO2,Coの強吸着成分から難
吸着成分の順に吸着される。In this device, f(z, CO, C
A high-pressure mixed gas containing 0zH20 etc. as a main component is sequentially released from the population side) 120. CO2 and Co are adsorbed in the order of strongly adsorbed components to poorly adsorbed components.
吸着塔入口付近に通常アルミナ、活性炭等の強吸着成分
の吸着に適した吸着剤を配し、後流には弱吸着成分用に
ゼオライト系吸着剤を配する。An adsorbent suitable for adsorbing strongly adsorbed components, such as alumina or activated carbon, is usually arranged near the entrance of the adsorption tower, and a zeolite-based adsorbent is arranged downstream for weakly adsorbed components.
H2は殆どの吸着剤に対して唆着能を示さないため、出
口からの高圧のまま流通する。この工程を続けると塔出
口からH2以外のガスが流通を始めるため、その前に原
料ガスの供給を終了する。(吸着工程終了)
この詩仙の塔では塔内圧は大気圧に迄陣圧し後述する要
領で既に吸着剤は再生されている。(再生工程終了)
吸着工程終了時の塔にはまだ多量のH2が残存している
ため、再生工程終了時の塔を後方で結ふと高圧の塔から
はH2が流出して低圧の塔に回収され、互いの塔の圧力
は等しくなる。(塔間均圧工程)この後、更に塔の前方
を開放して向流に減圧すると吸着塔内圧力は低下し、吸
着されたCo、 C02H,O等は吸着剤から離脱し系
外に放出される。Since H2 does not exhibit adsorption ability for most adsorbents, it flows under high pressure from the outlet. If this process is continued, gases other than H2 will begin to flow from the tower outlet, so the supply of raw material gas is terminated before that. (Adsorption step completed) In this Shisen Tower, the internal pressure has reached atmospheric pressure and the adsorbent has already been regenerated as described below. (Completion of regeneration process) Since a large amount of H2 still remains in the column at the end of the adsorption process, if the column at the end of the regeneration process is tied at the rear, H2 will flow out from the high pressure column and be collected in the low pressure column. The pressures in both towers become equal. (Pressure equalization process between columns) After this, the front of the column is further opened and the pressure is reduced in a countercurrent flow, the pressure inside the adsorption column decreases, and the adsorbed Co, CO2H, O, etc. are separated from the adsorbent and released outside the system. be done.
(減圧工程)
この工程のみでは不充分なため、大気圧条件下製品H2
の一部を向流に流すと吸着剤からは更に徹底して被吸着
ガスが離脱して再生される。(製品Hつパージ)
複数の塔において同様の操作を周期をずらして行なうこ
とによって、連続的にH2を回収することができる。(Depressurization process) Since this process alone is insufficient, the product H2 under atmospheric pressure
When a portion of the adsorbent is flowed countercurrently, the adsorbed gas is more thoroughly removed from the adsorbent and regenerated. (Product H purge) H2 can be continuously recovered by performing the same operation in a plurality of towers at different times.
上記の水素の精製方法では、−船釣には、■ 塔数を多
くして塔間均圧を行なう程、)+2回収率は上昇するが
、単位吸着剤、単位時間当りのH2精製量は低下する。In the above hydrogen purification method, the recovery rate of +2 increases as the number of columns increases and the pressure is equalized between the columns, but the amount of H2 purified per unit adsorbent and unit time increases. descend.
■ 高圧吸着、大気圧再生であるために、圧力が低下す
ると製品H2バージ用のH2の確保が困難となり、吸着
圧力は10atm以上が望ましい。(2) Since high-pressure adsorption and atmospheric pressure regeneration are used, if the pressure decreases, it becomes difficult to secure H2 for the product H2 barge, so it is desirable that the adsorption pressure be 10 atm or more.
と言われている。It is said that
このため、塔間均圧を主体とする製品lI2の回収率の
向上に工夫が凝らされているが、H2の回収率は85%
が最高である。For this reason, efforts have been made to improve the recovery rate of the product lI2, which mainly involves pressure equalization between columns, but the recovery rate of H2 is only 85%.
is the best.
824度については容易に高純度のH2が得られ最高到
達濃度は99.999%に達する。At 824 degrees, highly pure H2 is easily obtained and the maximum concentration reaches 99.999%.
(発明が解決しようとする1題)
上記の従来の方法では、未吸着水素の回収のために染着
終了後の高圧塔と減圧再生終了後の低圧塔の間で逐次塔
間均圧を行なう方法が取られている。この方法では、電
力等のユーティリティを使用せずに水素回収を計ること
となるが、以下の欠点を有する。(One problem to be solved by the invention) In the above conventional method, in order to recover unadsorbed hydrogen, inter-column pressure equalization is performed successively between the high pressure column after dyeing is finished and the low pressure column after vacuum regeneration is finished. A method is being taken. This method recovers hydrogen without using utilities such as electricity, but it has the following drawbacks.
■ 水素の高回収率を計るためには塔数の増加と多段に
亘る塔間均圧操作が必要である。このため、複雑なソー
ケンスと多数のバルブが必要である。■ In order to achieve a high hydrogen recovery rate, it is necessary to increase the number of columns and perform multi-stage pressure equalization operations. This requires a complex soaking system and a large number of valves.
■ 水素の高回収率を計るために↓よ多段の塔間均圧操
作が必要であるので吸着圧力を高く設定する必要がある
。■ In order to achieve a high hydrogen recovery rate, a multi-stage pressure equalization operation is required, so the adsorption pressure must be set high.
水蒸気改質装置からの水素精製する例として、ソフト反
応器後流の水素70νo1%COz 25vo1%。As an example of hydrogen purification from a steam reformer, hydrogen 70 vol 1% COz 25 vol 1% downstream of a soft reactor.
CO5ν01%のガスから99.9vo1%の水素を精
製する場合を挙げると、圧力2Qatm 4塔式吸着塔
で水素回収率70%、■00塔で85%といわれ、また
IOa Lmの4塔弐では水素回収率は60%を下潮る
。In the case of purifying 99.9vo1% hydrogen from gas with CO5ν01%, it is said that the hydrogen recovery rate is 70% in a four-column adsorption tower with a pressure of 2Qatm, and 85% in a ■00 column. The hydrogen recovery rate will drop below 60%.
この水素回収率の低下の原因は、第一にCO以下の弱吸
着成分の吸着帯(吸着されるゾーン)が長いために、吸
着剤間及び吸着剤内部の空隙に高純度の水素が残留し、
これが回収されないことに起因する。The reason for this decrease in hydrogen recovery rate is firstly that the adsorption zone (adsorbed zone) of weakly adsorbed components below CO is long, resulting in high-purity hydrogen remaining between the adsorbents and in the voids inside the adsorbent. ,
This is due to the fact that it is not collected.
本発明は、以上の従来の圧力スイング式水素精製方法の
欠点を解消しようとするものである。The present invention aims to solve the above-mentioned drawbacks of the conventional pressure swing hydrogen purification method.
本発明は、加圧下で水素とこれに随伴するCOCO2等
よりなる原料ガス中の水素に随伴する成分を吸着剤によ
って吸着して高純度水素を精製し、減圧下で吸着成分を
離脱させて吸着剤を再生する系を複数個備え、各県にお
いて上記吸着及び離脱を交互に繰り返す圧力スイング式
水素精製方法において、CO2以上の強吸着成分を吸着
する吸着剤を充填した第一の吸着段に、次いでCO以下
の弱吸着成分を吸着する吸着剤を充填した第二の吸着段
に加圧された原料ガスを導入し、原料ガス中から先づ上
記第一の吸着段においてCO□以上の強吸着成分を吸着
し、次いで上記第二の吸着段でCO以下の弱吸着成分を
吸着して高純度の水素を得た後、上記第一の吸着段で吸
着された強吸着成分を減圧下で離脱して系外に放出する
と共に、上記第二の吸着段で吸着された弱吸着成分を減
圧下で離脱した後同第二の吸着段に残存する水素と共に
シフトコンバータに導入してCOとH,Oを反応させて
水素を発生させた上更に上記吸着段へ導入して再精製す
ることを特徴とする。The present invention purifies high-purity hydrogen by adsorbing components accompanying hydrogen in a raw material gas such as hydrogen and accompanying COCO2 with an adsorbent under pressure, and then removes the adsorbed components under reduced pressure and adsorbs them. In the pressure swing type hydrogen purification method, which is equipped with a plurality of systems for regenerating the agent and alternately repeats the above adsorption and desorption in each prefecture, the first adsorption stage is filled with an adsorbent that adsorbs strongly adsorbed components of CO2 or more. Next, the pressurized raw material gas is introduced into a second adsorption stage filled with an adsorbent that adsorbs weakly adsorbed components below CO, and from the raw gas, the first adsorption stage first adsorbs strongly adsorbed components above CO□. After adsorbing the components and then adsorbing weakly adsorbed components below CO in the second adsorption stage to obtain highly pure hydrogen, the strongly adsorbed components adsorbed in the first adsorption stage are removed under reduced pressure. At the same time, the weakly adsorbed components adsorbed in the second adsorption stage are removed under reduced pressure, and then introduced into the shift converter together with the hydrogen remaining in the second adsorption stage, where CO and H, It is characterized in that it reacts with O to generate hydrogen, and then introduces it into the adsorption stage for repurification.
[作用]
本発明では、原料ガス中のco、、 co等は、それぞ
れ吸着塔内の第−吸着段及び第二吸着段において吸着さ
れ、高純度の水素が第一、第二の吸着段を3M過して回
収され、これが複数の系で順次行なわれて連続的に水素
の回収が行なわれる。[Function] In the present invention, co, co, etc. in the raw material gas are adsorbed in the first and second adsorption stages in the adsorption tower, and high-purity hydrogen passes through the first and second adsorption stages. 3M is passed through and recovered, and this is carried out sequentially in a plurality of systems to continuously recover hydrogen.
各県の吸着段について見ると、以上の吸着工程が終了す
ると、CO2以上の強吸着成分を吸着した吸着剤が充填
された第一の吸着段は減圧されて、上記強吸着成分は吸
着剤から離脱されて吸着剤の再生が行なわれ、吸着剤か
ら離脱されたCO2以上の強吸着成分は系外に排出され
る。Looking at the adsorption stages in each prefecture, when the above adsorption process is completed, the first adsorption stage filled with adsorbent that has adsorbed strongly adsorbed components of CO2 or more is depressurized, and the strongly adsorbed components are removed from the adsorbent. The adsorbent is desorbed and regenerated, and strongly adsorbed components of CO2 or more desorbed from the adsorbent are discharged to the outside of the system.
一方、COよりも弱吸着成分を吸着する第二の吸着段は
、吸着工程が終了した段階で吸着剤には弱吸着成分が吸
着され空隙には高純度の水素が高圧で残留している。こ
の第二の吸着段が減圧され、吸着剤からCO以下の弱吸
着分が離脱され、同吸着剤が再生される。また、吸着さ
れたCO及びCOより弱い吸着力をもつ成分は吸着剤よ
り離脱されて、残存する水素と共にソフトコンバータに
導入され、同シフトコンバータにおいてCOはソフト反
応によりCO+I□0−t(2+ CO□として水素に
転換されて原料ガスと合流して再び上記第−及び第二吸
着段に至り水素が精製される。On the other hand, in the second adsorption stage, which adsorbs a component weaker than CO, at the end of the adsorption step, the weakly adsorbed component is adsorbed on the adsorbent, and high-purity hydrogen remains in the void under high pressure. This second adsorption stage is depressurized, weakly adsorbed components below CO are removed from the adsorbent, and the adsorbent is regenerated. In addition, adsorbed CO and components with weaker adsorption power than CO are separated from the adsorbent and introduced into the soft converter together with the remaining hydrogen. In the shift converter, CO is converted into CO+I□0-t(2+ CO It is converted into hydrogen as □, joins with the raw material gas, and reaches the above-mentioned first and second adsorption stages to be purified.
このように、本発明では、第二の吸着段に残存する水素
を回収すると共に、同第二の吸着段で吸着されたCOを
吸着剤から離脱させた上、これによってシフトコンバー
タで水素を得ることができるために、吸着時の圧力を低
くしても水素の高回収率が実現される。In this way, in the present invention, hydrogen remaining in the second adsorption stage is recovered, CO adsorbed in the second adsorption stage is released from the adsorbent, and hydrogen is thereby obtained in the shift converter. As a result, a high recovery rate of hydrogen can be achieved even if the pressure during adsorption is lowered.
第1図に高水素回収率を実現した本発明の一実施例を示
す。FIG. 1 shows an embodiment of the present invention that achieves a high hydrogen recovery rate.
第1図において、水蕉気改質炉Iを出た乾ガス基準で水
素70vo1%、COz 20vo1% Co 10v
o1%の圧カフat−の水蒸気改質ガス10100N/
hは、流路2、熱交3を経て250°Cに降温し、シフ
トコンバータ4に至る。シフトコンバータ4にはシフト
触媒5が充填されており、CO+H,O→H2+CO□
の反応でCOは5νo1%迄低減され、流路5、バルブ
7aを経て、並列に配置されたCOz以上の強吸着成分
吸着段8a8bの一方の強吸着成分吸着段8aに至る。In Figure 1, hydrogen is 70vo1% and COz is 20vo1% Co 10v based on the dry gas that exited the water vapor reformer I.
O1% pressure cuff at- steam reformed gas 10100N/
h passes through the flow path 2 and the heat exchanger 3, cools down to 250°C, and reaches the shift converter 4. The shift converter 4 is filled with a shift catalyst 5, and CO+H, O→H2+CO□
Through this reaction, CO is reduced to 5νo1%, and passes through the flow path 5 and the valve 7a to the strongly adsorbed component adsorption stage 8a, one of the strongly adsorbed component adsorption stages 8a8b arranged in parallel with COz or more.
強吸着成分吸着段8aは前方には水分吸着用にアルミナ
9が後方にはCO□吸着剤として(Na−X)10が充
填されており、水分、CO□等の強吸着成分が吸着除去
されてバルブllaを経て、後流側のCO以下の弱吸着
成分吸着段12aに至る。弱吸着成分吸着段12aには
c。The strongly adsorbed component adsorption stage 8a is filled with alumina 9 at the front for moisture adsorption and (Na-X) 10 at the rear as a CO□ adsorbent, so that strongly adsorbed components such as water and CO□ are adsorbed and removed. The gas then passes through valve lla and reaches a downstream adsorption stage 12a for weakly adsorbed components below CO. c in the weakly adsorbed component adsorption stage 12a.
吸着剤として(Ca4N3が充填されCO等の弱吸着成
分が吸着されて99.9vo1%以上の高濃度水素がバ
ルブ14aを通して製品水素ホルダ15に至る。この時
、それぞれ上記吸着段8a、 12aと並列に配置され
同様の吸着剤が充填された他方の強吸着成分吸着段8b
、弱吸着成分吸着段1.2bは真空ポンプ16により、
0.5a tsの減圧に到達し、吸着剤が再生されてい
る。Filled with adsorbent (Ca4N3), weakly adsorbed components such as CO are adsorbed, and highly concentrated hydrogen of 99.9vol.1% or more reaches the product hydrogen holder 15 through the valve 14a. The other strongly adsorbed component adsorption stage 8b is placed at
, the weakly adsorbed component adsorption stage 1.2b is operated by the vacuum pump 16,
A vacuum of 0.5 ats has been reached and the adsorbent is being regenerated.
上記吸着段8b、 12bの再生が終了すると、1la
17a、 17b、 llbを開きその他のバルブを閉
しると、吸着段12aの後方に残留する水素が低圧の吸
着段12bに回収され、吸着の終了した7atmの吸着
段8812aは3.75atmに降圧し、一方再生が終
了した05atmの吸着段8b、 12bは3.75
atmへと昇圧し吸着段間の圧力は等しくなる。When the regeneration of the adsorption stages 8b and 12b is completed, 1la
17a, 17b, and llb are opened and other valves are closed, the hydrogen remaining behind the adsorption stage 12a is recovered to the low-pressure adsorption stage 12b, and the adsorption stage 8812a at 7 atm, which has completed adsorption, is depressurized to 3.75 atm. On the other hand, adsorption stages 8b and 12b at 05atm, which have completed regeneration, are 3.75
The pressure is increased to ATM, and the pressures between the adsorption stages become equal.
3.75atmに降圧した吸着段に着目すると、強吸着
成分吸着段8aでは先づバルブ18a、 19を開いて
大気圧上降圧し大気圧以下ではバルブ19を閉して真空
ポンプI6で系外にC02等の強吸着成分が脱着される
。一方弱吸着成分段12aではバルブ20aを開いて再
循環圧縮機21にて吸着剤から離脱したCOと吸着段1
2aに残存する水素を主成分とするガスが流路22から
シフトコンバータ4の上流に再循環される。弱吸着成分
段12aの圧力が大気圧になるとバルブ20aを閉して
バルブllaを開き残るガスは、強吸着成分段8aと同
様に真空排気される。Focusing on the adsorption stage where the pressure has been reduced to 3.75 atm, in the strongly adsorbed component adsorption stage 8a, valves 18a and 19 are first opened to reduce the pressure above atmospheric pressure, and when it is below atmospheric pressure, valve 19 is closed and the vacuum pump I6 is used to drain the system out of the system. Strongly adsorbed components such as C02 are desorbed. On the other hand, in the weakly adsorbed component stage 12a, the valve 20a is opened, and the CO released from the adsorbent is transferred to the adsorption stage 1 by the recirculation compressor 21.
Gas containing hydrogen as a main component remaining in 2a is recirculated from the flow path 22 to the upstream side of the shift converter 4. When the pressure in the weakly adsorbed component stage 12a becomes atmospheric pressure, the valve 20a is closed and the valve lla is opened, and the remaining gas is evacuated in the same manner as in the strongly adsorbed component stage 8a.
この後は、並列に配置された咬着段8a、 12a8b
、 12bを入れ換えて同様な操作を行なう。After this, the bite stages 8a and 12a8b arranged in parallel
, 12b and perform the same operation.
なお、上記吸着工程において、3.75at閘から7a
tmへ昇圧する場合には、バルブ23.17aを開い
て製品水素をホルダ15から、向流に流して昇圧し水蒸
気改質炉lに吸着段の圧力変動が伝わらないようQご配
慮がなされている。In addition, in the above adsorption step, from 3.75at to 7a
When increasing the pressure to tm, the valve 23.17a is opened to allow product hydrogen to flow countercurrently from the holder 15 to increase the pressure. There is.
上記の製品水素ホルダ15に至った99.9ν01%の
高純度水素は流路24から高圧のまま取り出される。The high purity hydrogen of 99.9v01% that has reached the product hydrogen holder 15 is taken out from the flow path 24 under high pressure.
真空ポンプ16から放出されたCO2等の強吸着成分は
流路25から水蒸気改質炉lの燃料として供給される。Strongly adsorbed components such as CO2 released from the vacuum pump 16 are supplied from the flow path 25 as fuel to the steam reforming reactor I.
また、流路22から供給されるCO及び水素の高圧の弱
吸着成分はシフトコンバータ4で原料ガスと合流して上
述の水素精製が実施される。Further, the high-pressure weakly adsorbed components of CO and hydrogen supplied from the flow path 22 are combined with the raw material gas in the shift converter 4, and the above-mentioned hydrogen purification is performed.
以上説明したように、本実施例では、弱吸着成分を吸収
する吸着段12a、 12bから吸着されたCOが同吸
着段に残存する水素と共にソフトコンバータ4へ導入さ
れ、こ\でCOが反応して水素を発生させ、これらを再
び吸着段8a、 12a; 8b、 +2bへ導入する
ことによって、水素の回収率を著しく高めることができ
る。As explained above, in this embodiment, the CO adsorbed from the adsorption stages 12a and 12b that absorb weakly adsorbed components is introduced into the soft converter 4 together with the hydrogen remaining in the adsorption stages, where the CO reacts. By generating hydrogen and reintroducing it into the adsorption stages 8a, 12a; 8b, +2b, the hydrogen recovery rate can be significantly increased.
発明者は第1図に示す実施例の効果を確認すべく、原料
乾ガス量1100N’/h、成分H270ν01%CO
225vo1%、 Co 5vo1%、圧カフatmの
シフトコンバータ出口のガスを、第1図に示す水素精製
装置に導入して本発明の水素精製性能を確認した。In order to confirm the effect of the example shown in FIG.
The hydrogen purification performance of the present invention was confirmed by introducing gas at the outlet of a shift converter of a pressure cuff ATM containing 225 vol 1% and Co 5 vol % into the hydrogen purification apparatus shown in FIG.
第2図はこの装置の製品水素濃度99.9vo1%での
吸着塔圧力(atm)と製品水素回収率(ν01%)の
関係である。実線は実施例、−点鎖線は従来法の4塔式
高圧吸着大気圧再生の水素精製性能(回収率)を示す。Figure 2 shows the relationship between the adsorption tower pressure (atm) and the product hydrogen recovery rate (v01%) at a product hydrogen concentration of 99.9vol% in this device. The solid line shows the example, and the dashed-dotted line shows the hydrogen purification performance (recovery rate) of the conventional four-column high-pressure adsorption atmospheric pressure regeneration.
従来法では20a tmで最高85%、5atmでは4
0%を下潮るのに対し、本実施例では3a Lm以上で
はほぼ95%の水素回収率を示すことが確認された。The conventional method has a maximum of 85% at 20 atm and 4 at 5 atm.
It was confirmed that in this example, the hydrogen recovery rate was approximately 95% at 3a Lm or higher, whereas the hydrogen recovery rate was 0%.
また、第3圀は製品水素濃度99.9vo1%での吸着
塔圧力(atm) とl Tonの吸着剤での水素精製
量の関係を示す。本実施例では80〜20ONm’/h
/Tonの値を示し、従来法を30%上廻る。これは、
本実施例では、多段の塔(吸着段)間均圧がないために
、より大きな吸着能力を保持できるためである。In addition, the third panel shows the relationship between the adsorption tower pressure (atm) and the amount of hydrogen purified by the 1 Ton adsorbent at a product hydrogen concentration of 99.9 vol%. In this example, 80 to 20 ONm'/h
/Ton, which is 30% higher than the conventional method. this is,
This is because, in this example, there is no pressure equalization between the multi-stage columns (adsorption stages), so a larger adsorption capacity can be maintained.
なお、上記実施例で示されるように、本実施例は、低圧
においても高い水素回収率を得ることができ、従って、
使用時に水素を減圧する必要がないために、耐圧強度の
低い燃料電池等に水素を供給する場合に適している。ま
た、同し理由によって、コークス炉のオフガスのように
低圧の水素含有ガスから水素を精製して回収する場合に
も適している。In addition, as shown in the above example, this example can obtain a high hydrogen recovery rate even at low pressure, and therefore,
Since there is no need to reduce the pressure of hydrogen during use, it is suitable for supplying hydrogen to fuel cells, etc., which have low pressure resistance. For the same reason, it is also suitable for purifying and recovering hydrogen from low-pressure hydrogen-containing gas such as off-gas from a coke oven.
以上説明したように、本発明は、圧力スイング式水素精
!8!装置の幹糸において、CO,以上の強吸着成分を
吸着する第一の吸着段とCO以下の弱吸着成分を吸着す
る第二の吸着段において吸着を行ない、これを複数の系
で順次交互に繰り返すことによって、連続的に高濃度の
水素を回収することができる。As explained above, the present invention is a pressure swing type hydrogen seismic device! 8! In the main thread of the device, adsorption is performed in a first adsorption stage that adsorbs strongly adsorbed components of CO and above, and a second adsorption stage that adsorbs weakly adsorbed components of CO and below, and this is sequentially and alternately carried out in multiple systems. By repeating this process, high concentration hydrogen can be continuously recovered.
また、第一の吸着段から離脱した強吸着成分であるco
、、 820等は系外に放出すると共に、第二の咬着段
から離脱したCOと同吸着段に残存する水素をシフトコ
ンバータに導入してCOによって水素を発生させ、更に
これらを再び吸着段に導入することによって水素の回収
率を著しく高めることができる。In addition, co, which is a strongly adsorbed component separated from the first adsorption stage,
. The hydrogen recovery rate can be significantly increased by introducing hydrogen into the hydrogen.
また更に、本発明は、吸着段を低圧にしても高い水素回
収率を得ることができる。Furthermore, the present invention can obtain a high hydrogen recovery rate even if the adsorption stage is at a low pressure.
第1図は本発明の一実施例の系統図、第2図は同実施例
の効果に関し圧力と製品水素回収率の関係を示すグラフ
、第3閲は同実施例の効果に関し吸着剤量と製品水素量
の関係を示すグラフである。
■・・・水茎気改質炉、 4・・・ソフトコンバー
タ8a、8b・・・強吸着成分吸着段
9・・・アルミナ
12a、12b・・・弱吸着成分吸着段15・・・製品
水素ホルダ、16・・・真空ポンプ。
21・・・再循環圧縮機。
第1図Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a graph showing the relationship between pressure and product hydrogen recovery rate regarding the effect of the same embodiment, and the third review is a graph showing the effect of the embodiment as a function of adsorbent amount. It is a graph showing the relationship between product hydrogen amounts. ■...Water stem gas reforming furnace, 4...Soft converter 8a, 8b...Strongly adsorbed component adsorption stage 9...Alumina 12a, 12b...Weakly adsorbed component adsorption stage 15...Product hydrogen holder , 16...vacuum pump. 21... Recirculating compressor. Figure 1
Claims (1)
なる原料ガス中の水素に随伴する成分を吸着剤によって
吸着して高純度水素を精製し、減圧下で吸着成分を離脱
させて吸着剤を再生する系を複数個有し、各系において
上記吸着及び離脱を交互に繰り返えす圧力スイング式水
素精製方法において、CO_2以上の強吸着成分を吸着
する吸着剤を充填した第一の吸着段に、次いでCO以下
の弱吸着成分を吸着する吸着剤を充填した第二の吸着段
に、加圧された原料ガスを導入し、原料ガス中から先づ
上記第一の吸着段においてCO_2以上の強吸着成分を
吸着し、次いで上記第二の吸着段でCO以下の弱吸着成
分を吸着して高純度の水素を得た後、上記第一の吸着段
で吸着された強吸着成分を減圧下で離脱して系外に放出
すると共に、上記第二の吸着段で吸着された弱吸着成分
を減圧下で離脱した後同第二吸着段に残存する水素と共
にシフトコンバータに導入してCOとH_2Oを反応さ
せて水素を発生させた上更に上記吸着段へ導入して再精
製することを特徴とする圧力スイング式水素精製方法。High-purity hydrogen is purified by adsorbing components accompanying hydrogen in the raw material gas, such as hydrogen and accompanying CO, CO_2, etc., with an adsorbent under pressure, and then removing the adsorbed components under reduced pressure to remove the adsorbent. In a pressure swing hydrogen purification method that has multiple regenerating systems and alternately repeats the above adsorption and desorption in each system, the first adsorption stage is filled with an adsorbent that adsorbs strongly adsorbed components of CO_2 or more. Next, the pressurized raw material gas is introduced into a second adsorption stage filled with an adsorbent that adsorbs weakly adsorbed components of CO or less, and the first adsorption stage first adsorbs strongly adsorbed components of CO_2 or more from the raw gas. After adsorbing the adsorbed components and then adsorbing weakly adsorbed components below CO in the second adsorption stage to obtain highly pure hydrogen, the strongly adsorbed components adsorbed in the first adsorption stage are removed under reduced pressure. At the same time, the weakly adsorbed components adsorbed in the second adsorption stage are removed under reduced pressure and then introduced into the shift converter together with the hydrogen remaining in the second adsorption stage to generate CO and H_2O. A pressure swing type hydrogen purification method characterized by reacting to generate hydrogen and further introducing the hydrogen into the above-mentioned adsorption stage for repurification.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2177528A JP2686349B2 (en) | 1990-07-06 | 1990-07-06 | Pressure swing hydrogen purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2177528A JP2686349B2 (en) | 1990-07-06 | 1990-07-06 | Pressure swing hydrogen purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0465302A true JPH0465302A (en) | 1992-03-02 |
JP2686349B2 JP2686349B2 (en) | 1997-12-08 |
Family
ID=16032503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2177528A Expired - Fee Related JP2686349B2 (en) | 1990-07-06 | 1990-07-06 | Pressure swing hydrogen purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2686349B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000001467A1 (en) * | 1998-07-07 | 2000-01-13 | Nippon Sanso Corporation | Method and apparatus for producing highly clean dry air |
WO2000059825A1 (en) * | 1999-04-02 | 2000-10-12 | Ebara Corporation | Method and apparatus for production of hydrogen by gasification of combusible material |
JP2005256899A (en) * | 2004-03-10 | 2005-09-22 | Kobe Steel Ltd | Hydrogen storage and/or derivation device |
JP2018161605A (en) * | 2017-03-24 | 2018-10-18 | 大陽日酸株式会社 | Gas purification method and device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8372375B2 (en) * | 2005-06-07 | 2013-02-12 | Kobe Steel, Ltd. | Method of producing high-purity hydrogen |
-
1990
- 1990-07-06 JP JP2177528A patent/JP2686349B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000001467A1 (en) * | 1998-07-07 | 2000-01-13 | Nippon Sanso Corporation | Method and apparatus for producing highly clean dry air |
WO2000059825A1 (en) * | 1999-04-02 | 2000-10-12 | Ebara Corporation | Method and apparatus for production of hydrogen by gasification of combusible material |
JP2005256899A (en) * | 2004-03-10 | 2005-09-22 | Kobe Steel Ltd | Hydrogen storage and/or derivation device |
JP2018161605A (en) * | 2017-03-24 | 2018-10-18 | 大陽日酸株式会社 | Gas purification method and device |
Also Published As
Publication number | Publication date |
---|---|
JP2686349B2 (en) | 1997-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0489555B1 (en) | Hydrogen and carbon monoxide production by pressure swing adsorption purification | |
US20240382896A1 (en) | Ammonia Cracking for Green Hydrogen | |
CA1336041C (en) | Separation of gas mixtures including hydrogen | |
US4813980A (en) | Recovery of nitrogen, hydrogen and carbon dioxide from hydrocarbon reformate | |
US4475929A (en) | Selective adsorption process | |
TWI521056B (en) | Methane recovery method and methane recovery unit | |
US5234472A (en) | Separation of gas mixtures including hydrogen | |
US4869894A (en) | Hydrogen generation and recovery | |
US5980857A (en) | Production of carbon monoxide from syngas | |
CA2709586C (en) | Process for the production of carbon dioxide utilizing a co-purge pressure swing adsorption unit | |
US4375363A (en) | Selective adsorption process for production of ammonia synthesis gas mixtures | |
US7618478B2 (en) | Process and apparatus to recover medium purity carbon dioxide | |
US6454838B1 (en) | Six bed pressure swing adsorption process with four steps of pressure equalization | |
JPH0798645B2 (en) | Co-production of hydrogen and carbon dioxide | |
US4988490A (en) | Adsorptive process for recovering nitrogen from flue gas | |
EP1972367B1 (en) | Adsorption process to recover hydrogen from feed gas mixtures having low hydrogen concentration | |
US5202057A (en) | Production of ammonia synthesis gas | |
JP5665120B2 (en) | Argon gas purification method and purification apparatus | |
JPH0465302A (en) | Pressure-swing hydrogen purification method | |
JPH06191801A (en) | Production of hydrogen | |
JPH06126120A (en) | Method for increasing CO concentration in cracked gas | |
JPS6097022A (en) | Concentration and separation of carbon monoxide in carbon monoxide-containing gaseous mixture by using adsorbing method | |
CA2452536C (en) | Pressure swing adsorption process with multiple beds on purge and/or with ten beds and four pressure equalization steps | |
CN114073882A (en) | Process technology and device for simultaneously recovering hydrogen, methane and other gases from petrochemical emission tail gas | |
JPS62168525A (en) | Method for separating and purifying carbon monoxide by adsorption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |