JPH0459562B2 - - Google Patents
Info
- Publication number
- JPH0459562B2 JPH0459562B2 JP57002271A JP227182A JPH0459562B2 JP H0459562 B2 JPH0459562 B2 JP H0459562B2 JP 57002271 A JP57002271 A JP 57002271A JP 227182 A JP227182 A JP 227182A JP H0459562 B2 JPH0459562 B2 JP H0459562B2
- Authority
- JP
- Japan
- Prior art keywords
- vertical
- image
- horizontal
- dissector tube
- bright
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005259 measurement Methods 0.000 claims description 36
- 238000006073 displacement reaction Methods 0.000 claims description 32
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000005286 illumination Methods 0.000 claims description 5
- 238000001514 detection method Methods 0.000 description 11
- 230000035945 sensitivity Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
〔産業上の利用分野〕
この発明は、測定対象物の互いに直交する方向
の変位を光電的に測定できる2軸光電式変位計に
関する。
〔従来の技術〕
測定対象物の変位をそれぞれ垂直方向および水
平方向に対して測定するには、通常、イメージデ
イセクタ管を用いた1方向のみ測定できる光電式
変位計を2個独立して使用している。この測定方
式は、2個の変位計を使用するため、占有スペー
スが広く、高価な装置になつていた。
この難点を低減するため、本出願人は互いに直
交する2方向の変位(2軸変位)を測定でき、照
明光量に時間的な変動がある場合でも正確に測定
できる光電式変位計を既に提唱していた。この変
位計では、測定モードを時間的に交互に切り換わ
る二つのモードに分け、一方のモードで対象物の
照明光量を測定し、イメージデイセクタ管の適正
な検出感度を決定し(このモードはイメージデイ
セクタ管の電子増倍管に印加する高電圧の値を適
正にしているライトテストモードと称されてい
る)、他方のモードで変位測定を行つていた。こ
の変位測定モードでは、測定対象物の互いに直交
する二つの明暗境界のうちの一方(例えばx軸明
暗境界)、および他方の明暗境界(y軸明暗境界
に相当する)を付属する各一つのイメージデイセ
クタ管で光電的に捕捉するように、それぞれのイ
メージデイセクタ管の偏向コイルに強制的に偏向
電流を印加し、それぞれy方向およびx方向の変
位のみを測定している。
それ故、原理的に特性の等しい2本とイメージ
デイセクタ管を必要とすることから、価格が高価
で、その上、カメラの形状が大で、重量が嵩むた
め、取扱が不便であつた。更に、測定対象物の光
学像をミラーによつて分割し、各々のイメージデ
イセクタ管に結像させる必要があるため、光学系
の正確な調整が要求され、かつ複雑なフイードバ
ツク制御を利用しているため電気回路が複雑で、
動作が不安定となり易い難点があつた。
〔発明の課題〕
この発明の課題は、従来の技術の上記欠点を解
消し、1つのイメージデイセクタ管で2軸変位測
定ができ、同時にライトサーボモードも備えてい
る光電変位系を提供することにある。
〔課題を解決する手段〕
上記の課題は、この発明により、イメージデイ
セクタ管1の出力電流を増幅するプリアンプ2
と、イメージデイセクタ管1のアパーチヤ上の測
定対象物の電子像を水平および垂直方向に偏向さ
せる水平および垂直軸コイルH,Vと、水平およ
び垂直軸コイルH,Vにそれぞれ偏向電流を印加
するための水平および垂直測定回路10,14と
を備え、互いに直交する明暗境界を有する測定対
象物の光学像を電子像に変換して、2軸方向の変
位を測定する2軸光電式変位計の場合、
前記プリアンプ2の出力端に時分割スイツチ3
を設け、この時分割スイツチ3によつてプリアン
プ2の出力信号を3種に繰返タイミング,,
でそれぞれ水平軸コイルH,垂直軸コイルV,
イメージデイセクタ管の高圧電源16に通ずる分
岐回路に接続させ、
測定モードで垂直軸コイルVにアンプ6,1
2を介して垂直測定回路14にシフト電圧+αを
印加してイメージデイセクタ管のアパーチヤ上に
対象物の垂直明暗境界の電子像を結像させ、この
境界の変位をアンプ4,7と水平測定回路10に
よつて測定し、
測定モードで水平軸コイルHにアンプ4,8
を介して水平測定回路10にシフト電圧+αを印
加してイメージデイセクタ管のアパーチヤ上に対
象物の水平明暗境界の電子像を結像させ、この境
界の変位をアンプ6,11と垂直測定回路14に
よつて、測定し、
ライトテストモードで、垂直軸コイルVにア
ンプ6,13を介して垂直測定回路14にシフト
電圧+αを印加し、水平軸コイルHにアンプ4,
9を介して垂直測定回路14にシフト電圧+αを
印加して、対象物の両明暗境界を外して明視野の
みイメージデイセクタ管のアパーチヤ上に結像さ
せ、アンプ5、整合用アンプ15を介して、高圧
電源回路16に導入し、対象物の照明光量に応じ
た適正高圧をイメージデイセクタ管の電子像倍部
に印加し、
高圧電源回路16が測定モードとの時、モ
ードの状態に保持されている、
2軸光電式変位計によつて解決されている。
〔発明の効果〕
この発明による光電変位計は、従来の方法の場
合に比べて、イメージデイセクタ管を1本省略で
きるため、結像光学系が小型軽量になり、価格的
にも有利である。更に、光学的・電気的調整なら
びに操作が極めて容易となると言う利点も得られ
る。
〔実施例〕
以下、この発明による変位計の実施例を示す添
付図面を参照してこの発明を詳しく説明する。
測定対象物から放出された光Lを受光したイメ
ージデイセクタ管1の出力電流信号は、プリアン
プ2で電流・電圧変換され、時分割スイツチ3に
よつて所定の繰返タイミング周波数で3種の時系
列に分割される。3分割された出力信号は、それ
ぞれ水平(H)軸アンプ4、ライトサーボ(L,S)
アンプ5および垂直(V)軸アンプ6に導入され
る。
水平軸アンプの出力信号は、それぞれ後置並列
接続された水平軸出力用のコイル電圧検出アンプ
7、垂直軸出力用のコイルシフト電圧検出アンプ
8およびライトサーボ用の水平軸コイルシフト電
圧検出アンプ9に導入される。これ等のアンプ
7,8,9の出力信号は、対応する繰返タイミン
グに応じて水平軸コイルHを駆動するために水平
軸コイル駆動アンプ10に印加される。
水平軸アンプ6の出力信号は、それぞれ後置並
列接続された垂直軸出力用のコイル電圧検出アン
プ11、水平軸出力用のコイルシフト電圧検出ア
ンプ12およびライトサーボ用の垂直軸コイルシ
フト電圧検出アンプ13に導入される。これ等の
アンプ11,12,13の出力信号は、対応する
繰返タイミングに応じて垂直軸コイルVを駆動す
るために垂直軸コイル駆動アンプ14に印加され
る。
ライトサーボアンプ5の出力信号は、整合用ア
ンプ15を介してイメージデイセクタ管1の電子
像倍部用の高圧電源回路16にその出力高電圧を
制御するため導入される。
水平軸コイルHの駆動出力信号は、検出アンプ
17およびデータアンプ18を介して水平軸出力
端子H0から測定出力信号として取り出すことが
できる。
垂直軸コイルVの駆動出力信号は、検出アンプ
19およびデータアンプ20を介して垂直軸出力
端子V0から測定出力信号として取り出すことが
できる。
この発明による変位計では、適当なスイツチン
グ回路によりイメージデイセクタ管1の出力信号
を所定の繰返タイミングで時分割している。この
タイミングと動作する回路を表1に示す。ここ
で、は水平方向の変位測定モードで、は垂直
方向の変位測定モードであり、は照明光量を測
定してイメージデイセクタ管の適正検出感度を与
えるライトテストモードに対応するタイミングで
ある。
[Industrial Field of Application] The present invention relates to a two-axis photoelectric displacement meter that can photoelectrically measure the displacement of an object to be measured in mutually orthogonal directions. [Prior art] In order to measure the displacement of an object to be measured in the vertical and horizontal directions, two photoelectric displacement meters each using an image dissector tube and capable of measuring only one direction are usually used independently. are doing. Since this measurement method uses two displacement meters, it occupies a large space and becomes an expensive device. In order to alleviate this difficulty, the applicant has already proposed a photoelectric displacement meter that can measure displacement in two directions perpendicular to each other (biaxial displacement) and can accurately measure even when there are temporal fluctuations in the amount of illumination light. was. In this displacement meter, the measurement mode is divided into two modes that are switched alternately over time, and one mode measures the amount of illumination light on the object and determines the appropriate detection sensitivity of the image dissector tube (this mode (This is called the light test mode, in which the value of the high voltage applied to the electron multiplier tube of the image dissector tube is adjusted appropriately), and the displacement measurement was performed in the other mode. In this displacement measurement mode, one image each includes one of the two mutually orthogonal bright/dark boundaries of the measurement target (for example, the x-axis bright/dark boundary) and the other bright/dark boundary (corresponds to the y-axis bright/dark boundary). A deflection current is forcibly applied to the deflection coil of each image dissector tube so that the dissector tube captures the image photoelectrically, and only displacements in the y and x directions are measured. Therefore, since it requires two wires and an image dissector tube with the same characteristics in principle, it is expensive, and in addition, the camera is large and heavy, making it inconvenient to handle. Furthermore, it is necessary to separate the optical image of the object to be measured using mirrors and focus it on each image dissector tube, which requires accurate adjustment of the optical system and requires the use of complex feedback control. The electrical circuit is complicated because
The problem was that the operation could become unstable. [Problem of the Invention] An object of the present invention is to solve the above-mentioned drawbacks of the conventional technology and provide a photoelectric displacement system that can measure displacement in two axes with one image dissector tube and is also equipped with a light servo mode. It is in. [Means for Solving the Problem] The above problem is solved by the present invention, which provides a preamplifier 2 for amplifying the output current of the image dissector tube 1.
Deflection currents are applied to the horizontal and vertical axis coils H and V that deflect the electronic image of the object to be measured on the aperture of the image dissector tube 1 in the horizontal and vertical directions, and to the horizontal and vertical axis coils H and V, respectively. The two-axis photoelectric displacement meter is equipped with horizontal and vertical measurement circuits 10 and 14 for measuring displacement in two-axis directions by converting an optical image of the object to be measured, which has bright and dark boundaries perpendicular to each other, into an electronic image. In this case, a time division switch 3 is connected to the output terminal of the preamplifier 2.
The time division switch 3 is used to divide the output signal of the preamplifier 2 into three different timings.
, horizontal axis coil H, vertical axis coil V, respectively.
Connect it to the branch circuit leading to the high voltage power supply 16 of the image dissector tube, and connect the amplifier 6, 1 to the vertical axis coil V in measurement mode.
2, a shift voltage +α is applied to the vertical measurement circuit 14 to form an electronic image of the vertical bright/dark boundary of the object on the aperture of the image dissector tube, and the displacement of this boundary is measured horizontally with the amplifiers 4 and 7. Measure by circuit 10, and in measurement mode, connect amplifiers 4 and 8 to horizontal axis coil H.
A shift voltage +α is applied to the horizontal measurement circuit 10 via the image dissector tube to form an electronic image of the horizontal bright/dark boundary of the object on the aperture of the image dissector tube, and the displacement of this boundary is measured by the amplifiers 6, 11 and the vertical measurement circuit. 14, and in the light test mode, apply a shift voltage +α to the vertical axis coil V via the amplifiers 6 and 13 to the vertical measurement circuit 14, and apply the shift voltage +α to the vertical axis coil H via the amplifiers 4 and 13.
A shift voltage +α is applied to the vertical measurement circuit 14 via the amplifier 5 and the matching amplifier 15 to remove both bright and dark boundaries of the object and image only the bright field onto the aperture of the image dissector tube. is introduced into the high-voltage power supply circuit 16 to apply an appropriate high voltage according to the amount of illumination light of the object to the electron image multiplier section of the image dissector tube, and when the high-voltage power supply circuit 16 is in the measurement mode, the mode is maintained. This problem has been solved using a two-axis photoelectric displacement meter. [Effects of the Invention] Compared to the conventional method, the photoelectric displacement meter according to the present invention can omit one image dissector tube, so the imaging optical system becomes smaller and lighter, and it is advantageous in terms of price. . A further advantage is that optical and electrical adjustment and manipulation are extremely easy. [Embodiments] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings showing embodiments of the displacement meter according to the present invention. The output current signal of the image dissector tube 1 that has received the light L emitted from the object to be measured is converted into a current/voltage by the preamplifier 2, and is converted into a current signal by the time division switch 3 at three different timings at a predetermined repetition timing frequency. Divided into series. The output signals divided into 3 are sent to the horizontal (H) axis amplifier 4 and the light servo (L, S) respectively.
It is introduced into an amplifier 5 and a vertical (V) axis amplifier 6. The output signal of the horizontal axis amplifier is transmitted by a coil voltage detection amplifier 7 for horizontal axis output, a coil shift voltage detection amplifier 8 for vertical axis output, and a horizontal axis coil shift voltage detection amplifier 9 for light servo, which are connected in parallel afterward. will be introduced in The output signals of these amplifiers 7, 8, and 9 are applied to the horizontal axis coil drive amplifier 10 in order to drive the horizontal axis coil H according to the corresponding repetition timing. The output signal of the horizontal axis amplifier 6 is transmitted to a coil voltage detection amplifier 11 for vertical axis output, a coil shift voltage detection amplifier 12 for horizontal axis output, and a vertical axis coil shift voltage detection amplifier for light servo, which are connected in parallel afterward. 13 will be introduced. The output signals of these amplifiers 11, 12, and 13 are applied to the vertical axis coil drive amplifier 14 in order to drive the vertical axis coil V according to the corresponding repetition timing. The output signal of the write servo amplifier 5 is introduced through a matching amplifier 15 to a high voltage power supply circuit 16 for the electron image multiplier section of the image dissector tube 1 in order to control its output high voltage. The drive output signal of the horizontal axis coil H can be taken out as a measurement output signal from the horizontal axis output terminal H 0 via the detection amplifier 17 and the data amplifier 18. The drive output signal of the vertical axis coil V can be taken out as a measurement output signal from the vertical axis output terminal V0 via the detection amplifier 19 and the data amplifier 20. In the displacement meter according to the present invention, the output signal of the image dissector tube 1 is time-divided at a predetermined repetition timing using a suitable switching circuit. Table 1 shows this timing and the circuit that operates. Here, is a horizontal displacement measurement mode, is a vertical displacement measurement mode, and is a timing corresponding to a light test mode that measures the amount of illumination light and provides appropriate detection sensitivity of the image dissector tube.
【表】
H軸およびV軸偏向コイルをシフトさせるに
は、アンプ8,9,12,13によつてシフト電
圧+αを印加する。従つて、ライトテストモード
では、アンプ9,13に同時にシフト電圧+α
が印加され、明暗境界の電子像がアパーチヤを外
れ完全に明るい視野のみがアパーチヤ上に来る。
測定モードでは、アンプ6と12によつてシ
フト電圧+αが垂直測定回路14に印加され、ア
パーチヤ上に垂直明暗境界のみ来る。
また、測定モードでは、アンプ4と8によつ
てシフト電圧+αが水平測定回路10に印加さ
れ、アパーチヤ上に水平明暗境界のみ来る。
こうして、シフト電圧+αの加算された偏向コ
イル電流を水平軸コイルHおよび垂直軸コイルV
にそれぞれ別々に供給することにより、垂直明暗
境界および水平明暗境界の電子像がアパーチヤ上
に残り、それぞれ対応する垂直軸コイルVおよび
水平軸にコイルHのフイードバツク作用により、
垂直および水平方向の変位が測定できる。そし
て、測定モードI,では、ライトテストモード
での光量測定に基づき適正な高電圧が高電圧回
路16からイメージデイセクタ管に供給されてい
る。その結果、測定環境の変化、殊にターゲツト
からの入射光量の変化にも係わらず、出力データ
の変動が防止され、誤差の少ない高精度変位測定
が可能になる。[Table] To shift the H-axis and V-axis deflection coils, a shift voltage +α is applied by the amplifiers 8, 9, 12, and 13. Therefore, in the write test mode, the shift voltage +α is applied to amplifiers 9 and 13 at the same time.
is applied, and the electron image at the bright/dark boundary is removed from the aperture, leaving only a completely bright field above the aperture. In the measurement mode, a shift voltage +α is applied by the amplifiers 6 and 12 to the vertical measurement circuit 14, so that only the vertical bright/dark boundary lies on the aperture. Further, in the measurement mode, a shift voltage +α is applied to the horizontal measurement circuit 10 by the amplifiers 4 and 8, and only the horizontal bright/dark boundary appears on the aperture. In this way, the deflection coil current added by the shift voltage +α is transferred to the horizontal axis coil H and the vertical axis coil V.
By supplying them separately, the electronic images of the vertical bright/dark boundary and the horizontal bright/dark boundary remain on the aperture, and due to the feedback action of the corresponding vertical axis coil V and horizontal axis coil H,
Vertical and horizontal displacements can be measured. In measurement mode I, an appropriate high voltage is supplied from the high voltage circuit 16 to the image dissector tube based on the light intensity measurement in the light test mode. As a result, fluctuations in output data are prevented despite changes in the measurement environment, particularly changes in the amount of incident light from the target, making it possible to perform highly accurate displacement measurements with few errors.
添付図面は、この発明による1検出部で2軸ラ
イトサーボ可能な光電変位計の回路図である。
図中参照符号:1……イメージデイセクタ管、
2……プリアンプ、3……時分割スイツチ、4…
…水平軸アンプ、5……ライトサーボアンプ、6
……垂直軸アンプ、7,8,9,10,17,1
8……水平軸測定回路、11,12,13,1
4,19,20……垂直軸測定回路、16……高
圧電源回路、H……水平軸コイル、V……垂直軸
コイル。
The accompanying drawing is a circuit diagram of a photoelectric displacement meter capable of two-axis write servo with one detection section according to the present invention. Reference number in the figure: 1...Image dissector tube,
2...Preamplifier, 3...Time division switch, 4...
...Horizontal axis amplifier, 5...Light servo amplifier, 6
...Vertical axis amplifier, 7, 8, 9, 10, 17, 1
8...Horizontal axis measurement circuit, 11, 12, 13, 1
4, 19, 20...Vertical axis measurement circuit, 16...High voltage power supply circuit, H...Horizontal axis coil, V...Vertical axis coil.
Claims (1)
るプリアンプ2と、イメージデイセクタ管1のア
パーチヤ上の測定対象物の電子像を水平および垂
直方向に偏向させる水平および垂直軸コイルH,
Vと、水平および垂直軸コイルH,Vにそれぞれ
偏向電流を印加するための水平および垂直測定回
路10,14とを備え、互いに直交する明暗境界
を有する測定対象物の光学像を電子像に変換し
て、2軸方向の変位を測定する2軸光電式変位計
において、 前記プリアンプ2の出力端に時分割スイツチ3
を設け、この時分割スイツチ3によつてプリアン
プ2の出力信号を3種の繰返タイミングI,,
でそれぞれ水平軸コイルH,垂直軸コイルV,
イメージデイセクタ管の高圧電源16に通ずる分
岐回路に接続させ、 測定モードIで垂直軸コイルVにアンプ6,1
2を介して垂直測定回路14にシフト電圧+αを
印加してイメージデイセクタ管のアパーチヤ上に
対象物の垂直明暗境界の電子像を結像させ、この
境界の変位をアンプ4,7と水平測定回路10に
よつて測定し、 測定モードで水平軸コイルHにアンプ4,8
を介して水平測定回路10にシフト電圧+αを印
加してイメージデイセクタ管のアパーチヤ上に対
象物の水平明暗境界の電子像を結像させ、この境
界の変位をアンプ6,11と垂直測定回路14に
よつて測定し、 ライトテストモードで、垂直軸コイルVにア
ンプ6,13を介して垂直測定回路14にシフト
電圧+αを印加し、水平軸コイルHにアンプ4,
9を介して垂直測定回路14にシフト電圧+αを
印加して、対象物の両明暗境界を外して明視野の
みイメージデイセクタ管のアパーチヤ上に結像さ
せ、アンプ5、整合用アンプ15を介して、高圧
電源回路16に導入し、対象物の照明光量に応じ
た適正高圧をイメージデイセクタ管の電子増倍部
に印加し、 高圧電源回路16が測定モードとの時、モ
ードの状態に保持されている、 ことを特徴とする2軸光電式変位計。[Claims] 1. A preamplifier 2 that amplifies the output current of the image dissector tube 1, and horizontal and vertical axis coils that deflect the electronic image of the object to be measured on the aperture of the image dissector tube 1 in the horizontal and vertical directions. H,
V and horizontal and vertical measurement circuits 10 and 14 for applying deflection currents to the horizontal and vertical axis coils H and V, respectively, and converts an optical image of the object to be measured having bright and dark boundaries orthogonal to each other into an electronic image. In a two-axis photoelectric displacement meter that measures displacement in two-axis directions, a time division switch 3 is connected to the output terminal of the preamplifier 2.
The time division switch 3 divides the output signal of the preamplifier 2 into three types of repetition timings I, .
The horizontal axis coil H, the vertical axis coil V,
Connect it to the branch circuit leading to the high voltage power supply 16 of the image dissector tube, and connect the amplifier 6, 1 to the vertical axis coil V in measurement mode I.
2, a shift voltage +α is applied to the vertical measurement circuit 14 to form an electronic image of the vertical bright/dark boundary of the object on the aperture of the image dissector tube, and the displacement of this boundary is measured horizontally with the amplifiers 4 and 7. Measure by circuit 10, and in measurement mode, connect amplifiers 4 and 8 to horizontal axis coil H.
A shift voltage +α is applied to the horizontal measurement circuit 10 via the image dissector tube to form an electronic image of the horizontal bright/dark boundary of the object on the aperture of the image dissector tube, and the displacement of this boundary is measured by the amplifiers 6, 11 and the vertical measurement circuit. 14, and in the light test mode, apply a shift voltage +α to the vertical axis coil V via the amplifiers 6 and 13 to the vertical measurement circuit 14, and apply the shift voltage +α to the vertical axis coil H via the amplifiers 4 and 13.
A shift voltage +α is applied to the vertical measurement circuit 14 via the amplifier 5 and the matching amplifier 15 to remove both bright and dark boundaries of the object and image only the bright field onto the aperture of the image dissector tube. is introduced into the high-voltage power supply circuit 16, and applies an appropriate high voltage according to the amount of illumination light of the object to the electron multiplier section of the image dissector tube, and when the high-voltage power supply circuit 16 is in the measurement mode, the mode is maintained. A two-axis photoelectric displacement meter characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP227182A JPS58120102A (en) | 1982-01-12 | 1982-01-12 | Optical displacement gage capable of two-axes light servo with one detecting part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP227182A JPS58120102A (en) | 1982-01-12 | 1982-01-12 | Optical displacement gage capable of two-axes light servo with one detecting part |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58120102A JPS58120102A (en) | 1983-07-16 |
JPH0459562B2 true JPH0459562B2 (en) | 1992-09-22 |
Family
ID=11524702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP227182A Granted JPS58120102A (en) | 1982-01-12 | 1982-01-12 | Optical displacement gage capable of two-axes light servo with one detecting part |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58120102A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5140166A (en) * | 1974-10-01 | 1976-04-03 | Chinmaa Koohoreeshon Japan Kk | Hisetsushokugata 2 jikuhenisokuteisochi |
JPS5313453A (en) * | 1976-07-23 | 1978-02-07 | Chisso Corp | Two point contactless optical displacement measuring apparatus |
-
1982
- 1982-01-12 JP JP227182A patent/JPS58120102A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5140166A (en) * | 1974-10-01 | 1976-04-03 | Chinmaa Koohoreeshon Japan Kk | Hisetsushokugata 2 jikuhenisokuteisochi |
JPS5313453A (en) * | 1976-07-23 | 1978-02-07 | Chisso Corp | Two point contactless optical displacement measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS58120102A (en) | 1983-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4277679A (en) | Apparatus and method for contact-free potential measurements of an electronic composition | |
US4220853A (en) | Method for the contactless measurement of the potential waveform in an electronic component and arrangement for implementing the method | |
KR970075837A (en) | Image quality measurement device and image quality measurement method for color display devices | |
US4224640A (en) | CRT Beam current control apparatus | |
US2563395A (en) | Calibration | |
JPH0459562B2 (en) | ||
US2524790A (en) | Method and apparatus for making comparative measurements on oscilloscopes | |
JPS62204130A (en) | Streak camera device | |
SU720799A1 (en) | Device for stabilizing raster of transmitting tv camera | |
JP3250287B2 (en) | Method and apparatus for measuring displacement of beam spot of cathode ray tube | |
JP3089422B2 (en) | Imaging device | |
JPS59168308A (en) | Non-contact type optical displacement measuring device | |
JPS5824726B2 (en) | Scanning length measuring device | |
SU1285629A1 (en) | Device for automatic control of white balance in colour picture tube | |
JP2517456Y2 (en) | Calibration tool for analog IC tester | |
SU1265686A1 (en) | Electronic copying machine | |
JP2807038B2 (en) | Tester for image sensor | |
JPH0228601Y2 (en) | ||
SU477353A1 (en) | Strobe Oscilloscope | |
JPS6044804A (en) | Non-contact, optical type, three-dimensional displacement measuring device | |
JPH02241290A (en) | Method of measuring time interval between two points in television signal | |
SU1275586A1 (en) | Scanning electron microscope | |
SU464074A1 (en) | Oscillographic method of measuring voltage of arbitrary shape | |
SU1228024A1 (en) | Method of measuring instantaneous values of electric signals by electron-ray zero indicator | |
JP2669140B2 (en) | Imaging device |