[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0457734B2 - - Google Patents

Info

Publication number
JPH0457734B2
JPH0457734B2 JP10763886A JP10763886A JPH0457734B2 JP H0457734 B2 JPH0457734 B2 JP H0457734B2 JP 10763886 A JP10763886 A JP 10763886A JP 10763886 A JP10763886 A JP 10763886A JP H0457734 B2 JPH0457734 B2 JP H0457734B2
Authority
JP
Japan
Prior art keywords
temperature
alloy
phase
alloy material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10763886A
Other languages
Japanese (ja)
Other versions
JPS62267438A (en
Inventor
Yoshiharu Mae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10763886A priority Critical patent/JPS62267438A/en
Publication of JPS62267438A publication Critical patent/JPS62267438A/en
Publication of JPH0457734B2 publication Critical patent/JPH0457734B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、良好な熱間加工性を示すα相とβ
相の容量比がほぼ1:1の組織を相対的に低温の
700℃附近の温度で示し、したがつて700℃附近、
すなわち650〜750℃の範囲内の温度での恒温鍛造
が可能なTi合金材、並びにこのTi合金材を用い
て低温の恒温鍛造および溶体化処理で所定形状の
Ti合金部材を製造する方法に関するものである。 〔従来の技術〕 従来、高温強度および耐熱性(耐酸化性)など
が要求される、例えば航空機のジエツトエンジン
の構造部材の製造に、これらの特性を具備した
Ti合金材、例えば重量%で(以下%は重量%を
示す)、 (a) Ti−6%Al−4%Vの代表組成を有するTi
合金材、 (b) Ti−8%Al−1%V−1%Moの代表組成を
有するTi合金材、 (c) 特開昭60−251240号公報に記載される通り
の、Ti−5.2〜6.0%Al−0.4〜1.0%V−1.2〜2.8
%Sn−3.2〜5.6%Zr−0.5〜1.2%Mo−0.5〜1.4
%Cr−0.8〜1.5%Fe−0.10〜0.15%酸素の組成
をもつたTi合金材、 (d) 特開昭61−69936号公報に記載される通りの、
Ti−5.3〜6.1%Al−1.6〜2.2%V−1.2〜1.6%
Sn−5.0〜7.5%Zr−1.3〜1.8%Mo−0.8〜1.6%
Cr−0.8〜1.7%Fe−0.10〜0.15%酸素の組成を
もつたTi合金材、 (e) 特開昭61−69937号公報に記載される通りの、
Ti−6.2〜6.8%Al−1.2〜1.6%V−1.2〜1.6%
Sn−0.8〜1.2%Zr−2.7〜3.1%Mo−1.9〜2.3%
Cr−1.4〜1.8%Fe−0.10〜0.15%酸素の組成を
もつたTi合金材、 以上(a)〜(e)のα+β型Ti合金材が用いられて
いる。 また、これらのTi合金材を用いて所定形状の
Ti合金部材を製造するには、これら(a)〜(e)のTi
合金材の良好な熱間加工性を示すα相とβ相の容
量比がほぼ1:1となる温度が850〜950℃の温度
範囲にあることから、通常850℃以上の所定の温
度で恒温鍛造により所定形状とし、ついでこれに
850〜950℃の範囲内の所定温度で溶体化処理を施
し、さらに引続いて500〜600℃の範囲内の所定温
度で時効処理を施す方法がとられている。 〔発明が解決しようとする問題点〕 このように上記の従来Ti合金材を用いて所定
形状のTi合金部材を製造するに際しては、恒温
鍛造を850℃以上の高温で行なわなければならな
いために、これに用いられる金型にはより一層の
高温強度と耐熱性が要求されるようになり、それ
だけ高価な金型の使用を予儀なくされるばかりで
なく、金型寿命も短く、また溶体化処理も上記の
通り850℃以上の高温で行なう必要があるために、
スケール発生などの問題もある。 〔問題点を解決するための手段〕 そこで、本発明者等は、上述のような観点か
ら、低温での恒温鍛造および溶体化処理で所定形
状のTi合金部材を製造することができるTi合金
材を開発すべく研究を行なつた結果、 Al:2〜5%、V:5〜12%、 Mo:0.5〜8%、Fe:0.1〜3%、 を含有し、残りがTiと不可避不純物からなり、
かつ条件式: 14%≦1.5×V(%)+Mo(%)+1.1×Fe(%)≦
21%、を満足する組成を有するTi合金材は、α
相とβ相の容量比がほぼ1:1となる組織を650
〜750℃の範囲内の低温で示し、したがつて650〜
750℃での恒温鍛造で所定形状のTi合金部材の製
造を可能とし、かつこれに施される溶体化処理も
700〜800℃の低温でよく、しかもこの結果得られ
たTi合金部材は上記の従来α+β型Ti合金材を
用いて、上記の高温での恒温鍛造と溶体化処理で
製造されたTi合金部材と同等のすぐれた高温強
度と耐熱性を有するという研究結果を得たのであ
る。 したがつて、この発明は、上記研究結果にもと
づいてなされたものであつて、 Al:2〜5%、V:5〜12%、 Mo:0.5〜8%、Fe:0.1〜3%、 を含有し、残りがTiと不可避不純物からなり、
かつ条件式: 14%≦1.5×V(%)+Mo(%)+1.1×Fe(%)≦
21%、を満足する組成を有するTi合金材、並び
にこのTi合金材を用い、これに、 650〜750℃の範囲内の温度で恒温鍛造を施して
所定形状とした後、 700〜800℃の範囲内の温度で溶体化処理を施
し、 引続いて300〜600℃の範囲内の温度で時効処理
を施すことによりTi合金部材を製造する方法に
特徴を有するものである。 つぎ、この発明のTi合金材の成分組成並びに
製造条件を上記の通りに限定した理由を説明す
る。 A 成分組成 (a) Al Al成分にはα相を強化する作用があるが、
その含有量が2%未満ではα相の強度、ひいて
はTi合金材全体の強度を所望の値に保持する
ことができず、一方その含有量が5%を越える
と、β変態点を低く抑えるためのβ安定化元素
であるVおよびMoの含有量を多くしなければ
ならなくなり、この結果Ti合金材の熱間加工
性が劣化し、具体的には変形抵抗が増大し、鍛
造の際に大きな圧力が必要になることから、そ
の含有量を2〜5%と定めた。 (b) V V成分には、特にβ変態点を低く抑え、かつ
β相安定化領域を広げる作用があるほか、余り
Ti合金材の延性を害することなく、Moほどで
はないがβ相を強化する作用があるが、その含
有量が5%未満では、β変態点を低く抑えるこ
とができないばかりでなく、700℃附近でのα
相とβ相の容量比をほぼ1:1にすることが不
可能となり、この結果恒温鍛造温度および溶体
化処理温度が従来条件と余り変らない高温とな
り、一方その含有量が12%を越えると、Ti合
金材の熱間加工性が劣化し、具体的には変形抵
抗が増し、大きな鍛造圧力を必要とするように
なることから、その含有量を5〜12%と定め
た。 (c) Mo Mo成分には、特にβ相を強化すると共に、
β変態点を低く抑え、かつβ相安定化領域を広
げる作用があるが、その含有量が0.5%未満で
は、β相強化、ひいてはTi合金材全体を強化
する効果が低く、一方その含有量が8%を越え
ると、変形抵抗が増大するようになることか
ら、その含有量を0.5〜8%と定めた。 (d) Fe Fe成分には、Ti合金材の強度を一段と向上
させる作用があるが、その含有量が0.1%未満
では所望の強度向上効果が得られず、一方その
含有量が3%を越えるとTi合金材の熱間加工
性が低下するようになることから、その含有量
を0.1〜3%と定めた。 (e) 条件式 上記Ti合金材の構成成分であるAl,V,
Mo,およびFeは、それぞれ上記の含有量が必
要であるが、さらに熱間加工性を低下させるこ
となく高強度を確保するためには、β相安定化
能力が、Moを1とすると、V:1.5倍、Fe:
1.1倍となることから、これらの係数をそれぞ
れの成分含有量にかけた総和で14%以上とする
ことが不可欠であり、したがつて、この総和が
14%未満では変態点の低下が不十分で、熱間加
工性が低下するようになり、またその総和が21
%を越えても変形抵抗が増大し、良好な熱間加
工性を確保することができなくなることから、
上記の通りに定めた。 B 製造条件 (a) 恒温鍛造温度 Ti合金部材の製造に際しては、まず上記成
分組成のTi合金を溶製し、インゴツトに鋳造
した後、このインゴツトに高温で熱間鍛造や熱
間圧延、さらに熱間押し出し加工などを施し
て、例えば所定断面形状の棒材を調製し、この
棒材より恒温鍛造に適した形状のTi合金材を
切り出し、これに恒温鍛造を施す工程がとられ
るが、このTi合金材においては、上記の通り
の組成によつて650〜750℃の温度範囲でα相と
β相の容量比がほぼ1:1の組織を示し、良好
な恒温鍛造を可能とするものであり、したがつ
てその温度が650℃未満でも、また750℃を越え
てもα相とβ相の等量割合がいずれかにずれ
て、良好な恒温鍛造を行なうことができないこ
とから、その温度を650〜750℃と定めた。 (b) 溶体化処理温度 その温度が700℃未満では、α相安定化元素
であるAlがβ相中に充分固溶せず、この結果
時効処理で所望の強度を確保するのが困難にな
り、一方その温度が800℃を越えると、この温
度はβ変態点を越えるか、あるいはこれの附近
の温度となるために、初析α相の量が少なすぎ
て組織が不均一になることから、その温度を
700〜800℃と定めた。 (c) 時効処理温度 その温度が300℃未満では、拡散速度が遅い
ために、β相中に微小なα相の析出が起らず、
所望の時効硬化をはかることができず、一方そ
の温度が600℃を越えると過時効となり、強度
が低下するようになることから、その温度を
300〜600℃と定めた。 〔実施例〕 つぎに、この発明のTi合金材、およびこのTi
合金材を用いて所定形状を有するTi合金部材を
製造する方法を実施例により説明する。 通常の真空アーク溶解炉を用いた2段溶解によ
り、それぞれ第1表に示される成分組成をもつた
Ti合金を溶製し、鋳造して直径:200mm×長さ:
500mmの寸法をもつたインゴツトとした後、この
インゴツトに1000℃で熱間鍛造を施して、直径:
150mmの棒状スラブとし、この棒状スラブより厚
さ:75mmのTi合金材を切り出し、このTi合金材
にそれぞれ第1表に示される温度で恒温鍛造、溶
体化処理、および時効処理を施すことにより本発
明法1〜6、比較法1〜14、および従来法1〜10
をそれぞれ実施し、直径:400mm×厚さ:10.5mm
の寸法をもつたTi合金部材を製造した。 なお、比較法1〜14は、Ti合金材の成分組成
および製造条件のうちのいずれかの条件(第1表
に※印を付す)がこの発明の範囲から外れたもの
である。 つぎに、この結果得られた各種のTi合金部材
について、常温および300℃で引張試験を行ない、
引張強さ、0.2%耐力、および伸びを測定し、第
1表に示した。また、第1表には恒温鍛造温度と
[Industrial Application Field] The present invention is directed to α and β phases that exhibit good hot workability.
A structure with a phase volume ratio of approximately 1:1 is created at a relatively low temperature.
It is indicated at a temperature around 700℃, so around 700℃,
In other words, it is a Ti alloy material that can be isothermally forged at a temperature within the range of 650 to 750°C, and it is also possible to form a predetermined shape by low-temperature isothermal forging and solution treatment using this Ti alloy material.
The present invention relates to a method of manufacturing a Ti alloy member. [Prior Art] In the past, materials that had these properties were used to manufacture structural members for aircraft jet engines, which required high-temperature strength and heat resistance (oxidation resistance).
Ti alloy material, for example, in weight% (hereinafter % indicates weight%), (a) Ti having a typical composition of Ti-6%Al-4%V
(b) Ti alloy material having a typical composition of Ti-8%Al-1%V-1%Mo; (c) Ti-5.2~ as described in JP-A-60-251240; 6.0%Al-0.4~1.0%V-1.2~2.8
%Sn−3.2~5.6%Zr−0.5~1.2%Mo−0.5~1.4
%Cr-0.8~1.5%Fe-0.10~0.15% oxygen, (d) as described in JP-A No. 61-69936,
Ti-5.3~6.1%Al-1.6~2.2%V-1.2~1.6%
Sn - 5.0~7.5% Zr - 1.3~1.8% Mo - 0.8~1.6%
Ti alloy material with a composition of Cr-0.8~1.7% Fe-0.10~0.15% oxygen, (e) As described in JP-A-61-69937,
Ti-6.2~6.8%Al-1.2~1.6%V-1.2~1.6%
Sn - 0.8~1.2% Zr - 2.7~3.1% Mo - 1.9~2.3%
Ti alloy materials having a composition of Cr-1.4 to 1.8% Fe-0.10 to 0.15% oxygen, and the α+β type Ti alloy materials (a) to (e) above, are used. In addition, these Ti alloy materials can be used to create a predetermined shape.
In order to manufacture Ti alloy parts, these (a) to (e) Ti
Since the temperature at which the capacity ratio of α phase and β phase, which indicates good hot workability of alloy materials, is approximately 1:1 is in the temperature range of 850 to 950°C, it is usually constant temperature at a predetermined temperature of 850°C or higher. Forged into the specified shape and then
A method is used in which solution treatment is performed at a predetermined temperature within the range of 850 to 950°C, followed by aging treatment at a predetermined temperature within the range of 500 to 600°C. [Problems to be Solved by the Invention] As described above, when manufacturing a Ti alloy member of a predetermined shape using the above-mentioned conventional Ti alloy material, isothermal forging must be performed at a high temperature of 850°C or higher. The molds used for this are required to have even higher high-temperature strength and heat resistance, which not only precludes the use of expensive molds, but also shortens the lifespan of the molds, and As mentioned above, the processing needs to be carried out at a high temperature of 850℃ or higher.
There are also problems such as scale generation. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have developed a Ti alloy material that can produce a Ti alloy member of a predetermined shape by isothermal forging and solution treatment at low temperatures. As a result of conducting research to develop the material, it was found that it contained Al: 2 to 5%, V: 5 to 12%, Mo: 0.5 to 8%, Fe: 0.1 to 3%, and the rest was composed of Ti and unavoidable impurities. Become,
And conditional expression: 14%≦1.5×V(%)+Mo(%)+1.1×Fe(%)≦
21%, Ti alloy material with a composition satisfying α
The structure in which the volume ratio of phase and β phase is approximately 1:1 is 650
Shown at low temperatures in the range ~750℃, therefore ~650℃
It is possible to manufacture Ti alloy parts in a specified shape by isothermal forging at 750℃, and the solution treatment that is applied to them is also possible.
A low temperature of 700 to 800°C is sufficient, and the resulting Ti alloy member is different from the Ti alloy member manufactured using the above-mentioned conventional α+β type Ti alloy material by isothermal forging and solution treatment at the above-mentioned high temperature. The research results showed that it has the same excellent high-temperature strength and heat resistance. Therefore, this invention was made based on the above research results, and includes Al: 2 to 5%, V: 5 to 12%, Mo: 0.5 to 8%, Fe: 0.1 to 3%. The rest consists of Ti and unavoidable impurities,
And conditional expression: 14%≦1.5×V(%)+Mo(%)+1.1×Fe(%)≦
Using a Ti alloy material with a composition satisfying 21% and this Ti alloy material, it is subjected to isothermal forging at a temperature within the range of 650 to 750°C to form a predetermined shape. This method is characterized by a method for manufacturing Ti alloy members by performing solution treatment at a temperature within a range, and subsequently performing an aging treatment at a temperature within a range of 300 to 600°C. Next, the reason why the composition and manufacturing conditions of the Ti alloy material of the present invention are limited as described above will be explained. A Component composition (a) Al Al component has the effect of strengthening the α phase, but
If the content is less than 2%, the strength of the α phase, and by extension the strength of the entire Ti alloy material, cannot be maintained at the desired value. On the other hand, if the content exceeds 5%, the β transformation point cannot be kept low. It is necessary to increase the content of V and Mo, which are β stabilizing elements in Since pressure is required, the content was set at 2 to 5%. (b) V The V component has the effect of keeping the β-transformation point low and widening the β-phase stabilization region.
It has the effect of strengthening the β phase without impairing the ductility of the Ti alloy material, although it is not as strong as Mo, but if its content is less than 5%, it will not only be impossible to keep the β transformation point low, but it will also be close to 700℃. α at
It is impossible to make the volume ratio of the phase and β phase approximately 1:1, and as a result, the isothermal forging temperature and solution treatment temperature become high temperatures that are not much different from conventional conditions.On the other hand, when the content exceeds 12%, Since the hot workability of the Ti alloy material deteriorates, specifically, the deformation resistance increases and a large forging pressure becomes necessary, the content was set at 5 to 12%. (c) Mo The Mo component especially strengthens the β phase and
It has the effect of keeping the β-transformation point low and widening the β-phase stabilization region, but if its content is less than 0.5%, the effect of strengthening the β-phase and, by extension, the entire Ti alloy material is low; If it exceeds 8%, the deformation resistance increases, so the content was set at 0.5 to 8%. (d) Fe The Fe component has the effect of further improving the strength of Ti alloy materials, but if the content is less than 0.1%, the desired strength improvement effect cannot be obtained, while on the other hand, if the content exceeds 3% Since this decreases the hot workability of the Ti alloy material, its content was set at 0.1 to 3%. (e) Conditional expression Al, V, which are the constituent components of the above Ti alloy material,
Mo and Fe each require the above contents, but in order to ensure high strength without further deteriorating hot workability, the β phase stabilizing ability is :1.5x, Fe:
1.1 times, it is essential that the sum of these coefficients multiplied by each component content is 14% or more, and therefore, this sum is
If it is less than 14%, the transformation point will not be lowered enough, hot workability will decrease, and the total
%, deformation resistance increases and good hot workability cannot be ensured.
Established as above. B Manufacturing conditions (a) Isothermal forging temperature When manufacturing Ti alloy parts, first a Ti alloy with the above composition is melted and cast into an ingot, and then this ingot is subjected to hot forging, hot rolling, and further heat rolling at high temperatures. For example, a bar with a predetermined cross-sectional shape is prepared by extrusion processing, etc., a Ti alloy material with a shape suitable for isothermal forging is cut from this bar, and isothermal forging is performed on this. The alloy material exhibits a structure in which the capacity ratio of α phase and β phase is approximately 1:1 in the temperature range of 650 to 750°C due to the composition as described above, making it possible to perform good isothermal forging. Therefore, even if the temperature is lower than 650℃ or higher than 750℃, the equal ratio of α phase and β phase will deviate and good isothermal forging cannot be performed. The temperature was set at 650-750℃. (b) Solution treatment temperature If the temperature is less than 700°C, Al, which is an α phase stabilizing element, will not dissolve sufficiently in the β phase, and as a result, it will be difficult to secure the desired strength during aging treatment. On the other hand, if the temperature exceeds 800℃, this temperature exceeds the β transformation point or is close to it, so the amount of pro-eutectoid α phase is too small and the structure becomes non-uniform. , its temperature
The temperature was set at 700-800℃. (c) Aging treatment temperature If the temperature is less than 300℃, the diffusion rate is slow, so minute α phase does not precipitate in the β phase.
It is not possible to achieve the desired age hardening, and on the other hand, if the temperature exceeds 600℃, overaging occurs and the strength decreases, so
The temperature was set at 300-600℃. [Example] Next, the Ti alloy material of this invention and this Ti
A method for manufacturing a Ti alloy member having a predetermined shape using an alloy material will be explained using examples. By two-stage melting using a normal vacuum arc melting furnace, each product had the composition shown in Table 1.
Ti alloy is melted and cast. Diameter: 200mm x length:
After making an ingot with a dimension of 500 mm, this ingot was hot forged at 1000℃ to obtain a diameter of:
A 150mm bar-shaped slab is cut out, and a 75mm-thick Ti alloy material is cut out from this bar-shaped slab, and this Ti alloy material is subjected to isothermal forging, solution treatment, and aging treatment at the temperatures shown in Table 1. Inventive methods 1 to 6, comparative methods 1 to 14, and conventional methods 1 to 10
Diameter: 400mm x Thickness: 10.5mm
A Ti alloy member with dimensions of was manufactured. In addition, in Comparative Methods 1 to 14, one of the chemical compositions and manufacturing conditions of the Ti alloy material (marked with * in Table 1) is outside the scope of the present invention. Next, the various Ti alloy members obtained as a result were subjected to tensile tests at room temperature and 300°C.
Tensile strength, 0.2% yield strength, and elongation were measured and shown in Table 1. Table 1 also shows constant temperature forging temperature and

【表】【table】

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜6に
よれば、これに用いられるTi合金材が低温で小
さい変形抵抗、すなわち低温で良好な熱間加工性
を示すので、低温での恒温鍛造および溶体化処理
で、高温での恒温鍛造および溶体化処理によらな
ければ割れが発生して所定の形状のTi合金部材
を製造することができない従来法1〜10にて製造
されたTi合金部材と同等あるいはこれ以上の高
強度を有するTi合金部材を製造することができ、
一方比較法1〜14に見られるように、これに用い
られるTi合金材の成分組成および製造条件のう
ちのいずれかの条件でもこの発明の範囲から外れ
ると、変形抵抗が大きくなつたり、あるいは強度
が低下したりして、所望の高強度をもつたTi合
金部材を低温条件で製造することができないこと
が明らかである。 上述のように、この発明のTi合金材は、低温
ですぐれた熱間加工性を示すので、これを用いて
恒温鍛造によりTi合金部材を製造するに際して
は、低温での恒温鍛造が可能となることから、こ
れに用いられる金型に対する要求も緩和されたも
のになり、比較的安価な金型の使用が可能となる
ばかりでなく、その使用寿命の延命化をはかるこ
とができ、さらに部材表面のスケール発生も少な
くなることから、脱スケール処理も容易となるな
ど工業上有用な効果をもたらすのである。
From the results shown in Table 1, according to methods 1 to 6 of the present invention, the Ti alloy material used therein exhibits low deformation resistance at low temperatures, that is, good hot workability at low temperatures; Ti alloys manufactured using conventional methods 1 to 10, in which cracks occur during forging and solution treatment, making it impossible to manufacture Ti alloy members in the specified shape unless constant temperature forging and solution treatment are performed at high temperatures. It is possible to manufacture Ti alloy parts with high strength equal to or higher than that of the parts,
On the other hand, as can be seen in Comparative Methods 1 to 14, if any of the chemical composition and manufacturing conditions of the Ti alloy material used in this method deviates from the scope of the present invention, the deformation resistance becomes large or the strength increases. It is clear that the Ti alloy member having the desired high strength cannot be manufactured under low temperature conditions because of the decrease in the strength of the Ti alloy member. As mentioned above, the Ti alloy material of the present invention exhibits excellent hot workability at low temperatures, so when producing Ti alloy parts by isothermal forging using this material, isothermal forging at low temperatures is possible. As a result, the requirements for the molds used in this process have been relaxed, making it possible not only to use relatively inexpensive molds, but also to extend their service life. Since the generation of scale is also reduced, descaling treatment becomes easier, which brings about industrially useful effects.

【特許請求の範囲】[Claims]

1 重量%で、 Pd:0.03〜0.1%、Fe:0.2%以下、 酸素:0.3%以下、 残部不可避的不純物およびチタン から成る組成を有することを特徴とする耐水素吸
収性に優れた耐隙間腐食用チタン合金。
1% by weight, Pd: 0.03 to 0.1%, Fe: 0.2% or less, Oxygen: 0.3% or less, and the remainder is unavoidable impurities and titanium. Crevice corrosion resistant with excellent hydrogen absorption resistance. Titanium alloy.

JP10763886A 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production Granted JPS62267438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10763886A JPS62267438A (en) 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10763886A JPS62267438A (en) 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production

Publications (2)

Publication Number Publication Date
JPS62267438A JPS62267438A (en) 1987-11-20
JPH0457734B2 true JPH0457734B2 (en) 1992-09-14

Family

ID=14464264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10763886A Granted JPS62267438A (en) 1986-05-13 1986-05-13 High-strength ti alloy material excellent in workability and its production

Country Status (1)

Country Link
JP (1) JPS62267438A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3418907B2 (en) * 1998-02-13 2003-06-23 住友金属工業株式会社 Titanium alloy with excellent oxidation resistance and cold workability
RU2283889C1 (en) * 2005-05-16 2006-09-20 ОАО "Корпорация ВСМПО-АВИСМА" Titanium base alloy
JP4850657B2 (en) * 2006-10-26 2012-01-11 新日本製鐵株式会社 β-type titanium alloy
RU2463365C2 (en) * 2010-09-27 2012-10-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" METHOD TO PRODUCE INGOT OF PSEUDO β-TITANIUM ALLOY, CONTAINING (4,0-6,0)%Al, (4,5-6,0)% Mo, (4,5-6,0)% V, (2,0-3,6)%Cr, (0,2-0,5)% Fe, (0,1-2,0)%Zr
CN103243235B (en) * 2013-05-22 2015-05-13 哈尔滨工业大学 High strength titanium alloy
CN103276242B (en) * 2013-06-04 2016-03-09 哈尔滨工业大学 A kind of preparation method of superhigh intensity titanium alloy
CN104694863B (en) * 2013-12-10 2016-09-14 陕西宏远航空锻造有限责任公司 A kind of heat treatment method of titanium alloy
JP6851147B2 (en) * 2016-06-10 2021-03-31 株式会社神戸製鋼所 Titanium alloy forged material
JP2017218661A (en) * 2016-06-10 2017-12-14 株式会社神戸製鋼所 Titanium alloy forging material
CN106967897B (en) * 2016-11-18 2019-02-19 中国科学院金属研究所 A kind of inexpensive, Ti alloy with high performance
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
CN108913942B (en) * 2018-08-03 2019-08-02 中鼎特金秦皇岛科技股份有限公司 A kind of high-strength corrosion-resistant erosion titanium alloy and preparation method thereof
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
CN112195365B (en) * 2020-09-29 2022-02-15 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti-Zr-Fe alloy and preparation method thereof
CN114592142B (en) * 2020-12-07 2023-02-28 中国科学院金属研究所 Medium-strength high-toughness titanium alloy with yield strength of 800MPa for ocean engineering and preparation process thereof

Also Published As

Publication number Publication date
JPS62267438A (en) 1987-11-20

Similar Documents

Publication Publication Date Title
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
US2754204A (en) Titanium base alloys
EP0361524B1 (en) Ni-base superalloy and method for producing the same
US5846351A (en) TiAl-based intermetallic compound alloys and processes for preparing the same
JPH0457734B2 (en)
EP0683242B1 (en) Method for making titanium alloy products
JP2543982B2 (en) Titanium-aluminum alloy modified with manganese and niobium
JP2005527699A (en) Method for treating beta-type titanium alloy
JP4939741B2 (en) near β type titanium alloy
US5076858A (en) Method of processing titanium aluminum alloys modified by chromium and niobium
JP2010070833A (en) alpha-beta TYPE TITANIUM ALLOY AND METHOD FOR REFINING THE SAME
JPH11194189A (en) Production for zr alloy tube for reactor fuel clad superior in corrosion resistivity and creep characteristic
JP3873313B2 (en) Method for producing high-strength titanium alloy
EP3844314B1 (en) Creep resistant titanium alloys
JPH0730419B2 (en) Chromium and silicon modified .GAMMA.-titanium-aluminum alloys and methods for their production
JPS5852548B2 (en) Titanium alloy and its manufacturing method
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JPH05279773A (en) High strength titanium alloy having fine and uniform structure
JPH06264202A (en) Production of high strength copper alloy
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US3230119A (en) Method of treating columbium-base alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2857291B2 (en) Titanium-aluminum alloy castings comprising titanium, aluminum, niobium, chromium and silicon and method for producing the same