【発明の詳細な説明】[Detailed description of the invention]
<産業上の利用分野>
本発明は、平滑で易滑性及び耐摩耗性が高度に
改良された二軸延伸ポリエステルフイルムに関す
る。
<従来技術と解決すべき問題点>
ポリエチレンテレフタレートに代表されるポリ
エステルは、その優れた機械的特性、電気的特
性、耐薬品性、寸法安定性の点から、磁気記録
用、コンデンサー用、包装用、製版用、電絶用、
写真フイルム用等多くの分野で基材として用いら
れる。
これらにポリエステルフイルムが用いられる場
合、各用途に応じてその要求特性が異なるが、普
遍的に要求される特性はフイルム取り扱い時の作
業性であり、これを改善するためにはフイルムの
滑り性即ち摩擦係数を減じる必要がある。
また近年伸びの著しいオーデイオ、ビデオ、コ
ンピユーター用等のベースフイルムとしてそのフ
イルム表面に磁性層を塗布し、磁気記録媒体とし
て用いる場合には、滑り性及び耐摩耗性が悪い
と、磁性層塗布時に於けるコーテイングロールと
フイルム表面との摩擦及び摩耗が激しく、フイル
ム表面に擦り傷が発生しやすい。また磁性層塗布
後のフイルムをオーデイオ、ビデオ、コンピユー
ター用テープ等に加工し製品とした後でも、リー
ルやカセツト等からの引出し巻き上げその他の操
作の際に、多くのガイド部、記録・再生ヘツド等
の間に摩擦及び摩耗が著しく生じ、ポリエステル
フイルム表面の削れ等による白粉状物質が生成す
るため、磁気記録信号の欠落、即ちドロツプアウ
トの大きな原因となることが多い。ポリエステル
フイルムに要求されるこれらの特性を改良するた
めに、最も一般的に採用されている方法は、フイ
ルム表面に凹凸を付与するため、ポリエステルに
対し不活性な微粒子を存在させる方法である。
この方法は大きく二つに分けられる。その一つ
は析出法と呼ばれる方法であり、エステル交換反
応あるいはエステル化反応の前後にエチレングリ
コールに可溶な金属化合物、例えばカルシユウム
化合物、リチウム化合物等の一種以上を添加しポ
リエステル製造工程、特に重合工程に於てこれら
をポリエステルに不溶性の微粒子として沈殿させ
る方法である。析出法と対比される今一つの方法
は添加法と呼ばれる方法であり、炭酸カルシユウ
ム、硫酸カルシユウム、カオリン、シリカ、二酸
化チタン等をそのままあるいは微粒子化したのち
ポリエステル合成時あるいは成型時に添加するも
のである。
これらポリエステル中の粒子は、その粒子径が
大きい程、滑り性の改良効果が大きいことが一般
的であるが、磁気テープ、特にビデオ用のごとき
精密用途にはその粒子自体が大きいことがドロツ
プアウト等の欠陥発生原因となり得るため、ポリ
エステル中に含まれる粒子は出来るだけ微細であ
る必要がある。しかしながら、このような相反す
る特性を同時に満足することは非常に難しいのが
現状である。
<問題点を解決するための手段>
本発明者らは、近年磁気記録用テープの高精密
度化が一段と促進され、ベーステープ用フイルム
の滑り性及び耐摩耗性の改良がより要求されつつ
ある状況下に鑑みて、フイルム表面が平滑でかつ
滑り性及び耐摩耗性に優れ、ドロツプアウト等の
欠点発生の少ないベーステープ用フイルムを見い
出し、本発明に到達するに至つた。
即ち本発明の要旨は、平均粒径が0.01〜0.30μ
mのルチル型二酸化チタンを0.01〜1.0wt%及び
平均粒径が0.31〜1.0μmのルチル型二酸化チタン
を0.002〜0.5wt%含有することを特徴とする二軸
延伸ポリエステルフイルムに関するものである。
以下本発明についてより詳しく説明する。
本発明にいうポリエステルとは、テレフタル
酸、イソフタル酸、ナフタレン−2,6−ジカル
ボン酸の如き芳香族ジカルボン酸又はそのエステ
ルと、エチレングリコール、ジエチレングリコー
ル、テトラメチレングリコール、ネオペンチルグ
リコール等の如きグリコールとを重縮合させて得
ることのできるポリエステルである。
このポリエステルは、芳香族ジカルボン酸とグ
リコールとを直接重縮合させて得られる他、芳香
族ジカルボン酸ジアルキルエステルとグリコール
とをエステル交換反応させた後重縮合せしめる
か、あるいは芳香族ジカルボン酸のジエステルを
重縮合せしめる等の方法によつても得られる。
かかるポリマーの代表的なものとして、ポリエ
チレンテレフタレートやポリエチレン−2,6−
ナフタレート等が例示される。このポリマーはホ
モポリマーであつても良く、また第3成分を共重
合させたものでも良い。いずれにしても本発明に
於てはエチレンテレフタレート単位及び/又はエ
チレン−2,6−ナフタレート単位を80モル%以
上有するポリエステルが好ましい。
本発明の要点は、平均粒径の異なる二種類のル
チル型二酸化チタンをそれぞれ特定量ずつ添加す
ることにある。
粒子径の小さいルチル型二酸化チタンの平均粒
径は0.01〜0.30μmである必要があり、更には平
均粒径0.05〜0.27μmであることが好ましい。平
均粒径0.01μm未満では滑り性及び耐摩耗性の改
良効果が不充分となるので好ましくない。
逆に平均粒径が0.30μmを越えるとフイルム表
面の平滑性が低下し、かつドロツプアウト発生の
原因となる大粒子が多くなるので好ましくない。
またポリエステルに対する添加量は、0.01〜
1.0wt%とする必要があり、更には添加量は0.1〜
0.7wt%がより好ましい。添加量が0.01wt%未満
では滑り性及び耐摩耗性の改良効果が不充分とな
るので好ましくない。逆に添加量が1.0wt%を越
えるとフイルム表面の平滑性が低下しかつドロツ
プアウト発生の原因となる粗大粒子の混入が多く
なるので好ましくない。
粒子径の大きいルチル型二酸化チタンの平均粒
径は、0.31〜1.0μmの範囲が必要であり、更に
は、平均粒径0.35〜0.70μmがより好ましい。平
均粒径0.31μ未満では、滑り性及び耐摩耗性の改
良効果が不充分となるので好ましくない。逆に平
均粒径が1.0μmを越えるとフイルムの平滑性が低
下し、かつドロツプアウト発生の原因となる大粒
子が多くなるので好ましくない。
また該ポリエステルに対する添加量は0.002〜
0.5wt%とする必要があり、更には添加量は0.005
〜0.3wt%がより好ましい。添加量が0.002wt%未
満では滑り性及び耐摩耗性の改良効果が不充分と
なるので好ましくない。逆に添加量が0.5wt%を
越えるとフイルム表面の平滑性が低下し、かつド
ロツプアウト発生の原因となる粗大粒子の混入が
多くなるので好ましくない。
なお、滑り性及び耐摩耗性向上のためには、小
粒径のルチル型に二酸化チタンと大粒径のルチル
型二酸化チタンとの平均粒径の差は少なくとも
0.10μm以上であることが好ましい。
本発明に於て用いるルチル型二酸化チタンは先
に規定した条件を満せばその製法その他によつて
なんら制限されるものではない。また表面処理を
しないものを用いても良いし、表面処理を施した
ものを用いても良い。
体積形状係数に関しては、その値が0.1〜π/
6の範囲のものを用いるのが好ましい。
〔ただし、体積形状係数Fは次式で表される。
F=V/D3
式中、Vは粒子体積(μm3)、Dは粒子の投影
面に於ける最大径(μm)を示す。〕
体積形状係数は粒子の球状の程度を表わすもの
で、π/6に近ずく程球状に近ずく。
ここでいう平均粒径とは、島津製作所製遠心沈
降式粒度分布測定装置で測定された等価球径分布
に於ける積算(重量基準)50%の値を用いる。
なお、本発明で用いるルチル型二酸化チタンの
該ポリエステル中への添加方法としてはポリエス
テル製造工程に於ける任意の段階で添加すること
ができるが、好まくはエステル交換もしくはエス
テル化反応後重縮合前に添加する。またポリエス
テル製造工程への該粒子の添加方法はスラリー状
及び粉末状のいずれの状態で添加しても良いが、
通常ポリエステル製造工程に粒子を添加するに際
しては、自動化、計量化の容易さ、分散性の向
上、回収系の簡素化等の諸点から粒子をエチレン
グリコールのスラリーとして添加するのが一般的
である。粒子をスラリー状に分散させる際には、
できるだけ凝集の少ない一次粒子の状態に分散さ
せる必要がある。このように粒子を一次粒子の状
態に均一に分散させるためには必要に応じ、分
散、解砕、粉砕、分級、過等任意の方法を採用
することができる。
また所定の平均粒径の粒子を得るために、市販
粒子の粉砕、分級、過処理等の操作を採用して
もよい。該粒子をエチレングリコールスラリーと
して添加する際、スラリー中の2μm以上の粗大
粒子の割合が全粒子に対して0.5wt%以下にして
添加することが、ポリエステルフイルムとした際
のフイルム表面の粗大突起を低減させる上で特に
好ましい。
本発明では、必要であれば、粗大粒子数を増加
させず、かつフイルムの表面平滑性に対し悪影響
を及ぼさない程度の平均粒径及び含有量であれ
ば、ルチル型二酸化チタン以外に不活性微粒子を
併用しても良い。また上記不活性微粒子以外に反
応系で触媒残渣とリン化合物との反応により析出
させた微粒子を併用することができる。
本発明に於けるルチル型二酸化チタンを含有す
るポリエステルの重合に際しては公知の方法を採
用し得る。例えば重縮合反応の触媒として、アン
チモン化合物、ゲルマニウム化合物、チタン化合
物等の一種以上を用いて230〜300℃程度に加熱
し、減圧下エチレングリコールを留出させること
により反応を進行させる。
またフイルム化に際しては公知の製膜方法、例
えば270〜300℃でポリエステルチツプをフイルム
状に溶融押出後、40〜70℃で冷却固化し無定形シ
ートとした後、縦、横に逐次二軸延伸あるいは同
時二軸延伸し160〜240℃で熱処理する等の方法
(例えば特公昭30−5639号公報記載の方法)を採
用することができる。
<実施例>
以下本発明を実施例により更に詳細に説明する
が、本発明はその要旨を越えない限り以下の実施
例に限定されるものではない。なお種々の諸物性
及び特性は以下の如くして測定されたものであ
り、または定義される。実施例中、「部」及び
「%」はそれぞれ「重量部」及び「重量%」を意
味する。
(1) 平均粒径
島津製作所製遠心沈降式粒度分布測定装置
SA−CP3形によつて測定された等価球径分布
に於ける積算(重量基準)50%の値を用いる。
(2) フイルムの表面平滑性
JIS B0601−1976記載の方法によつた。測定
は、表面粗さ測定機モデルSE−3F(小坂研究所
製)を用いて行つた。触針径2μ、触針圧30mm
g、カツトオフ値0.08mm、測定長は25mmとし
た。測定は12点行ない、最大値、最小値をそれ
ぞれカツトし、10点の平均値で示した。
(3) 滑り性
摩擦係数で代表し、摩擦係数はASTM D−
1894に準じてテープ状のサンプルで測定できる
よう改良した方法で行つた。測定時のサンプル
の大きさは幅15mm、長さ150mmでその引張速度
は20mm/mmである。測定は温度21±2℃、湿度
65±5%の雰囲気下で行つた。
(4) 摩耗性
第1図に示す走行系でフイルムを500m長に
わたつて走行させ、で示した6mmφの硬質ク
ロム固定ピンに付着した摩耗量を目視評価し下
記の示すランク別に別けた。なおフイルム速度
は10m/mmとし、張力は約200g、θ=130°と
した。
ランクA:全く付着しない。
ランクB:若干付着する。
ランクC:付着量が多い。
(5) 粗大突起数
フイルム表面にアルミニユウムを蒸着し、干
渉顕微鏡を用いて二光速法にて測定した。測定
波長0.54μで4次以上の干渉縞を示す突起個数
を25cm2当りに換算して示した。
実施例 1
ジメチルテレフタレート100部とエチレングリ
コール60部及び酢酸マグネシユウム四水塩0.09部
を反応器にとり、加熱昇温するとともに、メタノ
ールを留去してエステル交換反応を行い、反応開
始から4時間を要して、230℃に昇温して、実質
的にエステル交換反応を終了した。ついで平均粒
径0.25μmの小粒子ルチル型二酸化チタンを予め
エチレングリコール中に分散し、分級、過処理
したものを0.3重量%と平均粒径0.45μmの大粒子
ルチル型二酸化チタンを予めエチレングリコール
中に分散し、分級、過処理したもの0.07重量%
を充分混合し添加した後、更にエチルアシツドフ
オスフエト0.04部、三酸化アンチモン0.035部を
加え4時間重縮合を行い極限粘度0.66のポリエチ
レンテレフタレート樹脂を得た。
該ポリマーを真空乾燥後、押出機を通して厚さ
160μmの非晶質の原反を作成し、ついで縦方向
に4倍、横方向に3.9倍延伸し、230℃で熱処理を
行つて厚さ10μmの二軸延伸ポリエチレンテレフ
タレートフイルムを得た。
得られたポリエステルフイルムの特性の第1表
に示す。第1表に示す如く得られたフイルムの表
面平滑性、滑り性、耐摩耗性及び粗大突起数共非
常に良好であり、磁気テープ用フイルムとして極
めて満足すべきレベルにあつた。
実施例 2
実施例1に於て使用した小粒子ルチル型二酸化
チタンの平均粒径0.25μmの代りに0.15μmのもの
を用い、添加量0.5重量%とした以外は実施例1
と同様の方法にて二軸延伸ポリエステルフイルム
を得た。得られたポリエステルフイルムの特性を
第1表に示す。得られたフイルムの特性は実施例
1と同等であつた。
比較例 1
平均粒径0.25μmのルチル型二酸化チタンを予
めエチレングリコール中に分散し、分級、過処
理したものを0.3重量%単独で添加する以外は実
施例1と同様の方法にて二軸延伸ポリエステルフ
イルムを得た。得られたポリエステルフイルムの
特性を第1表に示す。第1表に示す如く、得られ
たフイルムは耐摩耗性が劣つており、磁気テープ
の特性としては不充分である。
比較例 2
平均粒径0.45μmのルチル型二酸化チタンを予
めエチレングリコール中に分散し、分級、過処
理したものを0.07重量%単独で添加した以外は実
施例1と同様の方法にて二軸延伸ポリエステルフ
イルムを得た。得られたポリエステルフイルムの
特性を第1表に示す。第1表に示す如く、得られ
たフイルムは滑り性、耐摩耗性が劣つており、磁
気テープの特性としては不充分である。
比較例 3
平均粒径0.25μmの小粒子ルチル型二酸化チタ
ンを予めエチレングリコール中に分散し、分級、
過処理したものを1.5重量%と平均粒径0.45μm
の大粒子ルチル型二酸化チタンを予めエチレング
リコール中に分散し、分級、過したもの0.07重
量%を充分混合し添加した以外は実施例1と同様
の方法で二軸延伸ポリエステルフイルムを得た。
得られたポリエステルフイルムの特性を第1表に
示す。第1表に示す如く、得られたフイルムの滑
り性及び耐摩耗性は満足すべき特性を有している
が、粗大突起数の点が劣つており磁気テープ用と
しては不充分である。
比較例 4
平均粒径0.25μmの小粒子ルチル型二酸化チタ
ンを予めエチレングリコール中に分散し、分級、
過処理したものを0.3重量%と平均粒径0.45μm
の大粒子ルチル型二酸化チタンを予めエチレング
リコール中に分散し、分級、過処理したもの
0.7重量%を充分混合し添加した以外は実施例1
と同様の方法にて二軸延伸ポリエステルフイルム
を得た。得られたポリエステルフイルムの特性を
第1表に示す。第1表に示す如く、得られたフイ
ルムの滑り性及び耐摩耗性は満足すべき特性を有
しているが、粗大突起数の点が劣つており、磁気
テープ用としては不充分である。
<Industrial Application Field> The present invention relates to a biaxially oriented polyester film that is smooth and highly improved in slipperiness and abrasion resistance. <Prior art and problems to be solved> Polyester, represented by polyethylene terephthalate, is used for magnetic recording, capacitors, and packaging because of its excellent mechanical properties, electrical properties, chemical resistance, and dimensional stability. , for plate making, for electrical cutting,
It is used as a base material in many fields such as photographic film. When polyester film is used in these applications, the required properties differ depending on the application, but the universally required property is workability when handling the film, and in order to improve this, the slipperiness of the film, It is necessary to reduce the coefficient of friction. In addition, when a magnetic layer is coated on the surface of a film used as a base film for audio, video, and computer applications, which have been growing rapidly in recent years, and used as a magnetic recording medium, poor slipperiness and abrasion resistance may cause problems when coating the magnetic layer. Friction and abrasion between the coating roll and the film surface are severe, and scratches are likely to occur on the film surface. Furthermore, even after the film coated with the magnetic layer is processed into products such as audio, video, and computer tapes, there are many guide parts, recording/playback heads, etc. when pulling out from a reel or cassette, winding up, or performing other operations. Significant friction and wear occur during this process, and white powdery substances are generated due to abrasion of the surface of the polyester film, which is often a major cause of missing magnetic recording signals, that is, dropouts. In order to improve these properties required of polyester films, the most commonly employed method is to add inactive fine particles to polyester in order to impart irregularities to the film surface. This method can be broadly divided into two. One of them is the precipitation method, in which one or more metal compounds soluble in ethylene glycol, such as calcium compounds and lithium compounds, are added before and after the transesterification reaction or esterification reaction, and the polyester manufacturing process, especially the polymerization This is a method in which these are precipitated as fine particles insoluble in polyester during the process. Another method that is compared to the precipitation method is the addition method, in which calcium carbonate, calcium sulfate, kaolin, silica, titanium dioxide, etc. are added as they are or after being made into fine particles during polyester synthesis or molding. Generally speaking, the larger the particle size of the particles in polyester, the greater the effect of improving slipperiness, but for precision applications such as magnetic tape, especially video, the particles themselves are large, causing dropouts and other problems. Therefore, the particles contained in polyester need to be as fine as possible. However, at present, it is extremely difficult to simultaneously satisfy these contradictory characteristics. <Means for Solving the Problems> The present inventors have discovered that as the precision of magnetic recording tapes has been further promoted in recent years, improvements in the slipperiness and abrasion resistance of base tape films have been increasingly required. In view of the circumstances, we have discovered a film for base tapes that has a smooth film surface, excellent slipperiness and abrasion resistance, and has fewer defects such as dropouts, and has arrived at the present invention. That is, the gist of the present invention is that the average particle size is 0.01 to 0.30μ.
The present invention relates to a biaxially oriented polyester film characterized by containing 0.01 to 1.0 wt% of rutile titanium dioxide having an average particle diameter of 0.31 to 1.0 μm and 0.002 to 0.5 wt% of rutile titanium dioxide having an average particle size of 0.31 to 1.0 μm. The present invention will be explained in more detail below. Polyester as used in the present invention refers to aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid or esters thereof, and glycols such as ethylene glycol, diethylene glycol, tetramethylene glycol, neopentyl glycol, etc. It is a polyester that can be obtained by polycondensing. This polyester can be obtained by direct polycondensation of aromatic dicarboxylic acid and glycol, or by polycondensation after transesterification of aromatic dicarboxylic acid dialkyl ester and glycol, or by polycondensation after polycondensation of aromatic dicarboxylic acid dialkyl ester and glycol. It can also be obtained by methods such as polycondensation. Typical examples of such polymers include polyethylene terephthalate and polyethylene-2,6-
Examples include naphthalate. This polymer may be a homopolymer or may be a copolymer of a third component. In any case, in the present invention, polyesters having 80 mol% or more of ethylene terephthalate units and/or ethylene-2,6-naphthalate units are preferred. The key point of the present invention is to add specific amounts of two types of rutile titanium dioxide having different average particle sizes. The average particle size of the rutile titanium dioxide, which has a small particle size, must be 0.01 to 0.30 μm, and more preferably 0.05 to 0.27 μm. If the average particle size is less than 0.01 μm, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the average particle diameter exceeds 0.30 .mu.m, the smoothness of the film surface decreases and the number of large particles that cause dropouts increases, which is not preferable.
Also, the amount added to polyester is 0.01~
It needs to be 1.0wt%, and the amount added is 0.1~
0.7wt% is more preferable. If the amount added is less than 0.01 wt%, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the amount added exceeds 1.0 wt%, the smoothness of the film surface will decrease and coarse particles, which may cause dropouts, will increase, which is not preferable. The average particle size of rutile titanium dioxide having a large particle size needs to be in the range of 0.31 to 1.0 μm, and more preferably, the average particle size is 0.35 to 0.70 μm. If the average particle size is less than 0.31μ, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the average particle diameter exceeds 1.0 .mu.m, the smoothness of the film decreases and the number of large particles, which causes dropouts, increases, which is not preferable. The amount added to the polyester is 0.002~
It needs to be 0.5wt%, and the amount added is 0.005
~0.3wt% is more preferable. If the amount added is less than 0.002 wt%, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the amount added exceeds 0.5 wt%, the smoothness of the film surface will decrease and coarse particles, which may cause dropouts, will increase, which is not preferable. In addition, in order to improve slipperiness and wear resistance, the difference in average particle size between small particle size rutile titanium dioxide and large particle size rutile type titanium dioxide must be at least
It is preferably 0.10 μm or more. The rutile type titanium dioxide used in the present invention is not limited in any way by its manufacturing method or other aspects as long as it satisfies the conditions specified above. Further, a material without surface treatment may be used, or a material with surface treatment may be used. Regarding the volume shape factor, its value is 0.1 to π/
It is preferable to use one in the range of 6. [However, the volume shape factor F is expressed by the following formula. F=V/D In the formula, V is the particle volume (μm 3 ), and D is the maximum diameter (μm) of the particle in the projection plane. ] The volume shape coefficient represents the degree of sphericity of the particle, and the closer it is to π/6, the closer it becomes to spherical shape. The average particle diameter used here is the value of 50% of the cumulative (weight basis) in the equivalent spherical diameter distribution measured with a centrifugal sedimentation type particle size distribution measuring device manufactured by Shimadzu Corporation. The rutile titanium dioxide used in the present invention can be added to the polyester at any stage in the polyester production process, but preferably after the transesterification or esterification reaction and before the polycondensation. Add to. The particles may be added to the polyester manufacturing process in either slurry or powder form;
When adding particles to the polyester manufacturing process, it is common to add the particles as an ethylene glycol slurry for various reasons such as automation, ease of metering, improved dispersibility, and simplification of the recovery system. When dispersing particles into a slurry,
It is necessary to disperse it in the state of primary particles with as little agglomeration as possible. In order to uniformly disperse the particles in the state of primary particles in this manner, any method such as dispersion, crushing, pulverization, classification, and sieving may be employed as necessary. Further, in order to obtain particles having a predetermined average particle size, operations such as pulverization, classification, and overtreatment of commercially available particles may be employed. When adding the particles as an ethylene glycol slurry, it is important to keep the ratio of coarse particles of 2 μm or more in the slurry to 0.5 wt% or less based on the total particles to prevent coarse protrusions on the surface of the film when it is made into a polyester film. It is particularly preferable to reduce this. In the present invention, if necessary, inert fine particles other than rutile titanium dioxide can be used as long as the average particle size and content are such that the number of coarse particles does not increase and the surface smoothness of the film is not adversely affected. may be used together. In addition to the above-mentioned inert fine particles, fine particles precipitated by a reaction between a catalyst residue and a phosphorus compound in the reaction system can be used in combination. In the present invention, known methods can be employed for polymerizing the polyester containing rutile titanium dioxide. For example, as a catalyst for the polycondensation reaction, one or more of antimony compounds, germanium compounds, titanium compounds, etc. are used and heated to about 230 to 300°C, and the reaction is allowed to proceed by distilling off ethylene glycol under reduced pressure. In addition, when making a film, a known film forming method is used, for example, polyester chips are melted and extruded into a film at 270 to 300°C, cooled and solidified at 40 to 70°C to form an amorphous sheet, and then sequentially biaxially stretched vertically and horizontally. Alternatively, a method such as simultaneous biaxial stretching and heat treatment at 160 to 240° C. (for example, the method described in Japanese Patent Publication No. 30-5639) can be adopted. <Examples> The present invention will be explained in more detail by Examples below, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. In addition, various physical properties and characteristics were measured or defined as follows. In the examples, "parts" and "%" mean "parts by weight" and "% by weight," respectively. (1) Average particle size Centrifugal sedimentation type particle size distribution measuring device manufactured by Shimadzu Corporation
Use the integrated value (weight basis) of 50% in the equivalent sphere diameter distribution measured by the SA-CP3 type. (2) Surface smoothness of film The method described in JIS B0601-1976 was used. The measurement was performed using a surface roughness measuring machine model SE-3F (manufactured by Kosaka Institute). Stylus diameter 2μ, stylus pressure 30mm
g, the cutoff value was 0.08 mm, and the measurement length was 25 mm. Measurements were made at 12 points, the maximum and minimum values were cut out, and the average value of the 10 points was shown. (3) Sliding property Represented by the friction coefficient, which is ASTM D-
1894, using a method modified to allow measurement using tape-shaped samples. The size of the sample at the time of measurement was 15 mm in width and 150 mm in length, and the tensile speed was 20 mm/mm. Measurements were made at a temperature of 21±2℃ and humidity.
The test was carried out in an atmosphere of 65±5%. (4) Abrasion property The film was run over a length of 500 m using the running system shown in Figure 1, and the amount of wear attached to the 6mmφ hard chrome fixing pin was visually evaluated and classified into the ranks shown below. The film speed was 10 m/mm, the tension was approximately 200 g, and θ = 130°. Rank A: No adhesion at all. Rank B: Slight adhesion. Rank C: Large amount of adhesion. (5) Number of coarse protrusions Aluminum was deposited on the surface of the film and measured by the two-light velocity method using an interference microscope. The number of protrusions showing interference fringes of fourth or higher order at a measurement wavelength of 0.54μ is calculated per 25cm 2 and shown. Example 1 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol, and 0.09 parts of magnesium acetate tetrahydrate were placed in a reactor, and the temperature was raised while methanol was distilled off to perform a transesterification reaction, which took 4 hours from the start of the reaction. Then, the temperature was raised to 230°C to substantially complete the transesterification reaction. Next, 0.3% by weight of small particles of rutile titanium dioxide with an average particle size of 0.25 μm, which were previously dispersed in ethylene glycol, classified and overtreated, and large particles of rutile titanium dioxide, with an average particle size of 0.45 μm, were dispersed in ethylene glycol in advance. Dispersed, classified and overtreated 0.07% by weight
After thoroughly mixing and adding, 0.04 part of ethyl acid phosphate and 0.035 part of antimony trioxide were further added and polycondensation was carried out for 4 hours to obtain a polyethylene terephthalate resin with an intrinsic viscosity of 0.66. After drying the polymer in vacuum, it is passed through an extruder to a thickness of
A 160 μm thick amorphous original film was prepared, then stretched 4 times in the machine direction and 3.9 times in the cross direction, and heat treated at 230° C. to obtain a biaxially stretched polyethylene terephthalate film with a thickness of 10 μm. Table 1 shows the properties of the obtained polyester film. As shown in Table 1, the surface smoothness, slipperiness, abrasion resistance, and number of coarse protrusions of the obtained film were very good, and were at an extremely satisfactory level as a film for magnetic tape. Example 2 Example 1 except that the average particle diameter of the small rutile titanium dioxide used in Example 1 was 0.15 μm instead of 0.25 μm, and the amount added was 0.5% by weight.
A biaxially stretched polyester film was obtained in the same manner as above. The properties of the obtained polyester film are shown in Table 1. The properties of the obtained film were similar to those of Example 1. Comparative Example 1 Biaxial stretching was carried out in the same manner as in Example 1, except that 0.3% by weight of rutile titanium dioxide having an average particle size of 0.25 μm was previously dispersed in ethylene glycol, classified and overtreated. A polyester film was obtained. The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, the obtained film had poor abrasion resistance and was insufficient in properties as a magnetic tape. Comparative Example 2 Biaxial stretching was carried out in the same manner as in Example 1, except that 0.07% by weight of rutile titanium dioxide having an average particle size of 0.45 μm was previously dispersed in ethylene glycol, classified, and overtreated. A polyester film was obtained. The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, the obtained film had poor slip properties and abrasion resistance, and was insufficient as a magnetic tape characteristic. Comparative Example 3 Small particle rutile titanium dioxide with an average particle size of 0.25 μm was dispersed in ethylene glycol in advance, classified,
1.5% by weight of over-treated material and average particle size 0.45μm
A biaxially stretched polyester film was obtained in the same manner as in Example 1, except that 0.07% by weight of large-particle rutile titanium dioxide was previously dispersed in ethylene glycol, classified and filtered, and then added after thorough mixing.
The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, although the obtained film has satisfactory properties in terms of slipperiness and abrasion resistance, it is inferior in the number of coarse protrusions and is insufficient for use in magnetic tapes. Comparative Example 4 Small particle rutile titanium dioxide with an average particle size of 0.25 μm was dispersed in ethylene glycol in advance, classified,
0.3% by weight of over-treated material and average particle size 0.45μm
Large-particle rutile titanium dioxide is pre-dispersed in ethylene glycol, classified and overtreated.
Example 1 except that 0.7% by weight was thoroughly mixed and added.
A biaxially stretched polyester film was obtained in the same manner as above. The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, although the obtained film has satisfactory properties in terms of slipperiness and abrasion resistance, it is inferior in the number of coarse protrusions, making it unsatisfactory for use in magnetic tapes.
【表】
<発明の効果>
以上詳述した如く、本発明のフイルムは特定粒
径の小粒子ルチル型二酸化チタンと特定粒径の大
粒子ルチル型二酸化チタンをそれぞれ特定量づつ
含有して成るフイルムであり、磁気テープ用ポリ
エステルフイルムとして要求される表面平滑性、
滑り性及び耐摩耗性に優れ、磁気テープ製造時及
び磁気テープ使用時に於ける金属ロール面を走行
する際生じる白粉発生量が著しく少ない特徴を有
する。併せて、ビデオテープ用として用いた場合
ドロツプアウト発生の原因となる粗大突起数の著
しく少ない特性を有していることから磁気テープ
用、蒸着用、コンデンサー用、包装用等の広範な
用途に利用することができる。[Table] <Effects of the Invention> As detailed above, the film of the present invention is a film containing specific amounts of small-particle rutile titanium dioxide having a specific particle size and large-particle rutile titanium dioxide having a specific particle size. The surface smoothness required for a polyester film for magnetic tape,
It has excellent slip properties and abrasion resistance, and has the characteristic that the amount of white powder generated when running on a metal roll surface during magnetic tape production and use is extremely small. In addition, it has a characteristic of extremely low number of large protrusions that can cause dropouts when used for video tapes, so it can be used for a wide range of applications such as magnetic tapes, vapor deposition, capacitors, and packaging. be able to.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は耐摩耗性を評価する走行系を示す概略
図、Iは6mmφの硬質クロム固定ピン、はテン
シヨンメーターを示しθは130°である。
FIG. 1 is a schematic diagram showing a running system for evaluating wear resistance, where I is a hard chrome fixing pin of 6 mmφ, symbol is a tension meter, and θ is 130°.