[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH045735B2 - - Google Patents

Info

Publication number
JPH045735B2
JPH045735B2 JP22529783A JP22529783A JPH045735B2 JP H045735 B2 JPH045735 B2 JP H045735B2 JP 22529783 A JP22529783 A JP 22529783A JP 22529783 A JP22529783 A JP 22529783A JP H045735 B2 JPH045735 B2 JP H045735B2
Authority
JP
Japan
Prior art keywords
wire
electrode
weight
workpiece
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22529783A
Other languages
Japanese (ja)
Other versions
JPS60116736A (en
Inventor
Shigeo Ezaki
Kazuo Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22529783A priority Critical patent/JPS60116736A/en
Publication of JPS60116736A publication Critical patent/JPS60116736A/en
Publication of JPH045735B2 publication Critical patent/JPH045735B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はワイアカツト放電加工用として好適
な電極線に係り、詳しくのべると、Zn30〜40重
量%とB0.05〜2重量%を含有し、残部がCuより
なるワイアカツト放電加工電極線用合金線に関す
るものである。 ワイアカツト放電加工法は、被加工体と線状の
加工電極(以下これを単に電極線と略称する)と
の間に放電を行なわせ、該電極線と被加工体とを
相対的に移動させて被加工体を所望の形状に切断
加工するものであり、従来から実施されている方
法である。 このワイアカツト放電加工法において、線状の
電極線としては、通常直径が0.05〜0.3mmφの長
尺の線を準備し、放電加工部分に順次新しい線を
供給して使用している。 そして該放電加工法においては、使用する電極
線の適否が加工速度や加工精度、被加工面の表面
性状などに直接大きな影響をおよぼすため、これ
にふさわしい好適な材料の使用が強く要望されて
いる。 一般にこの電極線に要求される事項としては、 (1) 加工速度:ワイアカツト放電加工法は、一般
に必ずしも加工速度が速くないので、少しでも
加工速度を大きくすることができること。 (2) 被加工物の寸法精度と表面性状:寸法精度よ
くまた表面の肌荒れなどを生じさせることなく
加工できること。 (3) 作業性:切断作業中、電極線が断線したりす
ると、著しく作業性を損なうのでこの作業中の
断線の発生が少ないこと。また近年、自動結線
機構が加工装置に付与され作業性の改善に効果
をあげているがこのためには電極線の線ぐせの
ない事が望まれる。 (4) 電極細線への加工性:益々高精度の要求から
も細線の電極線が所望されるようになつてきて
いるが、この時工業的に伸線等の加工が容易で
あること。 などが挙げられている。 電極線に要望される上記の事項についてさらに
説明すると、加工速度は電極線と被加工体との間
に放電を十分に安定して発生させ、かつ電極物質
の被加工物への付着を防止して短絡を防ぐことが
有効であることが判明しているが、このような効
果が具現できる電極線がなくそのような材料の出
現が切望されていた。 また被加工物の寸法精度を得るためには、電極
線の径の寸法精度と十分に張力をかけ、電極線が
ピーンと張られた状態で使用される必要があり、
この張力下で断線しにくいことが要求される。 次に肌荒れなどの表面性状に関しては、均一か
つ安定した放電の発生が必要であり、また電極材
料の付着がない事も望まれる。 また切断作業中の断線は、電極線と被加工物間
の短絡や不均一な放電や負荷される張力によるも
のであので、このような点からは電極線自身の寸
法精度と安定した放電性、高い熱伝導性、大きい
引張り強さが要求されるのである。 さらに価格的に高価にならぬよう合金原材料が
安価なことや放電加工用電極として0.05〜0.3mm
φの程度までの細線への伸線加工性の良好なこと
なども必要である。 従来、ワイアカツト放電加工用の電極線として
は、銅線、黄銅線(Cu−35%Zn)、タングステン
線などが使用されてきたが、これらは次のような
点で上記した要求を必ずしも満たしていなかつ
た。 即ち、銅線では強度があまり高くなく、断線し
やすいのと加工速度の点で一般に黄銅線より劣る
などの欠点を有している。 また黄銅線は加工速度においては銅線より改善
されるものの高加工速度時に付着の発生も若干生
じるなど未だ十分でなく、また被加工物の寸法精
度と表面状態においても必ずしも良好とは云え
ず、このほか作業性の点でも必ずしも十分とは云
えないなどの欠点を有しているのである。 さらにタングステン線は伸線加工が困難であ
り、また材料が高価でありながら放電加工性にも
あまりすぐれたところがないという欠点がある。 この発明は、かかる問題点に鑑みて種々検討を
行つた結果、見出されたものであり、ワイアカツ
ト放電加工用電極線として好適な合金線を提供す
るものである。 即ち、この発明はZn30〜40重量%とB0.05〜2
重量%を含有し、残部がCuよりなることを特徴
とするワイアカツト放電加工電極線である。 この発明において、Znは先にも述べたように
加工速度を速めるのに効果があり、また合金線の
強度上昇にも寄与するのである。 しかして、Znの含有量を30〜40重量%と規定
したのは、Znが多く含有される方が放電加工の
安定性には有効で30重量%未満の場合には上記の
効果が少なく、また40重量%を超える量を含有さ
せても上記範囲における効果を一層向上できると
いうものではなく、却つて細線への伸線加工が著
しく困難になつて好ましくないためである。 またBの使用はZnの存在とあいまつて、電極
の被加工物への付着を少なくし、加工速度を速め
る他、強度の向上や、強度の低下を招くことなく
直線性が得やすい等の改善効果をもたらすため放
電加工速度の改善と寸法精度の向上、作業性の向
上に大きな効果をもたらすのである。 さらにBの添加は黄銅に添加して熱伝導まを害
することが少なく、電極線と被加工物間の短絡等
によつても断線しにくい。 電極線の製造という観点からは、Bの添加が特
に放電特性の安定性に有利な高Zn含有量の黄銅
に対して熱間加工性および冷間伸線加工性の改善
に有効で、細線化に効果をもたらす。 その量を0.05〜2重量%の範囲と規定したのは
0.05重量%未満ではその効果が少なく、また2を
超えて含有させても、却つてBの偏析などを生じ
たり、加工性を損なうのみで上記の一層の改善効
果はなしにくいためである。 なおこの発明の合金線においては、Sn,Ag,
Mg,Si,Alなどの元素や他の脱酸剤として働ら
く元素などが1種以上、その合計で0.5重量%を
超えない範囲ならば含有していても何ら差支えな
く、却つて強度上昇などの効果を発揮して好まし
い場合もある。 以上詳述したように、この発明のワイアカツト
放電加工電極線用合金線は、放電加工時の加工速
度が速く、かつ被加工物の寸法精度や表面性状に
もすぐれ、さらに細線への加工も容易で、また加
工中の断線も少なく作業性が良好なため種々の被
加工物を加工するための電極線として非常に有用
である。 以下この発明を実施例により詳細に説明する。 実施例 1 通常の電気用銅地金とZn,Snは単体の形でB,
Alは母合金を用いて第1表に示す組成の合金材
料を半連続的に鋳造し、熱間押出により8mmφの
荒引線としたのち、伸線過程で皮剥を行ない途中
2.6mmφで中間熱処理を行なつたのち、0.15mmφ
の電極線を製造した。 なお、自動結線の作業性向上のため伸線工程の
最終段階で軽く通電加熱処理を行なつた。 追記すると、本発明例No.1〜4はこの処理にお
いて強度低下も少なく、引張強さ100Kg/mm2以上
の値を維持しながら線ぐせのない直線性に優れた
電極線が得られた。他の電極線は直線性を十分得
ようとすると強度低下を招いたり、直線性が得が
たかつたりした。 また従来例、比較例として第1表組成の合金材
料を用いて同じ方法で電極線とした。 得られた電極線について伸線加工上の問題点に
ついても合せ第1表に記載した。
The present invention relates to an electrode wire suitable for wire-cut electric discharge machining, and more specifically, to an alloy wire for wire-cut electric discharge machining electrode wire containing 30 to 40% by weight of Zn and 0.05 to 2% by weight of B, with the balance being Cu. It is something. The wire-cut electrical discharge machining method generates electrical discharge between the workpiece and a linear machining electrode (hereinafter simply referred to as electrode wire), and moves the electrode wire and workpiece relatively. This method cuts a workpiece into a desired shape, and is a conventional method. In this wire cut electric discharge machining method, a long wire having a diameter of usually 0.05 to 0.3 mm is prepared as a linear electrode wire, and new wires are sequentially supplied to the electric discharge machining part. In the electric discharge machining method, the suitability of the electrode wire used has a direct and significant effect on machining speed, machining accuracy, surface quality of the workpiece surface, etc., so there is a strong demand for the use of suitable materials. . In general, the requirements for this electrode wire are: (1) Machining speed: Wire-cut electric discharge machining generally does not necessarily have a fast machining speed, so it must be possible to increase the machining speed even a little. (2) Dimensional accuracy and surface quality of the workpiece: It must be possible to process the workpiece with good dimensional accuracy and without causing surface roughness. (3) Workability: If the electrode wire breaks during cutting work, workability will be significantly impaired, so the occurrence of breakage during this work should be low. In addition, in recent years, automatic wire connection mechanisms have been added to processing equipment, which has been effective in improving workability, but for this purpose, it is desirable that the electrode wires be free of wires. (4) Processability into thin electrode wires: Due to the ever-increasing demand for high precision, thin electrode wires are becoming desirable, and at this time, they must be easy to process, such as wire drawing, on an industrial scale. etc. are listed. To further explain the above requirements for the electrode wire, the machining speed must be such that a sufficiently stable electrical discharge is generated between the electrode wire and the workpiece, and the electrode material does not adhere to the workpiece. Although it has been found that it is effective to prevent short circuits by using wires, there is no electrode wire that can achieve this effect, and the emergence of such a material has been eagerly awaited. In addition, in order to obtain the dimensional accuracy of the workpiece, it is necessary to maintain the dimensional accuracy of the diameter of the electrode wire and to apply sufficient tension to ensure that the electrode wire is used in a taut state.
It is required that the wire is hard to break under this tension. Next, regarding surface properties such as rough skin, it is necessary to generate a uniform and stable discharge, and it is also desirable that there be no adhesion of electrode materials. In addition, wire breaks during cutting can be caused by short circuits, uneven discharge, or applied tension between the electrode wire and the workpiece, so from these points of view, the dimensional accuracy of the electrode wire itself and stable discharge performance are important. , high thermal conductivity and high tensile strength are required. In addition, the alloy raw materials are inexpensive so that the price does not become expensive, and 0.05 to 0.3 mm is suitable for electrodes for electrical discharge machining.
It is also necessary to have good wire drawability into thin wires up to the diameter of φ. Conventionally, copper wire, brass wire (Cu-35%Zn), tungsten wire, etc. have been used as electrode wires for wire cut electrical discharge machining, but these do not necessarily meet the above requirements in the following points. Nakatsuta. That is, copper wire has drawbacks such as not having very high strength, being easily broken, and being generally inferior to brass wire in terms of processing speed. In addition, although brass wire has improved machining speed over copper wire, it is still not sufficient as some adhesion occurs at high machining speeds, and the dimensional accuracy and surface condition of the workpiece are not necessarily good. In addition, it has other drawbacks such as not being necessarily satisfactory in terms of workability. Furthermore, tungsten wire is difficult to draw, is an expensive material, and has poor electrical discharge machinability. This invention was discovered as a result of various studies in view of these problems, and provides an alloy wire suitable as an electrode wire for wire-cut electrical discharge machining. That is, this invention contains 30 to 40% by weight of Zn and 0.05 to 2% of B.
% by weight, with the remainder being Cu. In this invention, Zn is effective in increasing the processing speed as described above, and also contributes to increasing the strength of the alloy wire. Therefore, the reason why the Zn content is specified as 30 to 40% by weight is that the higher the Zn content, the more effective it is for the stability of electrical discharge machining, and if the Zn content is less than 30% by weight, the above effect will be small. Further, even if the amount exceeds 40% by weight, the effect within the above range cannot be further improved, and on the contrary, it becomes extremely difficult to draw a wire into a thin wire, which is undesirable. In addition, the use of B, together with the presence of Zn, reduces the adhesion of the electrode to the workpiece, speeds up machining speed, and improves strength, making it easier to obtain linearity without reducing strength. As a result, it has a significant effect on improving electrical discharge machining speed, improving dimensional accuracy, and improving workability. Furthermore, the addition of B is less likely to impair thermal conductivity when added to brass, and wires are less likely to break due to short circuits between the electrode wire and the workpiece. From the perspective of manufacturing electrode wires, the addition of B is particularly effective in improving the hot workability and cold drawability of brass with a high Zn content, which is advantageous for the stability of discharge characteristics, and is effective for thinning wires. effect. The amount was specified to be in the range of 0.05 to 2% by weight.
This is because if the content is less than 0.05% by weight, the effect will be small, and if it is contained in an amount exceeding 2%, it will only cause segregation of B or impair workability, making it difficult to achieve the above-mentioned further improvement effect. In addition, in the alloy wire of this invention, Sn, Ag,
There is no problem in containing one or more elements such as Mg, Si, Al, or other elements that act as deoxidizing agents, as long as the total does not exceed 0.5% by weight, and on the contrary, it may increase strength. In some cases, it is preferable because it exhibits the following effects. As detailed above, the wire-cut alloy wire for electrical discharge machining electrode wire of the present invention has a high processing speed during electrical discharge machining, has excellent dimensional accuracy and surface quality of the workpiece, and can be easily processed into fine wires. In addition, it is very useful as an electrode wire for processing various workpieces because it has good workability with few wire breaks during processing. The present invention will be explained in detail below with reference to Examples. Example 1 Ordinary electrical copper ingots, Zn, and Sn are in the form of B,
Al is made by semi-continuously casting an alloy material with the composition shown in Table 1 using a master alloy, hot extruding it into a rough drawn wire of 8 mmφ, and then peeling it during the wire drawing process.
After intermediate heat treatment with 2.6mmφ, 0.15mmφ
An electrode wire was manufactured. In addition, in order to improve the workability of automatic wire connection, a light electrical heating treatment was performed at the final stage of the wire drawing process. Additionally, in Inventive Examples Nos. 1 to 4, there was little decrease in strength during this treatment, and electrode wires with excellent linearity without wire distortion were obtained while maintaining a tensile strength of 100 Kg/mm 2 or more. When trying to obtain sufficient linearity with other electrode wires, strength decreased or linearity was difficult to obtain. Further, as a conventional example and a comparative example, electrode wires were made using the same method using alloy materials having the compositions shown in Table 1. Problems in drawing the obtained electrode wires are also listed in Table 1.

【表】 上述の内容および上表からこの発明の組成の電
極線は細線までの加工が容易でかつ工業的に有利
に生産できることが認められた。 実施例 2 実施例1で得た0.15mmφの電極線を用いて厚さ
50mmのSKD−11を被加工材としてワイアカツト
放電加工を行ない、その結果を第2表に示した。 なお加工速度は、黄銅線(No.6)を1.00として
単位時間当り加工断面積(即ち、加工送り速度と
被加工物厚さの積)の比で示した。
[Table] From the above contents and the above table, it was recognized that the electrode wire of the composition of the present invention can be easily processed into fine wires and can be produced industrially advantageously. Example 2 Using the 0.15 mmφ electrode wire obtained in Example 1, the thickness was
Wire cut electric discharge machining was performed using 50 mm SKD-11 as the workpiece, and the results are shown in Table 2. The processing speed was expressed as the ratio of the processing cross-sectional area per unit time (that is, the product of the processing feed rate and the thickness of the workpiece), with the brass wire (No. 6) being 1.00.

【表】【table】

【表】 上表からこの発明の電極線を使用すれば、電極
材料の付着が少なく、加工速度も良好でかつまた
表面性状や寸法精度もすぐれた加工が行えること
が認められた。 また製造も容易で価格的にも兼価であり、使用
時の断線などのトラブルが少なく、自動結線の作
業性にもすぐれていることが認められた。 以上詳述したようにこの発明の電極線は、Zn
を30〜40重量%より好ましくは35〜38重量%と
B0.05〜2重量%を含有し、残部がCuよりなるこ
とを特徴とするワイアカツト放電加工用電極線で
あるので加工速度と加工精度、加工表面性状とも
にすぐれたワイアカツト加工が可能なものであ
り、工業的に使用して多大の利益をもたらすもの
である。
[Table] From the above table, it was confirmed that by using the electrode wire of the present invention, it was possible to perform processing with less adhesion of electrode material, good processing speed, and excellent surface texture and dimensional accuracy. It was also found that it is easy to manufacture and inexpensive, has fewer troubles such as wire breakage during use, and has excellent workability in automatic wire connection. As detailed above, the electrode wire of the present invention has Zn
30 to 40% by weight, preferably 35 to 38% by weight.
This electrode wire for wire cut electric discharge machining is characterized by containing 0.05 to 2% by weight of B, with the remainder being Cu, so it is capable of wire cut machining with excellent machining speed, machining accuracy, and machined surface quality. , which can be used industrially with great benefits.

Claims (1)

【特許請求の範囲】 1 Zn30〜40重量%とB0.05〜2重量%を含有
し、残部がCuよりなることを特徴とするワイア
カツト放電加工用電極線 2 Zn30〜40重量%とB0.05〜2重量%を含有す
るとともに、Sn,Ag,Mg,Si,Alを1種以上
かつその合計が0.5重量%を超えない範囲で含有
し残部がCuよりなることを特徴とするワイアカ
ツト放電加工用電極線。
[Scope of Claims] 1. Wire-cut electrical discharge machining electrode wire characterized by containing 30-40% by weight of Zn and 0.05-2% by weight of B, with the remainder being Cu. 2. 30-40% by weight of Zn and 0.05% by weight of B. ~2% by weight, and one or more of Sn, Ag, Mg, Si, and Al in a range not exceeding 0.5% by weight in total, with the remainder being Cu for wire cut electric discharge machining. electrode wire.
JP22529783A 1983-11-28 1983-11-28 Electrode wire for wire-cut electric spark machining Granted JPS60116736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22529783A JPS60116736A (en) 1983-11-28 1983-11-28 Electrode wire for wire-cut electric spark machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22529783A JPS60116736A (en) 1983-11-28 1983-11-28 Electrode wire for wire-cut electric spark machining

Publications (2)

Publication Number Publication Date
JPS60116736A JPS60116736A (en) 1985-06-24
JPH045735B2 true JPH045735B2 (en) 1992-02-03

Family

ID=16827127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22529783A Granted JPS60116736A (en) 1983-11-28 1983-11-28 Electrode wire for wire-cut electric spark machining

Country Status (1)

Country Link
JP (1) JPS60116736A (en)

Also Published As

Publication number Publication date
JPS60116736A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
EP0573780B1 (en) Wire electrode for wire cutting electro-discharge machining
EP0165502B1 (en) Wire electrode for use in wire electro-discharge machining
JPS6017041A (en) Electrode wire for wire-cut electric spark machining
JPH045735B2 (en)
JPH03236431A (en) Electrode wire for wire electric discharge machining
JPS58197244A (en) Alloy wire for electrode wire for wire-cut electric spark machining
JPH0367813B2 (en)
JPS58197242A (en) Alloy wire for electrode wire for wire-cut electric spark machining
JPS59129626A (en) Electrode wire for wire cut electro-discharge machining
JPH0397817A (en) Electrode wire for wire electrical discharge machining
JPS58197243A (en) Alloy wire for electrode wire for wire-cut electric spark machining
JP2002137123A (en) Electrode wire for wire electric discharge machining
JPS6254382B2 (en)
JPS618227A (en) Electrode-wire for wire electric discharge
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JPS599298B2 (en) Wire-cut electrode wire for electrical discharge machining
JPS59185754A (en) Electrode wire for electric spark wire machining
JPH0435544B2 (en)
KR880001406B1 (en) The wire electrode for wire electro-dischangring machineing
JPH0541373B2 (en)
JPS59129629A (en) Composite electrode wire for wire cut electro-discharge machining and its manufacture
JPS5894926A (en) Electrode wire for wire-cutting electric discharge machining
JPH0328497B2 (en)
JPH11320270A (en) Electrode wire with high strength and high conductivity for wire electric discharge machining
JPS59170230A (en) Electrode wire for wire electric spark machining