JPH0463248A - Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinability - Google Patents
Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinabilityInfo
- Publication number
- JPH0463248A JPH0463248A JP2173349A JP17334990A JPH0463248A JP H0463248 A JPH0463248 A JP H0463248A JP 2173349 A JP2173349 A JP 2173349A JP 17334990 A JP17334990 A JP 17334990A JP H0463248 A JPH0463248 A JP H0463248A
- Authority
- JP
- Japan
- Prior art keywords
- less
- flux density
- magnetic flux
- coercive force
- machinability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 title claims abstract description 29
- 239000010935 stainless steel Substances 0.000 title claims abstract description 11
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 3
- 229910052714 tellurium Inorganic materials 0.000 claims abstract 3
- 229910052745 lead Inorganic materials 0.000 claims abstract 2
- 229910052760 oxygen Inorganic materials 0.000 claims abstract 2
- 230000007797 corrosion Effects 0.000 abstract description 28
- 238000005260 corrosion Methods 0.000 abstract description 28
- 229910052742 iron Inorganic materials 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 39
- 239000010959 steel Substances 0.000 description 39
- 230000000694 effects Effects 0.000 description 18
- 230000009466 transformation Effects 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 229910001566 austenite Inorganic materials 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 229910001353 gamma loop Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は自動車などの電子燃料噴射装置(EFI)、電
磁弁、磁気センサーなどに使用される磁気特性、電気特
性、耐食性に優れた高磁束密度低保磁力軟磁性ステンレ
ス鋼に関するものである。Detailed Description of the Invention (Industrial Application Field) The present invention is a high magnetic flux device with excellent magnetic properties, electrical properties, and corrosion resistance that is used in electronic fuel injection devices (EFI), solenoid valves, magnetic sensors, etc. of automobiles, etc. It concerns low density, coercive force, soft magnetic stainless steel.
(従来技術)
昭和50年以前においては、自動車などに使用される電
子燃料噴射装置、電磁弁、磁気センサ等で耐食性の必要
な部分の磁芯材料には、JIS鋼の5O3430,5U
5410などが使用されてきた。その後、昭和50年代
始めに前記JIS鋼の耐食性、電磁特性を改善したFe
−13Cr−ISi−0,25AI鋼が開発され、現在
まで使用されている。しかしながら、最近電磁弁等のア
クチュエータの小型化の動向に沿って、磁気回路の小型
化に対する要求が非常に強くなるとともに、前記磁気回
路の各部品製造時に切削工程が入ることが多いため快削
性の向上に対する要求も強くなってきた。このような状
況においては、Fe−13Cr−ISi−0,25AI
鋼では対応ができなくなってきており、ステンレス鋼と
しての耐食性を保有しつつ、Fe−13Cr−ISi−
0,25AI鋼に比べさらに高い磁束密度と優れた軟磁
性特性を有し、かつ快削性も優れた新しい材料の開発が
強く望まれていた。(Prior art) Before 1975, JIS steel 5O3430, 5U was used as the magnetic core material for parts that required corrosion resistance in electronic fuel injection devices, solenoid valves, magnetic sensors, etc. used in automobiles.
5410 etc. have been used. Later, in the early 1970s, Fe was developed to improve the corrosion resistance and electromagnetic properties of JIS steel.
-13Cr-ISi-0,25AI steel was developed and is in use to date. However, in line with the recent trend toward miniaturization of actuators such as solenoid valves, there has been an extremely strong demand for miniaturization of magnetic circuits, and since a cutting process is often involved in manufacturing each component of the magnetic circuit, it is difficult to cut easily. There is also a growing demand for improvement. In this situation, Fe-13Cr-ISi-0,25AI
Steel is no longer suitable for this purpose, and Fe-13Cr-ISi-
There has been a strong desire to develop a new material that has even higher magnetic flux density and superior soft magnetic properties than 0.25AI steel, and also has excellent free machinability.
(発明が解決しようとする問題点)
本発明は従来鋼の前記のごとき欠点を解決すべくなされ
たもので、最近非常に強く要求されつつある電子燃料噴
射装置、電磁弁等磁気回路の小型化を可能にするために
必要な高磁束密度、低保磁力の特性を有し、かつ耐食性
、快削性に優れた軟磁性ステンレス鋼を提供することを
目的とする。(Problems to be Solved by the Invention) The present invention was made in order to solve the above-mentioned drawbacks of conventional steel, and the miniaturization of magnetic circuits such as electronic fuel injection devices and solenoid valves, which has recently been strongly demanded. The purpose of the present invention is to provide a soft magnetic stainless steel that has the characteristics of high magnetic flux density and low coercive force necessary to enable this, and has excellent corrosion resistance and free machinability.
(課題を解決するための手段)
電子燃料噴射装置、電磁弁等に使われる材料は、部品を
製造する際に冷間加工されるため、加工歪の影響による
磁気特性の劣化を防止するために熱処理を施し、磁気特
性を高めている。優れた磁気特性、特に低い保磁力を得
るためには、900℃以上の高温で熱処理を施す必要が
あるが、5US430.5US410等の従来鋼では、
800〜1100°C付近でTループが存在し、800
°C以上で熱処理すると、加工歪は消失するが、変態が
起きるため、冷却後に変態歪が残存し、磁気特性が劣化
してしまう。逆に熱処理温度を800°C未満の低い温
度で施した場合には、加工歪が完全に消失せず、低い保
磁力を得ることができなかった。一方Fe−13Cr−
ISi−0,25AI鋼は、高温でのT変態は存在しな
いが、Sl、AIの含有により磁束密度が低下し、満足
できる磁気特性を得られないでいた。(Means for solving the problem) Materials used for electronic fuel injection devices, solenoid valves, etc. are cold worked when manufacturing the parts, so in order to prevent deterioration of magnetic properties due to the effects of processing strain, Heat treated to improve magnetic properties. In order to obtain excellent magnetic properties, especially low coercive force, it is necessary to perform heat treatment at a high temperature of 900°C or higher, but with conventional steels such as 5US430.5US410,
A T-loop exists near 800-1100°C, and 800°C
When heat treated at a temperature higher than 0.degree. C., the processing strain disappears, but since transformation occurs, the transformation strain remains after cooling, resulting in deterioration of the magnetic properties. On the other hand, when the heat treatment was performed at a low temperature of less than 800°C, the processing strain did not completely disappear and a low coercive force could not be obtained. On the other hand, Fe-13Cr-
Although ISi-0,25AI steel does not exhibit T transformation at high temperatures, the magnetic flux density decreases due to the inclusion of Sl and AI, making it impossible to obtain satisfactory magnetic properties.
本発明者等は従来鋼がSi、八1の複合添加によりγル
ープ領域を小さくし、フェライト相を安定化させている
ために優れた磁束密度を得ることができなかったことに
注目し、より効率的な成分調整によりTループ領域を小
さくし、900〜1200°Cという高温での熱処理を
可能とすることによる低保磁力を得ることと、高い磁束
密度の両方を得ることを可能にすることにより、優れた
磁気特性を得ることを可能にする成分添加量について鋭
意研究を重ねた結果本発明に到ったものである。The present inventors focused on the fact that in conventional steels, it was not possible to obtain excellent magnetic flux density because the γ-loop region was made smaller and the ferrite phase was stabilized by the composite addition of Si, 81. It is possible to obtain both low coercive force and high magnetic flux density by reducing the T-loop area through efficient component adjustment and enabling heat treatment at a high temperature of 900 to 1200°C. The present invention was developed as a result of extensive research into the amount of components to be added that makes it possible to obtain excellent magnetic properties.
Tループ領域を小さくするためには、オーステナイトフ
ォーマ−元素であるNi、 Cu、 C+N 、 Mn
などを低減し、フェライトフォーマ−元素であるSi、
A1等を添加すればよいことは従来から言われている。In order to reduce the T-loop region, austenite former elements such as Ni, Cu, C+N, Mn
Si, which is a ferrite former element,
It has been conventionally said that it is sufficient to add A1 or the like.
しかしながら、各元素が個々にどの程度効果があるのか
については正確に把握されていないのが現状である。ま
た、高い磁束密度を得るためには、耐食性を確保するC
rを除いた全ての元素をできるだけ低減する必要がある
。本発明者等は最近の優れた製鋼技術を活用することに
より、従来の冶金的手法では達し得なかったレベルまで
Crを除(C+N 、 Si、 Mn、 Ni、 Cu
XAl、 0等の元素を低減し、Tループの有無を測定
した。しかしながら、Crを除く元素を下げるのみでは
、γループはある程度小さくなるが、依然として熱処理
温度領域に存在することがわかった。そこで、フェライ
トフォーマ−元素であるSi、 Al、Mo、 Tiの
効果についてさらに研究した結果、他の元素に比べてA
Iはrループ領域を小さくする効果が最も大きく、オー
ステナイトフォーマ−元素の低減による効果と合わせて
、800℃以上の全ての温度領域においてフェライト単
相が得られることを発見した。また、AIはSiに比べ
て磁束密度低下に及ぼす悪影響が小さいこともわかり、
かつ脱酸材としての役目も果たすことから、少量の添加
により非常に太きな効果が得られることを見出したもの
である。However, it is currently not known exactly how effective each element is individually. In addition, in order to obtain high magnetic flux density, C
It is necessary to reduce all elements except r as much as possible. By utilizing recent excellent steelmaking technology, the present inventors were able to remove Cr (C+N, Si, Mn, Ni, Cu) to a level that could not be reached with conventional metallurgical methods.
Elements such as XAl and 0 were reduced, and the presence or absence of T loops was measured. However, it was found that if only the elements other than Cr are lowered, the γ loop becomes smaller to some extent, but it still exists in the heat treatment temperature range. Therefore, as a result of further research on the effects of the ferrite former elements Si, Al, Mo, and Ti, it was found that A
It was discovered that I has the greatest effect of reducing the r-loop region, and together with the effect of reducing austenite former elements, a single ferrite phase can be obtained in all temperature ranges of 800°C or higher. It was also found that AI has a smaller negative effect on reducing magnetic flux density than Si.
Since it also serves as a deoxidizer, it has been discovered that a very large effect can be obtained by adding a small amount.
すなわち、本発明者等は13Cr系ステンレス鋼に及ぼ
す合金の影響を徹底的に調査、研究した結果、耐食性を
確保するCrを除き、他の元素を可能な限り低減し、T
ループ領域縮小と脱酸効果を得るために必要最小限のA
Iを添加することによって、従来では予想できないレベ
ルの磁気特性(高磁束密度低保磁力)を確保することに
成功したものである。That is, as a result of thorough investigation and research into the influence of alloys on 13Cr stainless steel, the present inventors have reduced other elements as much as possible except for Cr, which ensures corrosion resistance, and
The minimum amount of A necessary to reduce the loop area and obtain the deoxidizing effect.
By adding I, we succeeded in securing magnetic properties (high magnetic flux density and low coercive force) at a level that could not be predicted conventionally.
さらに本発明者らは、前記知見に基ずき開発された材料
の快削性を高めることを目的として、S、Se、 Pb
、 Bi、、、Ca、 Te、 Zrなどの快削性元素
を添加し、磁気特性への悪影響、快削性改善効果を調査
した。その結果、磁気特性、耐食性を大きく劣化させず
に快削性を高めることのできる前記成分元素添加量を把
握し、本発明に到ったものである。Furthermore, the present inventors aimed to improve the free machinability of the material developed based on the above knowledge.
Free-machining elements such as , Bi, , Ca, Te, and Zr were added, and the adverse effects on magnetic properties and the effect of improving free-machinability were investigated. As a result, we determined the amount of the above-mentioned component elements that can improve the free machinability without significantly deteriorating the magnetic properties and corrosion resistance, and arrived at the present invention.
すなわち、本発明は、重量比でC:0.010%以下、
Si:0.10%以下、Mn:0.10!以下、Ni
:0.10%以下、Cr:11〜13%、Cu:0.1
0%以下、AI:0.05〜0.15%、0:0.00
70%以下、N:0.0100X以下、C+N:0.0
15z以下を含有し、さらにCa:0.002〜0.0
22 、Bj:0.30Z以下、Pb:0.30!以下
、S:0.040Z以下、Se: 0.040”A以下
のうち1種または2種以上を含有し、さらにS 、 S
eを1種以上含有させる場合にはTe: 0.002〜
0.040%、Zr:0.02〜0.152のうち1種
または2種を含有し、残部Feならびに不純物元素から
なることを特徴とする快削性の優れた高磁束密度低保磁
力軟磁性ステンレス鋼である。That is, in the present invention, C: 0.010% or less in weight ratio,
Si: 0.10% or less, Mn: 0.10! Below, Ni
: 0.10% or less, Cr: 11-13%, Cu: 0.1
0% or less, AI: 0.05-0.15%, 0:0.00
70% or less, N: 0.0100X or less, C+N: 0.0
Contains 15z or less, and further Ca: 0.002 to 0.0
22, Bj: 0.30Z or less, Pb: 0.30! Contains one or more of the following: S: 0.040Z or less, Se: 0.040"A or less, and further contains S, S
When containing one or more types of e, Te: 0.002~
0.040%, Zr: Contains one or two of 0.02 to 0.152, and the balance is Fe and impurity elements.High magnetic flux density, low coercive force soft material with excellent free machinability. Made of magnetic stainless steel.
次に本発明である高磁束密度軟磁性ステンレス鋼の成分
組成の限定理由について説明する。Next, the reasons for limiting the composition of the high magnetic flux density soft magnetic stainless steel of the present invention will be explained.
C、0,0102以下
Cは磁気特性、耐食性に悪影響を与える元素であり、本
発明においてはできるだけ低下させることが望ましく、
その上限を0.010χとした。なお、さらに磁気特性
を向上させるためには0.005%以下にすることが望
ましい。C, 0,0102 or less C is an element that adversely affects magnetic properties and corrosion resistance, and in the present invention, it is desirable to reduce it as much as possible.
The upper limit was set to 0.010χ. Note that in order to further improve magnetic properties, it is desirable that the content be 0.005% or less.
Si ; 0.10%以下
Siは脱酸元素であるが、磁気特性を劣化させるため、
できるだけ低下させることが望ましく、その上限を0.
10χとした。Si: 0.10% or lessSi is a deoxidizing element, but it deteriorates magnetic properties, so
It is desirable to reduce it as much as possible, and the upper limit is 0.
It was set to 10χ.
Mn ; 0.10X以下
Mnの含有は耐食性、磁気特性を著しく損なうので、で
きるだけ低減することが望ましく、その上限を0.10
Xとした。Mn: 0.10X or less Since the content of Mn significantly impairs corrosion resistance and magnetic properties, it is desirable to reduce it as much as possible, and the upper limit is set at 0.10
I set it as X.
Cr ; 11〜132
Crは必要な耐食性を確保するのに不可欠な基本元素で
あると同時に、γ相の温度領域を狭くする効果もある。Cr; 11-132 Cr is an essential basic element for ensuring the necessary corrosion resistance, and at the same time has the effect of narrowing the temperature range of the γ phase.
前記効果を十分に得るためには少なくとも11%以上含
有させる必要がある。しかし13χを越えて含有させて
も耐食性向上効果は大きくなく、磁気特性も損なうので
その上限を13χとした。In order to fully obtain the above effects, it is necessary to contain at least 11% or more. However, even if the content exceeds 13χ, the effect of improving corrosion resistance is not large and the magnetic properties are also impaired, so the upper limit was set at 13χ.
Al ; 0.05〜0.15X
A1は本発明の特徴を最大限に生かす重要元素であり、
γループ領域を狭くし、熱処理温度領域でフェライト単
相を得るために最適な元素であり、脱酸剤としての効果
も大きい、この効果を得るためには0.05%以上の含
有が必要である。しかし、0.15χを越えて含有させ
ると、磁束密度、保磁力を劣化させるので、その上限を
0.15χとした。Al; 0.05~0.15X Al is an important element that makes the most of the features of the present invention,
It is the optimal element for narrowing the γ-loop region and obtaining a single phase of ferrite in the heat treatment temperature range, and is also highly effective as a deoxidizing agent.To obtain this effect, it must be contained at 0.05% or more. be. However, if the content exceeds 0.15χ, the magnetic flux density and coercive force deteriorate, so the upper limit was set at 0.15χ.
0 ; 0.0070%以下
0は磁束密度を低下させ、磁気特性を悪化させるのでで
きるだけ少ない方が望ましいが実際の製造性を考慮して
その上限を0.0070χとした。0; 0.0070% or less Since 0 lowers the magnetic flux density and worsens the magnetic properties, it is desirable to have as little as possible, but in consideration of actual manufacturability, the upper limit was set at 0.0070χ.
N ; 0.0100%以下
Nは鋼中に不純物として含まれるが、0.0100%以
下に制限することにより、磁気特性の改善に効果的であ
るので、その上限を0.0100χとした。N: 0.0100% or less N is contained in steel as an impurity, but limiting it to 0.0100% or less is effective in improving magnetic properties, so the upper limit was set to 0.0100χ.
C+N ; 0.015%以下
C及びNはCrと結びついて炭窒化物を形成し、耐食性
を低下させるとともに、磁束密度、保磁力も劣化させる
元素である。また、オーステナイトフォーマ−元素とし
ての効果もあり、Tループ領域を拡大するため、C+N
をできるだけ低下させることが必要であり、その上限を
0.0152とした。C+N: 0.015% or less C and N are elements that combine with Cr to form carbonitrides, lowering corrosion resistance and also deteriorating magnetic flux density and coercive force. It also has the effect of being an austenite former element and expands the T-loop region.
It is necessary to reduce the value as much as possible, and the upper limit is set to 0.0152.
Ni ; 0.10%以下、Cu ; 0.10X以下
Ni、 Cuは耐食性を改善する元素ではあるが、オー
ステナイトフォーマ−元素であり、Tループ領域を拡大
し、磁気特性を悪化させる元素である。Ni: 0.10% or less, Cu: 0.10X or less Although Ni and Cu are elements that improve corrosion resistance, they are austenite former elements and are elements that expand the T-loop region and deteriorate magnetic properties.
本発明では、磁気特性を最重要視しているため、できる
だけ低下させる必要があり、その上限をともに0.10
χとした。In the present invention, since the magnetic properties are the most important, it is necessary to reduce them as much as possible, and the upper limit is 0.10 for both.
It was set as χ.
次に快削性向上のための添加成分組成の限定理由を説明
する。Next, the reasons for limiting the composition of additive components to improve free machinability will be explained.
S 、 0.040%以下
Sは切削性を改善するために添加するが、多量の含有は
、磁気特性、耐食性とともに冷間加工性を損なうので、
上限を0.040χとした。S, 0.040% or less S is added to improve machinability, but a large amount of S impairs cold workability as well as magnetic properties and corrosion resistance.
The upper limit was set to 0.040χ.
Se ; 0.040%以下
Seは切削性を改善するために添加するが、多量の含有
は、磁気特性、耐食性とともに冷間加工性を損なうので
、上限を0.040χとした。Se; 0.040% or less Se is added to improve machinability, but since a large amount of Se impairs cold workability as well as magnetic properties and corrosion resistance, the upper limit was set to 0.040χ.
Pb ; 0.30%以下、Bi ;0.30%以下P
b、 Biは切削性を改善する元素であるが、多量の含
有は磁気特性、耐食性とともに冷間加工性を損なうので
、上限を0.30χとした。Pb: 0.30% or less, Bi: 0.30% or less P
b. Bi is an element that improves machinability, but since a large amount of Bi impairs magnetic properties, corrosion resistance, and cold workability, the upper limit was set to 0.30χ.
Ca ; 0.002〜0.020I
Caは切削性を改善するために添加するが、前記効果を
得るためには0.002%以上の含有が必要である。し
かし、0.020χを越えて含有させると磁気特性、耐
食性とともに冷間加工性を損なうので、上限を0.02
0χとした。Ca; 0.002 to 0.020I Ca is added to improve machinability, but in order to obtain the above effect, the content must be 0.002% or more. However, if the content exceeds 0.020χ, it will impair magnetic properties, corrosion resistance, and cold workability, so the upper limit should be set at 0.02
It was set to 0χ.
Te ; 0.002〜0.040χ
Teは冷間加工性に及ぼすS 、 Seの影響を無害化
する作用を有しており、この効果を得るには0.002
%以上含有させる必要がある。しかし、多量の含有はか
えって冷間加工性を損なうとともに磁気特性、耐食性も
悪化させるので上限を0.040χとした。Te; 0.002 to 0.040χ Te has the effect of neutralizing the influence of S and Se on cold workability, and in order to obtain this effect, 0.002
% or more. However, the upper limit was set at 0.040χ because a large amount of Ni impairs cold workability and also deteriorates magnetic properties and corrosion resistance.
Zr ; 0.02〜0.15χ
ZrはMnS 、 MnSeを球状化して、冷間加工性
を改善する元素であり、少なくとも0.02%以上含有
させる必要がある。しかし、多量の含有は逆に冷間加工
性を損なうとともに磁気特性、耐食性も悪化させるので
、上限を0.15χとした。Zr; 0.02 to 0.15χ Zr is an element that makes MnS and MnSe spheroidal and improves cold workability, and must be contained in an amount of at least 0.02%. However, since a large amount of Ni impairs cold workability and also deteriorates magnetic properties and corrosion resistance, the upper limit was set at 0.15χ.
(実施例)
次に本発明の特徴を従来鋼、比較鋼と比べて実施例でも
って明らかにする。第1表は供試鋼の化学成分を示すも
のである。(Example) Next, the features of the present invention will be clarified by comparing them with conventional steel and comparative steel through examples. Table 1 shows the chemical composition of the test steel.
(以下余白)
第1表において、1〜7鋼は本発明鋼であり、8〜21
鋼は比較鋼であり、22!1iilは従来鋼であるFe
−13Cr−ISi−0,25AI鋼である。(Left below) In Table 1, steels 1 to 7 are steels of the present invention, and steels 8 to 21 are steels of the present invention.
The steel is a comparison steel, and 22!1iil is a conventional steel, Fe.
-13Cr-ISi-0,25AI steel.
第1表の供試鋼は電気炉で溶製し、熱間圧延後、110
0°CX2時間、冷却速度100°C/時間の条件で熱
処理を施して、磁束密度、保磁力、耐食性、被削性、高
温におけるT相への変態の有無を測定した。The test steels in Table 1 were melted in an electric furnace, hot rolled,
Heat treatment was performed at 0°C for 2 hours at a cooling rate of 100°C/hour, and magnetic flux density, coercive force, corrosion resistance, machinability, and presence or absence of transformation to T phase at high temperatures were measured.
磁気特性は、直流型BH)レーザを用い、試験片として
外径24IIlllφ、内径16mmφ、厚さ16−糟
のリング試験片を製作し、磁束密度、保磁力を測定した
。For the magnetic properties, a ring test piece with an outer diameter of 24 mm, an inner diameter of 16 mm, and a thickness of 16 mm was prepared as a test piece using a DC type BH) laser, and the magnetic flux density and coercive force were measured.
耐食性については、JISZ2371に準拠して塩水噴
霧試験を行い、発錆率を測定し、発錆率が25%未満の
ものを○、25%以上50%未満のものをΔ、50%以
上のものを×とした。Regarding corrosion resistance, a salt spray test was conducted in accordance with JIS Z2371, and the rust rate was measured. If the rust rate was less than 25%, it would be ○, if it was 25% or more and less than 50%, it would be Δ, if it was 50% or more. was marked as ×.
被削性については、10n+m厚さの試験片を用いて回
転数725r、p、m、 、直径5mmの高速度鋼製ド
リルにて荷重4kgの条件で穿孔試験を行い、孔明けに
要する時間を測定したものである。Regarding machinability, a drilling test was performed using a test piece with a thickness of 10n+m at a rotation speed of 725r, p, m, and a load of 4kg using a high-speed steel drill with a diameter of 5mm, and the time required to drill the hole was determined. This is what was measured.
高温におけるT相への変態の有無は、直径3mm、長さ
10mmの試験片を作製し、1000°Cに加熱後、フ
ォーマスター試験機により測定した冷却途中の試験片の
寸法変化から判定したものである。The presence or absence of transformation to the T phase at high temperatures was determined by preparing a test piece with a diameter of 3 mm and a length of 10 mm, heating it to 1000°C, and then measuring the change in size of the test piece during cooling using a Formaster tester. It is.
測定した磁束密度、保磁力、耐食性、被削性、T相への
変態の有無を第2表に示した。The measured magnetic flux density, coercive force, corrosion resistance, machinability, and presence or absence of transformation to T phase are shown in Table 2.
(以下余白)
第2表
第2表から明らかなように、比較網である8鋼は、Cr
含有量が高いため、耐食性は優れているものの、磁束密
度が劣るものであり、9fiilはCr含有量が低いた
め、耐食性とγ変態のため保磁力が劣るものであり、1
0鋼はAI含有量が低いため、γ変態の影響により磁束
密度、保磁力などの磁気特性が劣るものであり、ill
はSi、 AI含有量が高いため磁束密度が劣るもので
あり、12MはC+N含有量が高いため、耐食性が劣る
とともに、高温でT相への変態が起きるため熱処理時に
変態歪が発生し磁気特性が劣るものであり、13鋼はN
i、Cu含有量が高いため14mと同様に変態歪により
磁気特性が劣るものであり、14鋼はMn含有量が高い
ため、12.13鋼と同様に磁気特性が劣るものであり
、15鋼はCr含有量が高いのと、快削性向上元素が添
加されていないため、磁気特性、快削性が劣るものであ
り、16〜21鋼は、快削性向上元素の過剰添加のため
、快削性は優れているが、磁束密度、耐食性が劣るもの
である。(Left below) Table 2 As is clear from Table 2, the 8 steels used for comparison are Cr
Because of its high content, although it has excellent corrosion resistance, it has a poor magnetic flux density; 9fiil has a low Cr content, so it has a poor coercive force due to its corrosion resistance and γ transformation;
Since 0 steel has a low AI content, its magnetic properties such as magnetic flux density and coercive force are inferior due to the influence of γ transformation, and the ill
12M has a high content of Si and AI, so its magnetic flux density is inferior, and 12M has a high content of C+N, so it has poor corrosion resistance and transforms to the T phase at high temperatures, which causes transformation strain during heat treatment, which deteriorates the magnetic properties. 13 steel is inferior to N.
i, Steel 14 has a high content of Cu, so it has poor magnetic properties due to transformation strain like Steel 14m, Steel 14 has a high Mn content, so it has poor magnetic properties like Steel 12.13, and Steel 15 has a high Mn content, so it has poor magnetic properties like Steel 12. Steels 16 to 21 have poor magnetic properties and free machinability because they have a high Cr content and no free machinability improving elements are added. Although it has excellent free machinability, it has poor magnetic flux density and corrosion resistance.
一方、従来鋼であるFe−13Cr−ISi−0,25
AI鋼に相当する22鋼は本発明鋼に比べ、Si、 A
I含有量が高いため、磁束密度、保磁力が著しく劣るも
のである。On the other hand, the conventional steel Fe-13Cr-ISi-0,25
22 steel, which corresponds to AI steel, has less Si and A than the steel of the present invention.
Since the I content is high, the magnetic flux density and coercive force are significantly inferior.
これらに対して、本発明鋼である1〜7綱はT相への変
態がなく、磁束密度が14000G以上、保磁力が0.
500.以下と従来鋼に比べ著しく優れた磁気特性を有
するものであり、かつ耐食性、快削性も優れている。On the other hand, the steels of the present invention, grades 1 to 7, do not undergo T-phase transformation, have a magnetic flux density of 14,000 G or more, and a coercive force of 0.
500. It has significantly superior magnetic properties compared to conventional steels, as well as superior corrosion resistance and free machinability.
(発明の効果)
本発明の快削性の優れた高磁束密度低保磁力軟磁性ステ
ンレス鋼は、以上詳述したように、必要最低限のCrを
添加することにより耐食性を確保し、オーステナイトフ
ォーマ−元素を全て可能な限り低減し、フェライトフォ
ーマ−元素であるAIを少量添加することによって、従
来鋼より少量のフェライトフォーマ−元素の添加にてT
ループ領域を小さくし、加工歪を完全に除去するための
800°C以上の熱処理を変態を起こさずに行うことが
可能となり、磁束密度、保磁力とも従来鋼に比べ著しく
向上させることを可能とし、かつ快削性についても優れ
るものである。従って、本発明により電磁弁などの磁気
回路の小型化を可能とするものであり、産業上高い実用
性を有するものである。(Effects of the Invention) As detailed above, the high magnetic flux density, low coercive force soft magnetic stainless steel with excellent free machinability of the present invention ensures corrosion resistance by adding the necessary minimum amount of Cr, and has austenitic former. - By reducing all elements as much as possible and adding a small amount of AI, which is a ferrite former element, T
It has become possible to perform heat treatment at 800°C or higher to reduce the loop area and completely eliminate processing distortion without causing transformation, and it has become possible to significantly improve both magnetic flux density and coercive force compared to conventional steel. , and also has excellent free machining properties. Therefore, the present invention enables miniaturization of magnetic circuits such as electromagnetic valves, and has high practicality in industry.
Claims (1)
0%以下、Mn:0.10%以下、Ni:0.10%以
下、Cr:11〜13%、Cu:0.10%以下、Al
:0.05〜0.15%、O:0.0070%以下、N
:0.0100%以下、C+N:0.015%以下を含
有し、さらにCa:0.002〜0.02%、Bi:0
.30%以下、Pb:0.30%以下、S:0.040
%以下、Se:0.040%以下のうち1種または2種
以上を含有し、さらにS、Seを1種以上含有させる場
合にはTe:0.002〜0.040%,Zr:0.0
2〜0.15%のうち1種または2種を含有し、残部F
eならびに不純物元素からなることを特徴とする快削性
の優れた高磁束密度低保磁力軟磁性ステンレス鋼。1. Weight ratio: C: 0.010% or less, Si: 0.1
0% or less, Mn: 0.10% or less, Ni: 0.10% or less, Cr: 11-13%, Cu: 0.10% or less, Al
: 0.05-0.15%, O: 0.0070% or less, N
: 0.0100% or less, C+N: 0.015% or less, further Ca: 0.002 to 0.02%, Bi: 0
.. 30% or less, Pb: 0.30% or less, S: 0.040
% or less, Se: 0.040% or less, and when containing one or more of S and Se, Te: 0.002 to 0.040%, Zr: 0. 0
Contains one or two of 2 to 0.15%, and the remainder is F.
A soft magnetic stainless steel with high magnetic flux density and low coercive force that has excellent free machinability and is characterized by consisting of E and impurity elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2173349A JPH0463248A (en) | 1990-06-29 | 1990-06-29 | Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2173349A JPH0463248A (en) | 1990-06-29 | 1990-06-29 | Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0463248A true JPH0463248A (en) | 1992-02-28 |
Family
ID=15958770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2173349A Pending JPH0463248A (en) | 1990-06-29 | 1990-06-29 | Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0463248A (en) |
-
1990
- 1990-06-29 JP JP2173349A patent/JPH0463248A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7252761B2 (en) | Precipitation hardening steel and its manufacture | |
US4705581A (en) | Soft magnetic stainless steel | |
JP5729827B2 (en) | High strength non-magnetic steel | |
JPH0382740A (en) | Duplex stainless steel with excellent hot workability and corrosion resistance | |
JPS6145697B2 (en) | ||
JP2013049918A (en) | Electromagnetic stainless steel and method of manufacturing the same | |
JPH0463248A (en) | Soft magnetic stainless steel having high magnetic flux density and low coercive force and excellent in machinability | |
US5951788A (en) | Superconducting high strength stainless steel magnetic component | |
JP3521998B2 (en) | Soft magnetic stainless steel for relay iron core | |
JP2000036409A (en) | Manufacture of actuator composite magnetic member and ferromagnetic part thereof, and forming method of non- magnetic part of actuator composite magnetic member | |
JPH0463249A (en) | Soft magnetic stainless steel having high magnetic flux density and low coercive force | |
JP3446394B2 (en) | Precipitation hardening stainless steel | |
JP2021518489A (en) | Low alloy 3rd generation advanced high-strength steel and manufacturing process | |
JPH04116141A (en) | High hardness, low magnetic permeability, non-magnetic functional alloy and its manufacturing method | |
JPH0257668A (en) | Extra low temperature use nonmagnetic austenitic stainless steel having excellent reheating resistance | |
JPH0480347A (en) | Stainless steel excellent in corrosion resistance | |
JP3561922B2 (en) | Manufacturing method of soft magnetic stainless steel | |
JPH02301544A (en) | Soft-magnetic alloy with high electric resistance for cold forging | |
JP2024539668A (en) | Ferritic stainless steel with improved magnetic properties and manufacturing method thereof | |
JPS6369949A (en) | Nonmagnetic austenitic stainless steel having improved hot workability | |
KR20240125466A (en) | Fe-Co ALLOY FOR SOFT MAGNETIC MEMBER, AND SOFT MAGNETIC MEMBER USING SAME | |
JP2001164340A (en) | High corrosion resistant free cutting stainless steel excellent in hot workability | |
JPH05255817A (en) | Corrosion resistant soft magnetic material | |
JPH02179855A (en) | Free-cutting soft-magnetic stainless steel | |
JP2000063995A (en) | Free cutting steel with rust resistance and atmosphere corrosion resistance |