[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0459463B2 - - Google Patents

Info

Publication number
JPH0459463B2
JPH0459463B2 JP58065925A JP6592583A JPH0459463B2 JP H0459463 B2 JPH0459463 B2 JP H0459463B2 JP 58065925 A JP58065925 A JP 58065925A JP 6592583 A JP6592583 A JP 6592583A JP H0459463 B2 JPH0459463 B2 JP H0459463B2
Authority
JP
Japan
Prior art keywords
fuel
amount
intake air
correction
air amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58065925A
Other languages
Japanese (ja)
Other versions
JPS59190433A (en
Inventor
Masahiko Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP6592583A priority Critical patent/JPS59190433A/en
Publication of JPS59190433A publication Critical patent/JPS59190433A/en
Publication of JPH0459463B2 publication Critical patent/JPH0459463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンジンのアイドル回転制御装置に関
し、特に、外部負荷等に応じて吸入空気量と燃料
供給量とを同時に増量する手段を備えた制御装置
の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine idle speed control device, and more particularly, to a control device having means for simultaneously increasing the amount of intake air and the amount of fuel supplied in response to an external load, etc. This relates to improvements in equipment.

(従来技術) 従来から、アイドル回転数を制御するために、
吸気通路の絞り弁を迂回するバイパス通路を設け
て該通路の流量制御弁を制御する等により、運転
状態等に応じて吸入空気量を制御するとともに、
その吸入空気量に応じて燃料供給量を制御するよ
うにした装置がある。一般にこの種の装置では、
カークーラー等の外部負荷が加わつたときに所定
値だけ吸入空気量が増量されるようになつている
が、この場合、吸入空気量の増加を検出してから
それに応じて燃料供給量を制御すると、応答遅れ
により一時的に混合気が希薄になつてエンジン回
転数が低下する。
(Prior art) Conventionally, in order to control the idle speed,
By providing a bypass passage that bypasses the throttle valve of the intake passage and controlling the flow rate control valve of the passage, the amount of intake air is controlled according to the operating conditions, etc.
There is a device that controls the amount of fuel supplied depending on the amount of intake air. Generally, this type of device
The amount of intake air is increased by a predetermined value when an external load such as a car cooler is applied, but in this case, if the increase in the amount of intake air is detected and the fuel supply amount is controlled accordingly. , the response delay temporarily causes the air-fuel mixture to become leaner, causing the engine speed to drop.

この問題を解消するため、特開昭54−159526号
公報にみられるように、外部負荷が加わつたとき
に、指令信号に応じて、見込補正による吸入空気
量の増量と同時に燃料を所定値だけ増量するよう
にしたものがある。しかしこの装置では、見込補
正時の燃料増量値が予め実験的に求められて一定
に設定されているにすぎなかつたため、エンジン
毎の性能的なばらつきや経年変化により、上記燃
料増量値が不適正になる場合がある。このような
場合、エンジン回転数の低下を充分に防止するこ
とができなくなつたり、逆に不必要にエンジン回
転数が上昇したりするという問題が残されてい
た。また、上記公報には、外部負荷が加わつた場
合の見込み補正のみ示されているが、外部負荷が
除去されたときには吸入空気量を見込み補正で減
量することが望ましく、さらにこの場合は、吸入
空気量の減量と同時に燃料を減量することが望ま
しい。ただし、吸入空気量の増加時と減少時とで
は燃料の霧化、気化のし易さ等の条件も相違する
ため、吸入空気量減量時の燃料の減量補正を吸入
空気量増量時の燃料の増量補正と同等量だけ行つ
ても、適正な燃料を与えることができない。
In order to solve this problem, as seen in Japanese Unexamined Patent Publication No. 159526/1983, when an external load is applied, the amount of intake air is increased by estimated correction in response to a command signal, and at the same time the fuel is increased by a predetermined value. Some have been made to increase the amount. However, with this device, the fuel increase value at the time of estimated correction is simply determined experimentally in advance and set to a constant value, so due to performance variations between engines and changes over time, the above fuel increase value may be incorrect. It may become. In such a case, the problem remains that it is not possible to sufficiently prevent a decrease in the engine speed, or that the engine speed may increase unnecessarily. In addition, although the above publication only shows estimated correction when an external load is added, it is desirable to reduce the amount of intake air by estimated correction when the external load is removed. It is desirable to reduce the amount of fuel at the same time as reducing the amount. However, since the conditions such as ease of fuel atomization and vaporization are different when the intake air amount increases and when the intake air amount decreases, the fuel reduction correction when the intake air amount is decreased is used as the fuel reduction correction when the intake air amount is increased. Even if the same amount as the increase correction is applied, the appropriate amount of fuel cannot be given.

(発明の目的) 本発明はこのような従来装置の欠点を解消する
もので、外部負荷の変動に応じた見込補正時に、
燃料の増量補正値および減量補正値を学習、補正
し、エンジン毎の性能のばらつきや経年変化があ
つてもエンジン回転数を適正値に維持することの
できる装置を提供することを目的とする。
(Object of the Invention) The present invention eliminates the drawbacks of the conventional device, and is intended to correct
It is an object of the present invention to provide a device capable of learning and correcting a fuel increase correction value and a fuel decrease correction value, and maintaining the engine rotation speed at an appropriate value even if performance varies from engine to engine or changes over time.

(発明の構成) 第1図の全体構成図に示すように、アイドル回
転数の制御を行う制御部21は、スロツトル弁3
を迂回するバイパス通路4の流量制御弁5を制御
する等(他には例えばバイパス通路4の流量制御
弁5を制御するのではなくスロツトル弁3を制御
するものがある。)によつてエンジン1に供給す
る吸入空気量を制御するとともに、燃料噴射弁7
からの燃料噴射量を、あるいは気化器(図示せ
ず)からの燃料供給量を制御するようになつてい
る。
(Structure of the Invention) As shown in the overall configuration diagram of FIG.
The engine 1 is controlled by, for example, controlling the flow control valve 5 of the bypass passage 4 that bypasses the engine 1 (for example, there is a method that controls the throttle valve 3 instead of controlling the flow control valve 5 of the bypass passage 4). In addition to controlling the amount of intake air supplied to the fuel injection valve 7
The amount of fuel injected from the carburetor or the amount of fuel supplied from a carburetor (not shown) is controlled.

この制御部21には、エンジンのアイドル運転
中に外部負荷の変動に応じ、外部負荷増大状態に
切換わつたときは吸入空気量を所定量増量し、外
部負荷減少状態に切換わつたときは吸入空気量を
所定量減量する吸入空気量補正手段22と、この
吸入空気量補正手段22による補正に対応して吸
入空気量の増量と同時に燃料を増量補正し、吸入
空気量の減量と同時に燃料を減量補正する燃料補
正手段23とが含まれている。この燃料補正手段
23による燃料の増量補正および減量補正を適正
化するため、燃料の増量補正値および減量補正値
を記憶している記憶手段24と、上記吸入空気量
補正手段22および燃料補正手段23の作動時に
おけるエンジンの回転数変動を検出する回転数変
動検出手段25と、燃料の増量補正値および減量
補正値の書き換え手段26とが設けられている。
上記書き換え手段26は、上記回転数変動検出手
段25の出力を受けて、吸入空気量増量時および
吸入空気量減量時においてそれぞれ回転数変動が
小さくなるように、上記記憶手段23に記憶され
る燃料の増量補正値および減量補正値を各々独立
に書き換え修正するものである。
The control unit 21 is configured to increase the amount of intake air by a predetermined amount when the external load increases during engine idling, and to increase the intake air amount by a predetermined amount when the external load increases, and when the external load decreases. Intake air amount correction means 22 reduces the amount of air by a predetermined amount, and in response to the correction by this intake air amount correction means 22, the amount of fuel is increased at the same time as the amount of intake air is increased, and the amount of fuel is increased at the same time as the amount of intake air is decreased. A fuel correction means 23 for correcting the weight loss is included. In order to optimize the fuel increase correction and decrease correction by the fuel correction means 23, a storage means 24 storing the fuel increase correction value and reduction correction value, the intake air amount correction means 22 and the fuel correction means 23 are provided. A rotational speed fluctuation detection means 25 for detecting engine rotational speed fluctuations during operation of the engine, and means 26 for rewriting fuel increase correction values and fuel reduction correction values are provided.
The rewriting means 26 receives the output of the rotational speed fluctuation detecting means 25 and changes the fuel stored in the storage means 23 so that the rotational speed fluctuation becomes smaller when the amount of intake air is increased and when the amount of intake air is decreased. The increase correction value and the decrease correction value are independently rewritten and corrected.

(実施例) 第2図において、1はエンジン、2は吸気通
路、3は吸気通路2中に設けられた絞り弁であ
り、この絞り弁3を迂回してバイパス通路4が設
けられ、該バイパス通路4には流量制御弁5が設
けられている。この流量制御弁5は、アイドル運
転時に上記バイパス通路4の開度を調節すること
により吸入空気量を調節するもので、マイクロコ
ンピユータを用いたコントロールユニツト20に
よりアクチユエータ6を介して制御される。ま
た、7は燃料噴射弁であつて、その燃料噴射量も
コントロールユニツト20により制御されるよう
になつている。
(Example) In FIG. 2, 1 is an engine, 2 is an intake passage, 3 is a throttle valve provided in the intake passage 2, and a bypass passage 4 is provided bypassing this throttle valve 3. A flow control valve 5 is provided in the passage 4. The flow rate control valve 5 adjusts the amount of intake air by adjusting the opening degree of the bypass passage 4 during idle operation, and is controlled via the actuator 6 by a control unit 20 using a microcomputer. Reference numeral 7 denotes a fuel injection valve whose fuel injection amount is also controlled by the control unit 20.

11は吸入空気量を検出するエアフロメータ、
12は吸気マニホールド内の圧力を検出する圧力
検出器、13はエンジン回転数検出器であり、こ
れらによる検出信号はコントロールユニツト20
に入力されている。さらに、各種外部負荷要素か
らの指令信号もコントロールユニツト20に入力
されている。例えば、クーラーのON,OFFを検
出するクーラースイツチ14と、自動変速機のニ
ユートラルレンジ、ドライブレンジを検出するシ
フトスイツチ15と、パワステアリングのON,
OFFを検出するパワステアリングスイツチ16
と、ヘツドライトスイツチ17とからの各信号が
コントロールユニツト20に入力されている。
11 is an air flow meter that detects the amount of intake air;
12 is a pressure detector that detects the pressure in the intake manifold, 13 is an engine rotation speed detector, and detection signals from these are sent to the control unit 20.
has been entered. Furthermore, command signals from various external load elements are also input to the control unit 20. For example, the cooler switch 14 detects ON/OFF of the cooler, the shift switch 15 detects the neutral range and drive range of the automatic transmission, and the ON/OFF of the power steering.
Power steering switch 16 that detects OFF
and the headlight switch 17 are input to the control unit 20.

このコントロールユニツト20は、外部負荷変
動時以外の通常のアイドル運転状態では、フイー
ドバツク式に目標回転数を維持するように吸入空
気量を制御するとともに、エンジン回転数および
吸気マニホールド圧力に対応づけた燃料噴射量の
基準制御値のROMマツプ(図示せず)に基づい
て燃料噴射量を制御するようにしている。このよ
うな制御手段に加え、前述の全体構成図に示した
制御部21(吸入空気量補正手段22および燃料
補正手段23を含む)、記憶手段24、回転数変
動検出手段25および書き換え手段26がコント
ロールユニツト20に含まれている。そして、ア
イドル運転中に外部負荷が増大する状態に前記ス
イツチ14〜17のいずれかが切替わつたとき、
吸入空気量を所定値増量するように見込補正する
と同時に、前記ROMマツプから求められる基準
設定値を補正して燃料を増量するようにし、その
補正係数(燃料の増量補正値)を各外部負荷別に
記憶し、かつ、増量手段作動時のエンジン回転数
変動に応じて書き換え修正するようにしている。
さらに、外部負荷が減少する状態にスイツチ14
〜17のいずれかが切替わつたときは、エンジン
回転数の上昇を防止するため、吸入空気量を所定
値減量すると同時に上記基準設定値を補正して燃
料を減量し、この場合の補正係数(燃料の減量補
正値)も記憶し、かつ、書き換え修正するように
している。
This control unit 20 controls the amount of intake air so as to maintain the target rotation speed in a feedback manner during normal idling operating conditions other than during external load fluctuations, and also controls the intake air amount in accordance with the engine rotation speed and intake manifold pressure. The fuel injection amount is controlled based on a ROM map (not shown) of reference control values for the injection amount. In addition to such a control means, the control section 21 (including the intake air amount correction means 22 and the fuel correction means 23), the storage means 24, the rotation speed fluctuation detection means 25, and the rewriting means 26 shown in the above-mentioned overall configuration diagram are provided. It is included in the control unit 20. When any of the switches 14 to 17 is switched to a state where the external load increases during idling,
At the same time, the intake air amount is estimated to be increased by a predetermined value, and at the same time, the standard set value obtained from the ROM map is corrected to increase the fuel amount, and the correction coefficient (fuel increase correction value) is calculated for each external load. The information is stored and rewritten and corrected in accordance with engine rotational speed fluctuations when the amount increasing means is activated.
Furthermore, the switch 14 is set to a state where the external load is reduced.
- 17 is switched, in order to prevent the engine speed from increasing, the amount of intake air is reduced by a predetermined value, and at the same time the reference setting value is corrected to reduce the amount of fuel, and in this case, the correction coefficient ( The fuel reduction correction value) is also stored and can be rewritten and corrected.

アイドル運転中の上記の制御を実行するフロー
チヤートを第3図および第4図に示す。なお、フ
ローチヤート中、アイドル制御見込補正とは、外
部負荷変動時に、吸入空気量を所定値増加または
減少させるように前記流量制御弁5を制御するこ
とを意味する。記号Jはレジスタに記憶される見
込補正状態の区別値を表わし、見込補正が行われ
ていない場合を0、吸入空気量を増加させる見込
補正が行われた場合を1、吸入空気量を減少させ
る見込補正が行われた場合を2としている。ま
た、記号Iはレジスタに記憶されるスイツチ状態
の区別値を表わし、前記各スイツチ14〜17の
いずれもが切替わらない場合を0とし、いずれか
のスイツチが切替わつた場合をスイツチ別に1〜
4としている。
Flowcharts for executing the above control during idle operation are shown in FIGS. 3 and 4. Note that in the flowchart, the idle control expected correction means controlling the flow rate control valve 5 so as to increase or decrease the intake air amount by a predetermined value when the external load fluctuates. The symbol J represents a value for distinguishing between estimated correction states stored in the register; 0 indicates that no estimated correction is performed, 1 indicates that an estimated correction that increases the amount of intake air is performed, and decreases the amount of intake air. The case where the estimated correction is performed is set as 2. Further, the symbol I represents a value for distinguishing the switch status stored in the register, and is set to 0 when none of the switches 14 to 17 is switched, and 1 to 1 when any switch is switched.
It is set at 4.

第3図に示すメインルーチンにおいては、ステ
ツプ31によるイニシヤライズの後、スイツチ32で
圧力検出器12により検出されたマニホールド圧
力のA/D変換が行われ、ステツプ33でJ=0と
記憶される。次に、ステツプ34ではクーラースイ
ツチ14がOFFからONに切替わつたか否かが、
ステツプ37ではシフトスイツチ37がニユートラ
ルからドライブに切替わつたか否かが、ステツプ
40ではパワーステアリングスイツチ16がOFF
からONに切替わつたか否かが、ステツプ43では
ヘツドライトスイツチ17がOFFからONに切替
わつたか否かが、それぞれ判別される。これらの
判別は、各スイツチ14〜17からの信号が前回
のルーチンと今回のルーチンとで上記状態に変化
したかどうかで行われる。そして、いずれかのス
イツチが上記状態に切替わつたときは、吸入空気
量を各外部負荷に予め定められた所定値だけ増量
するアイドル制御見込補正が行われる(ステツプ
35,38,41,44)。さらに、切替わつたスイツチ
14〜17の種別に応じてスイツチ状態区別値I
が1〜4のいずれかとされ、かつ、見込補正状態
区別値Jが1とされ記憶される(ステツプ36,
39,42,45)。また、いずれのスイツチ14〜1
7も上記状態に切替わつていないときは、アイド
ル制御見込補正が行われず、かつ、I=0,J=
0に保たれる。
In the main routine shown in FIG. 3, after initialization in step 31, the switch 32 performs A/D conversion of the manifold pressure detected by the pressure detector 12, and in step 33, J=0 is stored. Next, in step 34, it is determined whether the cooler switch 14 has been switched from OFF to ON.
In step 37, it is determined whether the shift switch 37 has been switched from neutral to drive.
At 40, power steering switch 16 is OFF.
In step 43, it is determined whether the headlight switch 17 has been switched from OFF to ON. These determinations are made based on whether the signals from the switches 14 to 17 have changed to the above state between the previous routine and the current routine. Then, when any of the switches switches to the above state, idle control estimated correction is performed to increase the intake air amount by a predetermined value predetermined for each external load.
35, 38, 41, 44). Further, a switch state distinction value I is added according to the type of the switched switches 14 to 17.
is set to one of 1 to 4, and the expected correction state distinction value J is set to 1 and stored (step 36,
39, 42, 45). Also, any switch 14-1
7 is not switched to the above state, idle control expected correction is not performed, and I=0, J=
It is kept at 0.

次に、ステツプ46でI=0か否かが判別され、
I=0でない場合はステツプ47でエンジン回転数
が極小値か否かが判別される。極小値の判別はエ
ンジン回転数の検出信号に基づいてその増減を調
べることにより行われる。そして、回転数が極小
値となつたことが判別されると、記憶手段に記憶
された燃料増量用の補正係数ClA(I)が、[ClA
(I)+k1・△ClA]と書き換え修正される(ステ
ツプ48)。ここで、補正係数ClAはスイツチ状態区
別値Iで区別される各スイツチ別に記憶されたも
のであり、k1は目標回転数と実回転数との差に応
じた値、△ClAは設定値である。この書き換え修
正が行われた場合は、これに続くステツプ49でI
=0とされた後に次のステツプ50に移り、また、
上記のステツプ46でI=0と判別された場合およ
びステツプ47で回転数が極小値でないと判別され
た場合は、そのままステツプ50に移る。
Next, in step 46, it is determined whether I=0 or not.
If I=0, it is determined in step 47 whether or not the engine speed is at a minimum value. The minimum value is determined by checking the increase or decrease in the engine rotational speed based on the detected signal. Then, when it is determined that the rotation speed has reached the minimum value, the correction coefficient Cl A (I) for fuel increase stored in the storage means is changed to [Cl A
(I)+k 1 △Cl A ] and is corrected (step 48). Here, the correction coefficient Cl A is stored for each switch distinguished by the switch state distinction value I, k1 is a value corresponding to the difference between the target rotation speed and the actual rotation speed, and △Cl A is the setting value. It is a value. If this rewrite modification is performed, the I
= 0, then move to the next step 50, and
If it is determined in step 46 that I=0 or if it is determined in step 47 that the rotational speed is not the minimum value, the process directly advances to step 50.

次に、ステツプ50,53,56,59で、前記各スイ
ツチ14〜17がONまたはドライブからOFFま
たはニユートラルに切替わつたか否かがそれぞれ
判別される。そして、いずれかのスイツチが上記
状態に切替わつたときは、吸入空気量を所定値だ
け減量する見込補正が行われ(ステツプ51,54,
57,60)、さらに、スイツチ状態区別値Iが1〜
4のいずれかとされ、見込補正状態区別値Jが2
とされて記憶される(ステツプ52,55,58,61)。
いずれのスイツチ14〜17も上記状態に切替わ
つていないときは、アイドル制御見込補正が行わ
れず、I=0に保たれる。
Next, in steps 50, 53, 56, and 59, it is determined whether each of the switches 14 to 17 has been switched from ON or drive to OFF or neutral. When any of the switches switches to the above state, an estimated correction is performed to reduce the amount of intake air by a predetermined value (steps 51, 54,
57, 60), and furthermore, the switch state distinction value I is 1 to
4, and the expected correction state distinction value J is 2.
(steps 52, 55, 58, 61).
When none of the switches 14 to 17 have been switched to the above state, the idle control estimate correction is not performed and I=0 is maintained.

その後、ステツプ62でI=0か否かが判別さ
れ、I=0でなければステツプ63でエンジン回転
数が極大値か否かが判別され、極大値であれば、
各スイツチ別に記憶された燃料減量値を決める補
正係数ClD(I)が[ClD(I)−k2・△ClD]と書き
換え修正される(ステツプ64)。k2は実回転数と
目標回転数との差に応じた値、△ClDは設定値で
ある。そして、書き換え修正された場合はI=0
とし(ステツプ65)、ステツプ62でI=0と判別
された場合およびステツプ63で回転数が極大値で
ないと判別された場合はそのまま、前記のステツ
プ32に戻つてフローが繰返されるようにしてい
る。
Thereafter, it is determined in step 62 whether I=0 or not, and if I is not 0, it is determined in step 63 whether the engine speed is at a maximum value, and if it is a maximum value,
The correction coefficient Cl D (I) that determines the fuel reduction value stored for each switch is rewritten and corrected as [Cl D (I) - k 2 ·ΔCl D ] (step 64). k 2 is a value corresponding to the difference between the actual rotation speed and the target rotation speed, and △Cl D is a set value. And if it is rewritten and corrected, I = 0
(step 65), and if it is determined in step 62 that I=0 or if it is determined in step 63 that the rotational speed is not the maximum value, the process returns to step 32 and repeats the flow. .

第4図は割込みルーチンを示し、このルーチン
は例えばBTDC60°でスタートし、先ずステツプ
71で周期計測によりエンジン回転数Nnが計算さ
れる。ついで、ステツプ72でエンジン回転数とマ
ニホールド圧力から運転状態が検出された後、ス
テツプ73でROMマツプから上記運転状態に応じ
た燃料基準制御値Tiが計算される。
Figure 4 shows the interrupt routine, which starts, for example, at BTDC60° and first steps
At 71, the engine rotation speed Nn is calculated by periodic measurement. Next, in step 72, the operating condition is detected from the engine speed and manifold pressure, and then in step 73, a fuel reference control value Ti corresponding to the operating condition is calculated from the ROM map.

次に、ステツプ74でI=0か否かが判別され、
I=0の場合は燃料噴射量Tが上記基準制御値
Tiに設定される(ステツプ8)。また、I=0で
ない場合は、さらにステツプ75でJ=1か否かが
判別され、J=1である場合は燃料噴射量Tが
[Ti×ClA(I)]に設定され(ステツプ77)、J=
2である場合は燃料噴射量Tが[Ti×ClD(I)]
に設定される(ステツプ76)。そして、次のステ
ツプ79で噴射タイミングにあるか否かが判別さ
れ、噴射タイミングとなつた時点で、上記の各場
合に応じた燃料噴射量Tを与える噴射パルスが出
力され(ステツプ80)、その後メインルーチンに
戻される。
Next, in step 74, it is determined whether I=0 or not.
When I=0, the fuel injection amount T is the above reference control value.
Ti is set (step 8). If I=0, it is further determined in step 75 whether J=1, and if J=1, the fuel injection amount T is set to [Ti×Cl A (I)] (step 77). ), J=
2, the fuel injection amount T is [Ti×Cl D (I)]
(step 76). Then, in the next step 79, it is determined whether or not the injection timing is reached, and when the injection timing is reached, an injection pulse is output that gives the fuel injection amount T corresponding to each of the above cases (step 80). You will be returned to the main routine.

以上のフローチヤートに従つて制御が行われる
ことにより、見込補正時の燃料補正量が最適値に
学習制御される。すなわち、外部負荷が増大する
状態に前記スイツチ14〜17のいずれかが切替
わり、吸入空気量を増量する見込補正が行われた
とき、割り込みルーチンのステツプ77で燃料基準
制御値Tiに補正係数ClA(I)が乗算されること
により燃料噴射量が増量される。この場合に燃料
の増量が不充分でエンジン回転数が低下するとき
は、メインルーチンのステツプ48により補正係数
ClA(I)が書き換えられる。従つて、次に同様の
見込補正が行われるときは書き換えられた補正係
数によつて燃料が増量され、エンジン回転数の変
動が小さくなる。この繰返しによつて補正係数
ClA(I)が次第に適正な値に修正される。また、
各外部負荷別に補正係数が記憶され、書き換えら
れることにより、各外部負荷に対してそれぞれに
応じた見込補正時の燃料補正が行われることとな
る。
By performing control according to the above flowchart, the fuel correction amount at the time of estimated correction is controlled by learning to an optimal value. That is, when any of the switches 14 to 17 is switched to a state where the external load increases and an estimated correction to increase the intake air amount is performed, the correction coefficient Cl is added to the fuel reference control value Ti in step 77 of the interrupt routine. The fuel injection amount is increased by multiplying by A (I). In this case, if the increase in fuel is insufficient and the engine speed decreases, the correction coefficient is set in step 48 of the main routine.
Cl A (I) is rewritten. Therefore, the next time a similar estimated correction is performed, the amount of fuel will be increased based on the rewritten correction coefficient, and the fluctuation in engine speed will be reduced. By repeating this process, the correction coefficient
Cl A (I) is gradually corrected to an appropriate value. Also,
By storing and rewriting the correction coefficient for each external load, fuel correction at the time of estimated correction is performed for each external load.

一方、外部負荷が減少する状態にいずれかのス
イツチ14〜17が切替わり、吸入空気量を減量
する見込補正が行われたときも、ステツプ76で燃
料基準値Tiに補正係数ClD(I)が乗算されて燃
料が減量され、この補正が不適正でエンジン回転
数が上昇すればステツプ64で補正係数ClD(I)が
書き換えられ、この繰返しにより外部負荷別に適
正燃料補正値が与えられる。そして、吸入空気量
増量時および吸入空気量減量時においてそれぞれ
回転数変動が小さくなるように、補正係数C1A
(I)および補正係数C1D(I)が各々独立に書き
換え修正されることにより、燃料の増量補正およ
び減量補正がそれぞれ適正に行われる。すなわ
ち、アイドル運転状態での吸入空気量の増量時と
減量時とでは、例えば吸入空気量増加によつて吸
気負圧が小さくなる方向に変化すると燃料の気
化、霧化が悪化し、吸入空気量減少によつて吸気
負圧が大きくなる方向に変化すると燃料の気化、
霧化が良化するというように、燃焼に関係する条
件に差異がある。このため、外部負荷が加わつた
ときの吸入空気量増量とその負荷が除去されたと
きの吸入空気量減量とが同程度であつても、それ
ぞれに応じた燃料の増量補正と減量補正とを同等
とすると補正が不適正となる。これに対し、当実
施例によると、燃料増量用の補正係数ClA(I)と
燃料減量用の補正係数ClD(I)とが、個別に適正
化されるように書き換え修正される。
On the other hand, when any of the switches 14 to 17 is switched to a state in which the external load is reduced and an estimated correction is made to reduce the intake air amount, the correction coefficient Cl D (I) is set to the fuel reference value Ti in step 76. is multiplied to reduce the amount of fuel. If this correction is inappropriate and the engine speed increases, the correction coefficient Cl D (I) is rewritten in step 64, and by repeating this process, an appropriate fuel correction value is given for each external load. Then, the correction coefficient C1 A
(I) and the correction coefficient C1 D (I) are each independently rewritten and corrected, whereby the fuel increase correction and fuel decrease correction are respectively performed appropriately. In other words, when increasing and decreasing the amount of intake air during idling operation, for example, if the intake negative pressure changes in the direction of decreasing due to an increase in the amount of intake air, vaporization and atomization of the fuel will deteriorate, and the amount of intake air will decrease. If the intake negative pressure changes in the direction of increasing due to decrease, fuel vaporization,
There are differences in conditions related to combustion, such as better atomization. Therefore, even if the intake air amount increase when an external load is applied and the intake air amount decrease when that load is removed are about the same, the corresponding fuel increase correction and fuel decrease correction will be made the same. If so, the correction will be inappropriate. In contrast, according to this embodiment, the correction coefficient Cl A (I) for fuel increase and the correction coefficient Cl D (I) for fuel decrease are rewritten and corrected so as to be individually optimized.

(発明の効果) 以上のように本発明は、アイドル運転中に、外
部負荷増大状態への切換わり時には吸入空気量を
所定量増量すると同時に燃料を増量補正し、外部
負荷減少状態への切換わり時には吸入空気量を所
定量減量すると同時に燃料を減量補正するように
制御するとともに、これら燃料の増量補正値およ
び減量補正値を記憶し、かつ、吸入空気量増量時
および吸入空気量減量時の回転数変動応じ、燃料
の増量補正値および減量補正値を各々独立に書き
換え修正するようにしている。このため、エンジ
ン毎の性能のバラツキや経年変化があつても、燃
料の増量補正値および減量補正値を各々適正に修
正し、アイドル回転数の安定性を高めることがで
きる。
(Effects of the Invention) As described above, the present invention increases the amount of intake air by a predetermined amount when switching to the increased external load state during idling, simultaneously increases the amount of fuel, and switches to the decreased external load state. Sometimes, the intake air amount is reduced by a predetermined amount and at the same time, the fuel is controlled to be reduced and corrected, and these fuel increase correction values and reduction correction values are stored, and the rotation when the intake air amount is increased and when the intake air amount is decreased is controlled. The fuel increase correction value and fuel decrease correction value are each independently rewritten and corrected in response to the number fluctuation. Therefore, even if there are variations in performance between engines or changes over time, it is possible to appropriately correct the fuel increase correction value and the fuel decrease correction value, thereby increasing the stability of the idle speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体構成図、第2図は実
施例を示す概略図、第3図および第4図はアイド
ル運転中の制御動作を示すフローチヤートであ
る。 1……エンジン、5……流量制御弁、7……燃
料噴射弁、22……吸入空気量補正手段、23…
…燃料補正手段、24……記憶手段、25……回
転数変動検出手段、26……書き換え手段。
FIG. 1 is an overall configuration diagram of the apparatus of the present invention, FIG. 2 is a schematic diagram showing an embodiment, and FIGS. 3 and 4 are flowcharts showing control operations during idling operation. DESCRIPTION OF SYMBOLS 1... Engine, 5... Flow rate control valve, 7... Fuel injection valve, 22... Intake air amount correction means, 23...
...Fuel correction means, 24...Storage means, 25...Rotational speed fluctuation detection means, 26...Rewriting means.

Claims (1)

【特許請求の範囲】[Claims] 1 エンジンのアイドル運転中に外部負荷の変動
に応じ、外部負荷増大状態に切換わつたときは吸
入空気量を所定量増量し、外部負荷減少状態に切
換わつたときは吸入空気量を所定量減量する吸入
空気量補正手段と、該吸入空気量補正手段による
補正に対応して吸入空気量の増量と同時に燃料を
増量補正し、吸入空気量の減量と同時に燃料を減
量補正する燃料補正手段と、該燃料補正手段によ
る燃料の増量補正値および減量補正値を記憶して
いる記憶手段と、上記吸入空気量補正手段および
燃料補正手段の作動時におけるエンジンの回転数
変動を検出する回転数変動検出手段と、該回転数
変動検出手段の出力を受けて、吸入空気量増量時
および吸入空気量減量時においてそれぞれ回転数
変動が小さくなるように、上記記憶手段に記憶さ
れる燃料の増量補正値および減量補正値を各々独
立に書き換え修正する書き換え手段とを備えたこ
とを特徴とするエンジンのアイドル回転制御装
置。
1.During idle operation of the engine, the intake air amount is increased by a predetermined amount when the external load increases, and when the external load decreases, the intake air amount is decreased by a predetermined amount. an intake air amount correction means for correcting the intake air amount, and a fuel correction means for increasing the amount of fuel at the same time as the intake air amount is increased in response to the correction by the intake air amount correction means, and correcting the amount of fuel for decreasing the amount of fuel at the same time as the intake air amount is decreased; Storage means for storing the fuel increase correction value and reduction correction value by the fuel correction means; and rotation speed fluctuation detection means for detecting engine rotation speed fluctuations when the intake air amount correction means and the fuel correction means are activated. In response to the output of the rotational speed fluctuation detection means, the fuel increase correction value and fuel reduction value are stored in the storage means so that the rotational speed fluctuation becomes smaller when the intake air amount is increased and when the intake air amount is decreased, respectively. 1. An engine idle rotation control device comprising: rewriting means for independently rewriting and correcting each correction value.
JP6592583A 1983-04-13 1983-04-13 Idle rotation control device of engiene Granted JPS59190433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6592583A JPS59190433A (en) 1983-04-13 1983-04-13 Idle rotation control device of engiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6592583A JPS59190433A (en) 1983-04-13 1983-04-13 Idle rotation control device of engiene

Publications (2)

Publication Number Publication Date
JPS59190433A JPS59190433A (en) 1984-10-29
JPH0459463B2 true JPH0459463B2 (en) 1992-09-22

Family

ID=13301031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6592583A Granted JPS59190433A (en) 1983-04-13 1983-04-13 Idle rotation control device of engiene

Country Status (1)

Country Link
JP (1) JPS59190433A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256239A1 (en) * 2002-12-02 2004-06-09 Robert Bosch Gmbh Process and device to control a combustion engine fuel measuring system stores the control period for fuel injection to give constant engine speed
JP4062336B2 (en) * 2006-01-24 2008-03-19 いすゞ自動車株式会社 Fuel injection amount learning control method
EP3125052B1 (en) 2015-07-31 2020-09-02 Garrett Transportation I Inc. Quadratic program solver for mpc using variable ordering
US10272779B2 (en) 2015-08-05 2019-04-30 Garrett Transportation I Inc. System and approach for dynamic vehicle speed optimization
US10124750B2 (en) 2016-04-26 2018-11-13 Honeywell International Inc. Vehicle security module system
US10036338B2 (en) 2016-04-26 2018-07-31 Honeywell International Inc. Condition-based powertrain control system
US11199120B2 (en) 2016-11-29 2021-12-14 Garrett Transportation I, Inc. Inferential flow sensor
US11057213B2 (en) 2017-10-13 2021-07-06 Garrett Transportation I, Inc. Authentication system for electronic control unit on a bus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159526A (en) * 1978-06-07 1979-12-17 Hitachi Ltd Engine speed controller
JPS5578138A (en) * 1978-12-06 1980-06-12 Nissan Motor Co Ltd Idling speed control for internal combustion engine
JPS55107034A (en) * 1979-02-09 1980-08-16 Nippon Denso Co Ltd Idling speed controller of engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159526A (en) * 1978-06-07 1979-12-17 Hitachi Ltd Engine speed controller
JPS5578138A (en) * 1978-12-06 1980-06-12 Nissan Motor Co Ltd Idling speed control for internal combustion engine
JPS55107034A (en) * 1979-02-09 1980-08-16 Nippon Denso Co Ltd Idling speed controller of engine

Also Published As

Publication number Publication date
JPS59190433A (en) 1984-10-29

Similar Documents

Publication Publication Date Title
EP0264286B1 (en) Engine speed control system for an automotive engine
JPH0459463B2 (en)
JPH05280397A (en) Idle speed control device for internal combustion engine
JPH0128214B2 (en)
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH0361017B2 (en)
JPS5862337A (en) Control device of number of revolution in internal- combustion engine
JP3802576B2 (en) Method and apparatus for controlling a drive unit of a vehicle
JP3054546B2 (en) Idle speed control method
JP2561832B2 (en) Engine idle speed controller
KR100298708B1 (en) Method for compensating for amount of air when idle operation
JPH06159112A (en) Control device for engine
JPH0711997A (en) Idling engine speed control method
JPH07166937A (en) Air fuel ratio control method of internal combustion engine
JPS58211539A (en) Controller for number of revolution of internal-combustion engine for automobile with torque converter
JPS60128953A (en) Air-fuel ratio controller for engine
JPH0821286A (en) Intake air amount control device for engine
JPS60128954A (en) Air-fuel ratio controller for engine
JPH0670389B2 (en) Engine fuel controller
JPS58211540A (en) Controller for number of revolution of internal-combustion engine of automobile with torque converter
JPH0227145A (en) Device for controlling learning of idling control valve
JPH0569974B2 (en)
JPH03189344A (en) Fuel supply device of internal combustion engine
KR19990020560A (en) Idle speed control method
JPH02112638A (en) Engine idle speed control method