JPH0458415A - Manufacture of heat-resistant insulated coil - Google Patents
Manufacture of heat-resistant insulated coilInfo
- Publication number
- JPH0458415A JPH0458415A JP16420490A JP16420490A JPH0458415A JP H0458415 A JPH0458415 A JP H0458415A JP 16420490 A JP16420490 A JP 16420490A JP 16420490 A JP16420490 A JP 16420490A JP H0458415 A JPH0458415 A JP H0458415A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic
- silicone
- heat
- conductor
- adhesive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 45
- 239000010445 mica Substances 0.000 claims abstract description 44
- 229910052618 mica group Inorganic materials 0.000 claims abstract description 44
- 239000000853 adhesive Substances 0.000 claims abstract description 26
- 230000001070 adhesive effect Effects 0.000 claims abstract description 26
- 239000004020 conductor Substances 0.000 claims abstract description 25
- 239000003973 paint Substances 0.000 claims abstract description 21
- 239000011256 inorganic filler Substances 0.000 claims abstract description 18
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 18
- 239000012779 reinforcing material Substances 0.000 claims abstract description 7
- 238000004804 winding Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 5
- 230000033558 biomineral tissue development Effects 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 14
- -1 alkyl silicate Chemical compound 0.000 abstract description 10
- 238000010304 firing Methods 0.000 abstract description 8
- 239000000377 silicon dioxide Substances 0.000 abstract description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052802 copper Inorganic materials 0.000 abstract description 5
- 239000010949 copper Substances 0.000 abstract description 5
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 239000004744 fabric Substances 0.000 abstract description 4
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract description 2
- 239000013464 silicone adhesive Substances 0.000 abstract 2
- 238000009413 insulation Methods 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000835 fiber Substances 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 8
- 239000002759 woven fabric Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000761389 Copa Species 0.000 description 2
- 241001251094 Formica Species 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052634 enstatite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 239000003779 heat-resistant material Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- XLUBVTJUEUUZMR-UHFFFAOYSA-B silicon(4+);tetraphosphate Chemical compound [Si+4].[Si+4].[Si+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XLUBVTJUEUUZMR-UHFFFAOYSA-B 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Insulated Conductors (AREA)
- Processes Specially Adapted For Manufacturing Cables (AREA)
- Insulating Of Coils (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は1例えば高速増殖炉における液体ナトリウムl
!環用の電磁ポンプの様に、300℃以上の高温で用い
られる電気機器の耐熱絶縁線輪の製造方法に関するもの
である。Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention provides 1
! The present invention relates to a method for manufacturing heat-resistant insulated coils for electrical equipment used at high temperatures of 300°C or higher, such as electromagnetic pumps for rings.
(従来の技術)
300℃以上の高温で使用できる耐熱絶縁線輪は、殆ど
知られていない、MIケーブル(古河電工社の商品)の
様に、導体と金属シースの間に酸化マグネシウムの粉を
充填した耐熱絶縁電線が知られているが、これは金属シ
ースがあるために、渦電流対策が必要であり、しかも導
体占積率が低くなるので、容量の大きい電気機器の線輪
tこは不向きであった。(Prior technology) Heat-resistant insulated wire rings that can be used at high temperatures of 300°C or higher are little known, such as the MI cable (product of Furukawa Electric Co., Ltd.), which uses magnesium oxide powder between the conductor and the metal sheath. Filled heat-resistant insulated wires are known, but because they have a metal sheath, eddy current countermeasures are required, and the conductor space factor is low, so they are not suitable for wire rings in large-capacity electrical equipment. It was not suitable.
また、特公昭62−1241号公報や特公昭62−12
42号公報には、コイルの線間空隙部分およびコイルの
外表面部の少なくとも一部にシリコーン系樹脂または、
そのシリコーン系樹脂と高融点無機粉末を充填および/
または被覆した後焼成して無機質層を形成したことを特
徴とする耐熱絶縁コイルが記載されている。In addition, Special Publication No. 62-1241 and Special Publication No. 62-12
No. 42 discloses that silicone resin or
Filled with silicone resin and high melting point inorganic powder and/or
Alternatively, a heat-resistant insulated coil characterized in that an inorganic layer is formed by coating and firing is described.
さらに、特公昭62−57086号公報や特公昭62−
57087号公報には、導体上に無機絶縁層または使相
中の異常時等の高温時に、無機物化する耐熱絶縁電線を
巻付は加工したコイルを固定する方法の耐熱絶縁コイル
装置の製法が記載されている。In addition, Japanese Patent Publication No. 62-57086 and Special Publication No.
Publication No. 57087 describes a method for manufacturing a heat-resistant insulated coil device in which a coil is wrapped with an inorganic insulating layer on a conductor or a heat-resistant insulated wire that turns into an inorganic substance at high temperatures such as during abnormal phase use and fixed. has been done.
(発明が解決しようとする課題)
これら公知例に記載されている耐熱絶縁線輪は、表面に
粉末状の無機質層が形成されるため、長期間使用される
と露出している粉末状の無機質層が徐々に粉末化し、ぼ
ろぼろと脱落し、崩壊していくので、長期間安定して用
いることができない。また、あまり厚い無機質層を形成
できないため、絶縁破壊電圧が低く、高電圧用の機器に
は用いることができないという欠点があった。このよう
に高電圧の機器の場合、マイカテープや絶縁テープを無
機ポリマー(無機化し得るポリマー)や無機質の接着剤
によって、加熱加圧し成形した後、焼成し完全に無機化
した絶縁を形成することが考えられる。(Problem to be Solved by the Invention) The heat-resistant insulated wire wheels described in these known examples have a powdery inorganic layer formed on the surface, so when used for a long period of time, the powdery inorganic layer becomes exposed. The layer gradually turns into powder, falls off, and disintegrates, so it cannot be used stably for a long period of time. In addition, since a very thick inorganic layer cannot be formed, the dielectric breakdown voltage is low and it cannot be used for high voltage equipment. In the case of high-voltage equipment like this, mica tape or insulating tape is heated and pressed using an inorganic polymer (polymer that can be made inorganic) or an inorganic adhesive to form it, and then baked to form completely inorganic insulation. is possible.
しかし、この様に全体を接着剤で固めた絶縁は。However, insulation that is entirely glued together like this.
起動時や停止時に、導体と絶縁層間の熱膨張率の相違に
より、熱応力が発生し、このヒートサイクルが繰り返さ
れると疲労により絶縁にクラックが発生し、絶縁低下を
来たす。特に、大容量機用の大形巻線やより高温で使用
される機器でこのような現象が発生し易い。During startup and shutdown, thermal stress is generated due to the difference in thermal expansion coefficient between the conductor and the insulating layer, and when this heat cycle is repeated, cracks occur in the insulation due to fatigue, resulting in a decrease in insulation. This phenomenon is particularly likely to occur in large windings for large-capacity machines and in equipment used at higher temperatures.
したがって、高速増殖炉の液体ナトリウムの循環用の、
液体ナトリウム浸漬形無冷却電磁ポンプ等の様な300
℃以上の高温で使用される絶縁線輪は、300℃以上の
高温で長期間安定して使用できる高い耐熱性が必要であ
り、また、導体占積率を高くして、絶縁線輪自体および
電磁ポンプの外形を小さくすることが求められている。Therefore, for the circulation of liquid sodium in fast breeder reactors,
300 such as liquid sodium immersion type non-cooled electromagnetic pump, etc.
Insulated wire rings used at high temperatures of 300°C or higher must have high heat resistance so that they can be used stably for long periods of time at high temperatures of 300°C or higher. There is a need to reduce the external size of electromagnetic pumps.
大容量機においてはヒートサイクルによって絶縁劣化の
起きない高電圧の絶縁線輪が必要となる。Large-capacity machines require high-voltage insulated wire rings that do not deteriorate due to heat cycles.
本発明は、このような要望に応えるためになされたもの
で、300℃以上の高温で、長期間安定して使用でき、
ヒートサイクルによって絶縁劣化の起きない高電圧にも
用いることができる耐熱絶縁線輪の製造方法を提供する
ことを目的としている。The present invention was made in response to these demands, and can be used stably for a long period of time at high temperatures of 300°C or higher.
It is an object of the present invention to provide a method for manufacturing a heat-resistant insulated wire ring that can be used even at high voltages without causing insulation deterioration due to heat cycles.
(課題を解決するための手段)
本発明は、導体に無機化シリコーンまたは無機塗料を塗
布しながら、無機質の補強材を、無機化シリコーンまた
は無機塗料から成る接着剤で貼り合わせて成るマイカテ
ープを巻回し、 300℃以上の温度で焼成し無機化
した後、この上から、機械的強度が大きく耐熱性に優れ
かつ接着剤を有しない無機質の絶縁テープを巻回して耐
熱絶縁線輪を製造するものである。(Means for Solving the Problems) The present invention provides a mica tape in which a conductor is coated with inorganic silicone or inorganic paint, and an inorganic reinforcing material is bonded to the conductor using an adhesive made of inorganic silicone or inorganic paint. After winding and inorganicizing the wire by firing at a temperature of 300°C or higher, a heat-resistant insulated wire ring is manufactured by winding an inorganic insulating tape with high mechanical strength, excellent heat resistance, and no adhesive on top of this. It is something.
前述の無機化シリコーンまたは無機塗料には、無機質の
充填剤を加えても良い。An inorganic filler may be added to the above-mentioned inorganic silicone or inorganic paint.
ここで、無機質の充填剤としては、アルミナ(xx20
3)、マグネシア(MgO)、シリカ(S10□)、ジ
ルコニア(ZrO2) 、ステアタイト(MgSiO3
) tクレーカオリン、マイカ粉、高融点ガラスフリッ
ト等が含まれる。これら充填剤の粒径は、無機化シリコ
ーンと混合しやすく、塗り易くするために、平均粒径1
0μs以下が好ましい。Here, as the inorganic filler, alumina (xx20
3), magnesia (MgO), silica (S10□), zirconia (ZrO2), steatite (MgSiO3
) Includes clay kaolin, mica powder, high melting point glass frit, etc. The average particle size of these fillers is 1
The time is preferably 0 μs or less.
また、無機化シリコーンとは、高温で焼成することによ
り無機化するシリコーンの総称であり。Inorganic silicone is a general term for silicones that become mineralized by firing at high temperatures.
例えばアルキルシリケート系のシリコーンAY49−2
08(東しシリコーンの社商品名)、無機充填剤人ボロ
シロキサン系塗料S M R−109(昭和電線電纜社
の商品名)やメチルポリシロキサンから成る感圧接着剤
YR3286(東芝シリコーン社の商品名)等が含まれ
る。For example, alkyl silicate silicone AY49-2
08 (trade name of Toshiba Silicone Co., Ltd.), inorganic filler borosiloxane paint S M R-109 (trade name of Showa Denshin Co., Ltd.), and pressure-sensitive adhesive YR3286 (trade name of Toshiba Silicone Co., Ltd.) made of methylpolysiloxane. name) etc.
さらに、無機塗料としてはモノリン酸アルミニウム、リ
ン酸珪素などのリン酸塩、コロイダルシリカやコロイダ
ルアルミナなどが含まれる。Furthermore, inorganic paints include phosphates such as aluminum monophosphate and silicon phosphate, colloidal silica, and colloidal alumina.
無機質の充填剤を無機化シリコーンに多く配合すれば一
般に熱的に安定となるし、価格も安くなる。しかし、充
填剤自身は焼成により結合しないので、焼成することに
より強固な結合を形成する程度の無機化シリコーンを配
合する必要がある。If a large amount of inorganic filler is added to the inorganized silicone, it will generally become more thermally stable and will be cheaper. However, since the filler itself does not bond by firing, it is necessary to blend inorganic silicone to the extent that it forms a strong bond by firing.
一方、無機質の充填剤と無機化シリコーンの配合化は、
塗り難くならず、かつ焼成後脆くならない様に選択する
ことが必要である。通常は、無機質の充填剤含有率が1
0〜90重量%程度がよい。On the other hand, the combination of inorganic filler and inorganic silicone
It is necessary to select a material that is not difficult to apply and does not become brittle after firing. Usually, the inorganic filler content is 1
It is preferably about 0 to 90% by weight.
また、マイカテープの補強材および耐熱性を有し接着剤
を有しない無機質の絶縁テープとしては、アルミナ、ア
ルミナ・ボリア・シリカ(例えば米国スリーエムの商品
名ではネクステル)、シリカなどの耐熱性があり機械的
強度の大きい繊維を織った織布または不織布などを使用
する。織布の場合、絶縁層の熱伝導性を良くするために
、繊維の密度を高く織ったものが好ましい。一般にマイ
カテープの補強材用には30〜40〇−程度の薄いテー
プの方がマイカ層を占積率を上げ、単位厚さ当りの絶縁
破壊電圧を大きくとれ絶縁設計上有利であり、表面に巻
く機械的強度が大きく耐熱性に優れかつ接着剤を有しな
い無機質の絶縁テープは、機械的強度が必要なので、1
00〜500ρ程度の比較的厚いテープが適している。In addition, heat-resistant materials such as alumina, alumina-boria-silica (for example, 3M's product name Nextel), and silica are used as reinforcing materials for mica tape and heat-resistant inorganic insulating tapes that do not have adhesives. Use woven or non-woven fabric made from fibers with high mechanical strength. In the case of woven fabric, it is preferable that the fabric be woven with high fiber density in order to improve the thermal conductivity of the insulating layer. In general, for mica tape reinforcing materials, tapes with a thickness of about 30 to 400 mm are advantageous in terms of insulation design because they increase the space factor of the mica layer and provide a large dielectric breakdown voltage per unit thickness. Inorganic insulating tape, which has high mechanical strength and excellent heat resistance and does not contain adhesive, requires mechanical strength, so 1.
A relatively thick tape of about 00 to 500 ρ is suitable.
なお、絶縁テープ端末の緩み止めは、アルミナ。In addition, alumina is used to prevent the end of the insulating tape from loosening.
アルミナ・ポリ力・シリカ、シリカなどの無機質繊維か
ら成る糸で押え巻くか、または絶縁テープの端末のみ前
述した無機化シリコーンもしくは無機塗料を塗布し、高
温焼成処理で接着させる。It is pressed and wrapped with a thread made of inorganic fibers such as alumina, polysilica, silica, or the ends of the insulating tape are coated with the above-mentioned inorganic silicone or inorganic paint, and then bonded by high-temperature baking treatment.
(作用)
ここで、マイカテープを使用するのは、マイカは耐熱性
が高く、また、絶縁破壊電圧や耐電圧性に優れているた
めである。導体近傍にマイカテープを使用したのは、導
体近傍の方が電界が高く、耐電圧性の高い材料を置くこ
とにより、寿命を長くすることができるからである。(Function) The mica tape is used here because mica has high heat resistance and is also excellent in dielectric breakdown voltage and voltage resistance. The reason why mica tape was used near the conductor is that the electric field is higher near the conductor, and by placing a material with high voltage resistance, the life can be extended.
マイカテープは、電気的特性は優れているが機械的強度
にやや劣るので、機械的強度の高い耐熱性のある無機質
の絶縁テープを機械的強度の劣るマイカテープの上から
巻回し、押えることによって、マイカテープがばらばら
に崩れてしまうのを防ぐことができる。Mica tape has excellent electrical properties but is slightly inferior in mechanical strength, so it can be made by wrapping a heat-resistant inorganic insulating tape with high mechanical strength over the mica tape, which has poor mechanical strength, and pressing it down. This can prevent the mica tape from falling apart.
無機質の充填剤を含む無機化シリコーン、または無機塗
料を塗りながら、マイカテープを巻回し焼成するのは、
導体とマイカテープ間およびマイカテープ同士をお互い
に接着することにより、強固な絶縁層を形成することが
できるからである。Wrapping and firing mica tape while applying inorganic silicone containing an inorganic filler or inorganic paint is as follows.
This is because a strong insulating layer can be formed by adhering the conductor and the mica tape and the mica tapes to each other.
マイカは、襞間性に富んでいるため、機器の運転・停止
に伴うヒートサイクルにょる熱応力をマイカ層がずれる
ことにより吸収してしまう。したがって、無機化シリコ
ーンまたは無機塗料により焼成し、強固に固めてクラッ
クが発生することはない。Since mica has excellent interfold properties, the thermal stress caused by the heat cycle associated with the operation and shutdown of equipment is absorbed by the displacement of the mica layer. Therefore, the inorganic silicone or inorganic paint is baked and solidified to prevent cracks from occurring.
一方、表面に巻回した無機質の絶縁テープは、接着剤が
塗布されてないため、ヒートサイクルによる熱応力を自
身が変形することによって吸収してしまう。したがって
、絶縁テープが切断するようなことは起きない。ただし
、この様に接着剤を有しない絶縁テープを表面に巻回す
ると、絶縁テープが緩むので前述した様な緩み止めが必
要となる。On the other hand, since the inorganic insulating tape wound on the surface is not coated with adhesive, it absorbs thermal stress caused by heat cycles by deforming itself. Therefore, the insulating tape will not be cut. However, when an insulating tape without an adhesive is wound around the surface in this way, the insulating tape becomes loose, so a loosening prevention measure as described above is required.
本発明において、無機質の補強材を、無機化シリコーン
または無機塗料から成る接着剤で貼り合わせて成るマイ
カテープを巻回した後、−旦300℃以上の温度で焼成
し無機化するのは、前記マイカテープの接着剤やマイカ
テープ巻回時に塗布する無機化シリコーンまたは無機塗
料を300”C以上の高温で焼成する際に発生する揮発
性成分が、この上から巻回される機械的強度が大きく耐
熱性に優れかつ接着剤を有しない無機質の絶縁テープに
付着すると、無機質の絶縁テープの機械的強度が著しく
低下するためである。In the present invention, after winding a mica tape made by bonding an inorganic reinforcing material with an adhesive made of inorganic silicone or an inorganic paint, the process of inorganicizing it by baking it at a temperature of 300° C. or higher is as follows. Volatile components generated when baking the mica tape adhesive and the inorganic silicone or inorganic paint applied when winding the mica tape at a high temperature of 300"C or higher increase the mechanical strength of the mica tape that is wound over it. This is because if it adheres to an inorganic insulating tape that has excellent heat resistance and does not have an adhesive, the mechanical strength of the inorganic insulating tape will be significantly reduced.
なお、本発明の耐熱絶縁線輪において、使用温度が30
0℃程度の高温で使用される場合は、マイカとしては硬
質マイカより、軟質マイカが良い。In addition, in the heat-resistant insulated wire of the present invention, the operating temperature is 30
When used at a high temperature of about 0° C., soft mica is better than hard mica.
何故なら、硬質マイカの方が軟質マイカより結晶水放出
温度が低く、耐熱性が低いがらである。第3図にマイカ
巻線縁の高温での1.5kV/mmでの課電寿命試験結
果の一例を示すが、硬質マイカテープ巻絶縁Aの方が硬
質マイカ巻絶縁Bに比べ高温で課電寿命特性が優れてい
ることが分る。This is because hard mica has a lower crystal water release temperature and lower heat resistance than soft mica. Figure 3 shows an example of the life test results of energizing at 1.5 kV/mm at high temperatures on the edges of mica windings. Hard mica tape-wound insulation A is more energized at high temperatures than hard mica-wound insulation B. It can be seen that the life characteristics are excellent.
さらに、本発明で使用される導体としては、絶縁被覆の
ない導体そのもので良く、また絶縁被覆のある絶縁電線
でも良い。Furthermore, the conductor used in the present invention may be a conductor itself without insulation coating, or may be an insulated wire with insulation coating.
(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.
実施例1
第1図において、導体1は、ニッケルメッキをしたアル
ミナ分散強化銅2(グリデンメタル社の商品名Gρid
copA L−15)から成る平角線に、厚さ507
aのシリカクロスと厚さ100趨の軟質無焼成集成マイ
カシートとを少量のシリコーン(例えば東芝シリコーン
社の商品名Y R3286)を接着剤として貼合わせて
成るマイカテープ3を巻回したもので、この導体1を、
内径400mm 、外径goo+mm 。Example 1 In FIG. 1, a conductor 1 is made of nickel-plated alumina dispersion-strengthened copper 2 (product name: Gρid, manufactured by Gliden Metal Co., Ltd.).
copA L-15) with a thickness of 507
A mica tape 3 is wound around the silica cloth (a) and a soft unfired laminated mica sheet with a thickness of 100 mm and a small amount of silicone (for example, Toshiba Silicone Co., Ltd.'s product name YR3286) is used as an adhesive. This conductor 1,
Inner diameter 400mm, outer diameter goo+mm.
厚さ40mmとなる様にパンケーキ状に巻いた後、無機
質充填剤を含むアルキルシリケート系の無機化シリコー
ン(東しシリコーン社の商品名AY49−208)やア
ルミナ等の無機質の接着剤4等を用いて成形する。さら
に、この上から厚さ50μsのアルミナ織布を厚さ10
0tInの無焼成軟質集成マイカに裏打補強し、これに
上記の無機質充填剤を含む無機化シリコーン(東しシリ
コーン社の商品名AY49−208)と無機質填剤人ポ
ロシロキサン系樹脂塗料(昭和電線電纜社の商品名S
M R−1069)とシリコーン感圧接着剤(東芝シリ
コーン社の商品名YR3286)とを塗布してなるマイ
カテープ5を、上記無機質充填剤を含む無機化シリコー
ン(東しシリコーン社の商品名A Y 49−208)
を塗布しながら172重ね巻で3回巻回した。この外側
に離型用のポリテトラフルオロエチレンテープ(図示し
ない)を巻き、鉄板を当てた後、熱収縮性ポリエステル
テープ(フィルム状、チューブ状、または織布状のもの
でもよい)を巻き、これを80℃で1時間、130℃で
2時間、150℃で2時間、さらに180℃で15時間
加熱して硬化させた。この後、前記熱収縮性ポリエステ
ルテープ、鉄板、a型用のポリテトラフルオロエチレン
テープを除去し、この線輪を空気中で300℃で8時間
、600℃で8時間焼成し、耐熱絶縁線輪を得た。After rolling it into a pancake shape to a thickness of 40 mm, apply an inorganic adhesive such as alkyl silicate-based inorganic silicone containing an inorganic filler (trade name AY49-208 of Toshi Silicone Co., Ltd.) or alumina. Use to mold. Furthermore, on top of this, a 50μs thick alumina woven fabric was added to a thickness of 10μs.
0tIn unfired soft laminated mica is backed and reinforced, and inorganized silicone containing the above-mentioned inorganic filler (trade name AY49-208 of Toshi Silicone Co., Ltd.) and an inorganic filler polysiloxane resin paint (Showa Cable Electric Wire) are used. Company product name S
A mica tape 5 made by applying M R-1069) and a silicone pressure-sensitive adhesive (trade name YR3286 of Toshiba Silicone Co., Ltd.) is coated with inorganic silicone containing the above-mentioned inorganic filler (trade name A Y of Toshiba Silicone Co., Ltd.). 49-208)
It was wound three times with 172 layers while applying the same amount. Wrap polytetrafluoroethylene tape (not shown) for mold release on the outside of the mold, apply a steel plate to it, then wrap heat-shrinkable polyester tape (which may be in the form of a film, tube, or woven fabric). was cured by heating at 80°C for 1 hour, 130°C for 2 hours, 150°C for 2 hours, and further at 180°C for 15 hours. After that, the heat-shrinkable polyester tape, the iron plate, and the polytetrafluoroethylene tape for type A were removed, and the wire was fired in air at 300°C for 8 hours and at 600°C for 8 hours to form a heat-resistant insulated wire. I got it.
上記の製造過程において、加熱硬化時の加圧は、熱収縮
性ポリエステルテープの加熱収縮によって行われ、さら
に、高温での加熱焼成により絶縁層中に含まれる有機質
成分は飛散焼失して無機化(セラミック化)し、完全に
無機質の絶縁層が形成された。さらに、この上から接着
剤を有しない無機質の絶縁テープとして、厚さ300連
の接着剤を有しないアルミナ繊維織布からなる絶縁テー
プ6を1/2重ね巻きで1回巻回した。然る後、絶縁テ
ープの端末が緩まない様に、アルミナ繊維からなる糸を
前記絶縁テープの巻回端末上から押え付けながら巻回し
、絶縁層を形成した。In the above manufacturing process, the pressure applied during heat curing is performed by heat shrinking the heat shrinkable polyester tape, and the organic components contained in the insulating layer are scattered and burned away by heating and baking at high temperatures, becoming inorganic ( (ceramic), and a completely inorganic insulating layer was formed. Furthermore, a 300-thick insulating tape 6 made of an alumina fiber woven fabric without an adhesive was wound once as an inorganic insulating tape without an adhesive over this in a 1/2 overlap. Thereafter, an insulating layer was formed by winding the insulating tape while pressing a thread made of alumina fiber onto the wound end of the insulating tape so that the end of the insulating tape did not come loose.
一方比較例1として、前述した実施例1に従いマイカテ
ープ4を巻き終わった後、この上から接着剤を有しない
無機質の絶縁テープとして、厚さ300虜の接着剤を有
しないアルミナ繊維織布から成る絶縁テープ6を1/2
重ね巻きで1回巻回した。On the other hand, as Comparative Example 1, after wrapping the mica tape 4 according to the above-mentioned Example 1, an inorganic insulating tape without adhesive was applied on top of the mica tape 4 using alumina fiber woven fabric without adhesive with a thickness of 300 mm. Insulating tape 6 consisting of 1/2
It was wound once in layers.
然る後、絶縁テープの端末が緩まないように、アルミナ
繊維から成る糸を前記絶縁テープの巻回端末上から押え
付けながら巻回し、絶縁層髪形成した。Thereafter, in order to prevent the ends of the insulating tape from loosening, threads made of alumina fibers were pressed onto the ends of the insulating tape and wound to form an insulating layer.
また比較例2として、前述した実施例1に従いマイカテ
ープ4を巻き終わった後、この上から前記接着剤を有し
ない無機質の絶縁テープ化りに、前記無機質充填剤を含
む無機化シリコーン(東しシリコーン社の商品名A Y
49−208)と無機質填剤人ボロシロキサン系樹脂
塗料(昭和電線電纜社の商品名S M R−109)を
塗布し乾燥して成るプリプレグ状の絶縁テープを無機質
充填剤を含む無機化シリコーン(東しシリコーン社の商
品名AY49−208)を塗布しながら前述したマイカ
テープ4の上から1/2重ね巻で1回巻回し、絶縁層を
形成した。As Comparative Example 2, after wrapping the mica tape 4 in accordance with Example 1 described above, an inorganic insulating tape without the adhesive was coated with inorganic silicone (Togashi) containing the inorganic filler. Silicone company product name AY
49-208) and an inorganic filler borosiloxane-based resin paint (trade name SMR-109 of Showa Denshin Co., Ltd.) is applied and dried, and a prepreg-like insulating tape is coated with inorganic silicone (49-208) containing an inorganic filler. While applying AY49-208 (trade name, manufactured by Toshi Silicone Co., Ltd.), the above-mentioned mica tape 4 was wound once with a 1/2 overlap to form an insulating layer.
この後、比較例1,2とも、このように形成された絶縁
層の外側に前述した実施例1と同様に、離型用のポリテ
トラフルオロエチレンテープ(図示しない)を巻き、鉄
板を当てた後、熱収縮性ポリエステルテープ(フィルム
状、チューブ状、または織布状のものでもよい)を巻き
、これを80℃で1時間、]、30℃で2時間、150
℃で2時間、さらに180℃で15時間加熱して硬化さ
せた。この後、前記熱収縮性ポリエステルテープ、鉄板
、離型用のポリテトラフルオロエチレンテープを除去し
て、この線輪を空気中で300℃で8時間、600℃で
8時間焼成し、耐熱絶縁線輪を得た。After that, in both Comparative Examples 1 and 2, polytetrafluoroethylene tape (not shown) for mold release was wrapped around the outside of the insulating layer thus formed, and an iron plate was applied, as in Example 1 described above. After that, wrap a heat-shrinkable polyester tape (which may be in the form of a film, tube, or woven fabric) and heat it at 80°C for 1 hour, then at 30°C for 2 hours at 150°C.
It was cured by heating at 180°C for 2 hours and then at 180°C for 15 hours. After that, the heat-shrinkable polyester tape, the iron plate, and the polytetrafluoroethylene tape for mold release were removed, and the wire was fired in air at 300°C for 8 hours and at 600°C for 8 hours, and the heat-resistant insulated wire was I got a ring.
実施例2
実施例1の導体の代りに第2図に示すように、導体1と
して厚さ5μsのニッケルメッキをした円形断面の直径
1 、3mmのアルミナ分散強化銅5(グリデンメタル
社の商品名G12id copA L−15)からなる
丸線にアルミナ、ボリア、シリカの3成分からなる高温
用セラミック繊維7(米国スリーエム社の商品名 ネク
ステル)のヤーンを巻回し、さらにその上から無機充填
割入ボロシロキサン系樹脂塗料8(昭和電線電纜社の商
品名S M R−109)を塗布して、485℃で焼き
付け、絶縁塗料の焼付被覆を形成して構成された耐熱絶
縁電線9を無機質充填剤を含む無機化シリコーン10(
東しシリコーン社の商品名A Y 49−208)を塗
布しながら多重巻回し加熱成形したものを使用した。Example 2 In place of the conductor in Example 1, as shown in FIG. 2, a conductor 1 was made of alumina dispersion-strengthened copper 5 (trade name of Glidden Metal Co., Ltd.) with a circular cross-section diameter 1 and 3 mm plated with nickel to a thickness of 5 μs. A round wire made of G12id copA L-15) is wound with a yarn of high-temperature ceramic fiber 7 (trade name: Nextel, manufactured by 3M Corporation in the United States) made of three components: alumina, boria, and silica, and then an inorganic-filled split boro is wound on top of the yarn. A heat-resistant insulated wire 9 is coated with a siloxane-based resin paint 8 (product name SMR-109 of Showa Denshin Co., Ltd.) and baked at 485°C to form a baked coating of insulating paint, and then coated with an inorganic filler. Mineralized silicone containing 10 (
The material was coated with Toshi Silicone Co., Ltd. (trade name: AY 49-208) and then heated and rolled in multiple layers.
以下、実施例1と同様にして耐熱絶縁線輪を製造した。Thereafter, a heat-resistant insulated coil was manufactured in the same manner as in Example 1.
実施例1,2および比較例1,2により得られた耐熱絶
縁線輪を室温と650℃の間で1000回ヒートサイク
ルを行ったところ、比較例2が最も早く、絶縁表面のア
ルミナ織布テープにクラックが発生しアルミナ繊維が切
断した。このクラックはヒートサイクル数が多くなるに
つれ、絶縁層全面に広がり、クラック自身も拡大した。When the heat-resistant insulated coils obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were heat cycled 1000 times between room temperature and 650°C, Comparative Example 2 was the fastest, and the alumina woven tape with an insulating surface Cracks occurred and the alumina fibers were cut. As the number of heat cycles increased, this crack spread over the entire surface of the insulating layer, and the crack itself also expanded.
次に比較例1に絶縁表面のアルミナ織布テープにクラン
クが発生したが、比較例2に比べてクラックの数も太き
さも小規模であった。これらに比べて、本実施例1゜2
の場合、ヒートサイクルを1000回終了した後も、ク
ラックの発生は見られなかった。ヒートサイクル100
0回終了後の残存絶縁破壊電圧(絶縁破壊電圧の初期値
に対するヒートサイクル劣化後の絶縁破壊電圧の百分率
)は、それぞれ実施例1で93%。Next, in Comparative Example 1, cracks occurred in the alumina woven tape on the insulating surface, but compared to Comparative Example 2, the number and size of the cracks were smaller. Compared to these, this example 1゜2
In this case, no cracks were observed even after 1000 heat cycles. heat cycle 100
The remaining dielectric breakdown voltage after 0 cycles (percentage of dielectric breakdown voltage after heat cycle deterioration with respect to the initial value of dielectric breakdown voltage) was 93% in Example 1.
実施例2で89%、比較例1で78%、比較例2で55
%で本発明の絶縁線輪の残存絶縁破壊電圧が高かった。89% in Example 2, 78% in Comparative Example 1, 55% in Comparative Example 2
%, the residual dielectric breakdown voltage of the insulated coil of the present invention was high.
このようにヒートサイクル試験によって、実施例に比べ
比較例が劣化が大きかったのは、第1表に絶縁線輪から
切り出したヒートサイクル試験前の絶縁表面のアルミナ
テープ部分の引張強さをテーピング前のテープの引張強
さに対する相対値として示すように、比較例のアルミナ
テープは本発明のものに比べ、引張強さが著しく低いた
めと言える。比較例1では引張強さが低かったのはマイ
カテープ層中の無機化シリコーンを焼結する際に、揮発
性成分がアルミナ繊維に付着し焼結し繊維の強度を低下
させるためである。The reason why the comparison example deteriorated more than the example due to the heat cycle test is that Table 1 shows the tensile strength of the alumina tape portion of the insulating surface cut out from the insulated wire ring before the heat cycle test and before taping. This can be said to be because the alumina tape of the comparative example has a significantly lower tensile strength than that of the present invention, as shown as a relative value to the tensile strength of the tape. The reason why the tensile strength was low in Comparative Example 1 is that when the inorganic silicone in the mica tape layer is sintered, volatile components adhere to the alumina fibers and are sintered, reducing the strength of the fibers.
第1表 絶縁線輪の絶縁表面のアルミナテープ部分の引
張強さ(テーピング前のテープの引張強さに対する相対
値)なお、実施例1および2により得られた耐熱絶縁線
輪を窒素を封入した600℃の雰囲気で1年間加熱した
が、加熱後の破壊電圧はいずれも初期値の90%以上で
あった。Table 1 Tensile strength of the alumina tape portion on the insulating surface of the insulated wire (relative value to the tensile strength of the tape before taping) Note that the heat-resistant insulated wire obtained in Examples 1 and 2 was filled with nitrogen. Although it was heated in an atmosphere of 600° C. for one year, the breakdown voltage after heating was all 90% or more of the initial value.
以上説明したように本発明によれば、導体に無機化シリ
コーンまたは無機塗料を塗布しながら、無機質の補強材
を、無機化シリコーンまたは無機塗料から成る接着剤で
貼り合わせて成るマイカテープを巻回し、300℃以上
の温度で焼成し無機化し、導体に接している内側層に電
気特性、耐熱性に優れているマイカテープを形成した後
、この上から、機械的強度が大きく耐熱性に優れかつ接
着剤を有しない無機質の絶縁テープを巻回しているので
、電気的2機械的に優れた耐熱絶縁線輪が得られる。ま
た、この耐熱絶縁線輪は、高温で連続使用しても殆ど性
能の低下することがなく、機器運転・停止に伴って起き
るヒートサイクルが繰り返されても、絶縁層にクラック
が入ることもなく、絶縁性能の低下が殆ど起きない。し
たがって、高速増殖炉における液体ナトリウム循環用の
電磁ポンプの様に、300℃以上の高温で用いられる耐
熱絶縁線輪に公的な製造方法を提供することができる。As explained above, according to the present invention, a mica tape made by applying inorganic silicone or inorganic paint to a conductor and pasting an inorganic reinforcing material with an adhesive made of inorganic silicone or inorganic paint is wound around the conductor. After baking at a temperature of 300°C or more to inorganicize and form a mica tape with excellent electrical properties and heat resistance on the inner layer in contact with the conductor, a mica tape with high mechanical strength and excellent heat resistance is placed on top of this. Since the inorganic insulating tape without adhesive is wound, a heat-resistant insulated wire ring with excellent electrical and mechanical properties can be obtained. In addition, this heat-resistant insulated wire ring has almost no deterioration in performance even when used continuously at high temperatures, and the insulation layer will not crack even if the heat cycle that occurs when equipment starts and stops is repeated. , there is almost no deterioration in insulation performance. Therefore, it is possible to provide a public manufacturing method for heat-resistant insulated wires used at high temperatures of 300° C. or higher, such as electromagnetic pumps for circulating liquid sodium in fast breeder reactors.
第1図は本発明の一実施例を示す耐熱絶縁線輪の横断面
図、第2図は本発明の他の実施例を示す耐熱絶縁線輪の
横断面、第3図は軟質マイカテープ巻絶縁と硬質マイカ
テープ巻絶縁の高温における課電寿命特性比較図である
。
1・・導体
2・・・ニッケルメッキをしたアルミナ分散強化銅3.
5・・・マイカテープ
4・・・無機化シリコーンや無機質の接着剤6・・・接
着剤を有しない無機質の絶縁テープ7・・・高温用セラ
ミック繊維Fig. 1 is a cross-sectional view of a heat-resistant insulated wire ring showing one embodiment of the present invention, Fig. 2 is a cross-sectional view of a heat-resistant insulated wire ring showing another embodiment of the present invention, and Fig. 3 is a cross-sectional view of a heat-resistant insulated wire ring showing another embodiment of the present invention. FIG. 3 is a comparison diagram of the electrical life characteristics of insulation and hard mica tape-wrapped insulation at high temperatures. 1. Conductor 2... Nickel plated alumina dispersion strengthened copper 3.
5... Mica tape 4... Mineralized silicone or inorganic adhesive 6... Inorganic insulation tape without adhesive 7... High temperature ceramic fiber
Claims (2)
ながら、無機質の補強材を、無機化シリコーンまたは無
機塗料から成る接着剤で貼り合わせて成るマイカテープ
を巻回し、300℃以上の温度で焼成し無機化した後、
この上から機械的強度が大きく耐熱性に優れかつ接着剤
を有しない無機質の絶縁テープを巻回したことを特徴と
する耐熱絶縁線輪の製造方法。(1) While applying inorganic silicone or inorganic paint to the conductor, wrap a mica tape made by bonding an inorganic reinforcing material with an adhesive made of inorganic silicone or inorganic paint, and bake at a temperature of 300°C or higher. After mineralization,
A method for manufacturing a heat-resistant insulated wire, comprising winding an inorganic insulating tape having high mechanical strength, excellent heat resistance, and no adhesive on the wire.
剤を含むことを特徴とする特許請求の範囲第1項記載の
耐熱絶縁線輪の製造方法。(2) The method for producing a heat-resistant insulated wire according to claim 1, wherein the inorganic silicone or the inorganic paint contains an inorganic filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16420490A JP2889325B2 (en) | 1990-06-25 | 1990-06-25 | Manufacturing method of heat-resistant insulated wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16420490A JP2889325B2 (en) | 1990-06-25 | 1990-06-25 | Manufacturing method of heat-resistant insulated wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0458415A true JPH0458415A (en) | 1992-02-25 |
JP2889325B2 JP2889325B2 (en) | 1999-05-10 |
Family
ID=15788647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16420490A Expired - Fee Related JP2889325B2 (en) | 1990-06-25 | 1990-06-25 | Manufacturing method of heat-resistant insulated wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2889325B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104851576A (en) * | 2014-02-17 | 2015-08-19 | 伊顿公司 | Inductance coil and electromagnetic device |
JP2016048245A (en) * | 2010-12-09 | 2016-04-07 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | Electric control rod drive mechanism device in nuclear reactor internal structure |
-
1990
- 1990-06-25 JP JP16420490A patent/JP2889325B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016048245A (en) * | 2010-12-09 | 2016-04-07 | ウエスチングハウス・エレクトリック・カンパニー・エルエルシー | Electric control rod drive mechanism device in nuclear reactor internal structure |
US10032529B2 (en) | 2010-12-09 | 2018-07-24 | Westinghouse Electric Company Llc | Nuclear reactor internal electric control rod drive mechanism assembly |
CN104851576A (en) * | 2014-02-17 | 2015-08-19 | 伊顿公司 | Inductance coil and electromagnetic device |
US11804328B2 (en) | 2014-02-17 | 2023-10-31 | Eaton Intelligent Power Limited | Inductor coil and electromagnetic component |
Also Published As
Publication number | Publication date |
---|---|
JP2889325B2 (en) | 1999-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03127809A (en) | Manufacture of heat resistant insulated coil | |
US8484831B2 (en) | Methods of forming insulated wires and hermetically-sealed packages for use in electromagnetic devices | |
JPH0458415A (en) | Manufacture of heat-resistant insulated coil | |
JP3150349B2 (en) | Manufacturing method of heat-resistant insulated wire | |
JP2818260B2 (en) | Manufacturing method of heat-resistant insulated wire | |
JP2645093B2 (en) | Manufacturing method of heat-resistant insulated wire | |
JPH02262313A (en) | Manufacture of heat-resistant insulated coil | |
JP2511190B2 (en) | Method for manufacturing heat resistant insulated wire | |
JP2851137B2 (en) | Manufacturing method of heat-resistant insulated wire | |
JPH04123403A (en) | Heat resistant insulated coil | |
JPH04245405A (en) | Heat-resistant insulated coil | |
US4410585A (en) | Layer insulation for use in high-voltage electrical equipment | |
JPH05198422A (en) | Manufacture of heat resisting insulated coil | |
JPH07220535A (en) | Super heat-resistant high-voltage insulated electric wire and manufacturing thereof | |
JPH05205534A (en) | Heat resistive insulated wire | |
JPS593845B2 (en) | Jyuushihou My Coil | |
JP3139500B2 (en) | Heat resistant wire | |
JP2003031411A (en) | Heat-resistant insulated coil and its manufacturing method | |
JPH02136046A (en) | Insulation structure and insulation processing method for electrical rotating machine coil | |
JPS63318718A (en) | Heat-resistant insulated coil | |
JP2616103B2 (en) | Manufacturing method of heat resistant coil | |
JPS5812685B2 (en) | insulated wire | |
JPH078120B2 (en) | Method for manufacturing heat resistant insulated wire | |
JPH05299234A (en) | Heat resistant insulating coil | |
JPS63216209A (en) | Insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080219 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090219 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100219 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |