[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0455388B2 - - Google Patents

Info

Publication number
JPH0455388B2
JPH0455388B2 JP14276585A JP14276585A JPH0455388B2 JP H0455388 B2 JPH0455388 B2 JP H0455388B2 JP 14276585 A JP14276585 A JP 14276585A JP 14276585 A JP14276585 A JP 14276585A JP H0455388 B2 JPH0455388 B2 JP H0455388B2
Authority
JP
Japan
Prior art keywords
weight
rubber
conveyor belt
oil
oil sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14276585A
Other languages
Japanese (ja)
Other versions
JPS621536A (en
Inventor
Sadao Inoe
Toshio Kachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP14276585A priority Critical patent/JPS621536A/en
Publication of JPS621536A publication Critical patent/JPS621536A/en
Publication of JPH0455388B2 publication Critical patent/JPH0455388B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、オイルサンドの非付着性にすぐれる
オイルサンド運搬用コンベヤベルトに関する。 (従来の技術) オイルサンドは、特にカナダ及びベネズエラに
多く埋蔵されている石油資源であつて、なかでも
カナダのアサバスカオイルサンドは全世界の約1/
3の埋蔵量を有するので有名である。アサバスカ
オイルサンドを例にとれば、これは微細な硅砂流
の周りを薄い水膜が被覆し、更にその周りをビチ
ユーメンが囲んで形成されており、水膜中には微
量の金属分も含まれている。このオイルサンドは
一般に5〜20重量%の重質の粘稠なタール状の物
質、即ちビチユーメンを含有するので、石油資源
として商業的にも採集されている。採集方法には
所謂露天掘りと、地中でビチユーメンと硅砂等の
不要成分を分離して採集する方法とがあるが、ア
サバスカではオイルサンドのオーバーバーデンを
除去し、オイルサンドを直接採集する露天掘りが
行なわれており、採集されたオイルサンドはこの
後、コンベヤベルトにより抽出精製プラントに運
搬される。 オイルサンドを運搬するコンベヤベルトには、
従来、天然ゴムとスチレン−ブタジエンゴムとの
混合ゴム配合物やアクリロニトリル−ブタジエン
ゴムをスチールコードで補強したゴムベルトが用
いられているが、これらコンベヤベルトは、その
表面にオイルサンドが付着し堆積して、コンベヤ
ベルトを汚すのみならず、コンベヤベルトの直進
を阻害し、その運搬容量を減少させる問題を有す
る。このため、従来の、非付着液として、燈油、
軽油等の比較的低廉な石油留分をコンベヤベルト
上に散布し、オイルサンドの付着を防止しつつ、
これを抽出精製プラントに運搬している。しか
し、この方法では引火性の燈油や軽油を使用する
ために火災の危険があり、また、コンベヤベルト
の劣化を促進するほか、採集コストを高める原因
となる。そのため、近年は、燈油或いは軽油に代
えて、夏期には水を、冬期には水、界面活性剤及
び不凍液からなる水性混合液を非付着液として使
用することも行なわれているが、オイルサンドに
不凍液が混入して、オイルサンドの分離に余分の
費用を要するほかに、−50℃のような低い気温下
では、非付着液自体が凍結するおそれもある。 上記のような問題を解決するために、既に、特
開昭58−198548号及び特開昭58−198550号には、
高極性材料、例えば、エチレングリコールやプロ
ピレングリコール等のグリコールを混合してなる
ゴム組成物を加硫してなる非付着性加硫ゴムを表
面層に有するコンベヤベルトが提案されている。
しかしながら、このような非付着性加硫ゴムを得
るに際して、エチレングリコールやプロピレング
リコールのような高極性材料を密閉式混合機でゴ
ムと混練する通常のゴム加工法によれば、均一に
これら高極性材料をゴムに配合し得る量は限られ
ている。例えば、ゴムとしてアクリロニトリル含
量20重量%のアクリロニトリル−ブタジエンゴム
を使用し、高極性材料としてエチレングリコール
を用いて、密閉式混合機により混練を行なうと
き、ゴム100重量部に対して、エチレングリコー
ルほぼ5重量部が通常の混練操作による最大配合
量であり、これを越えると密閉式混合機やオープ
ンロールによる混練加工において、ロール表面で
ゴムの滑りが生じる。しかし、この程度のエチレ
ングリコール配合量では、加硫ゴムが尚十分な非
付着性を有しない場合がある。 (発明の目的) 本発明者らは、上記した問題を解決するため鋭
意研究した結果、所定の親水基含有ビニル単量体
をブタジエンやイソプレンのような共役ジエンと
アクリロニトリルのようなα,β−不飽和ニトリ
ルと共に共重合して得られる3元重合体を含むゴ
ム配合物は、加硫後、高い極性の表面を有して、
格段にすぐれたオイルサンド非付着性を有し、従
つて、かかる加硫ゴムを少なくとも表面層として
有するコンベヤベルトはオイルサンドの運搬に極
めて好適であることを見出して、本発明に至つた
ものである。 従つて、本発明は、オイルサンドの非付着性に
すぐれるオイルサンド運搬要コンベヤベルトを提
供することを目的とする。 (発明の構成) 本発明によるオイルサンド運搬用コンベヤベル
トは、 (a) 共役ジエン成分単位55〜95重量%、 (b) α,β−不飽和ニトリル3〜20重量%、 及び (c) 一般式 CH2=CR1COO−(CH2CH2O)o−R2 (但し、R1は水素原子又はメチル基、R2は炭素
数1〜3のアルキル基、nは2〜8の数を示す。) で表わされる親水基含有ビニル単量体成分単位2
〜25重量% よりなる3元共重合体を含む配合物を加硫してな
る加硫ゴムを少なくとも表面層として有すること
を特徴とする。 本発明における共重合体成分単位のうち、共役
ジエンとしては、例えば、ブタジエン、イソプレ
ン、クロロプレン、1,3−ペンタジエン、ヘキ
サジエン等を用いることができるが、α,β−不
飽和ニトリルや後述する親水基含有単量体との共
重合性の容易性からブタジエン又はイソプレンが
好ましい。 α,β−不飽和ニトリルとしては、アクリロニ
トリル、メタクリロニトリル等を用いることがで
きるが、特に、アクリロニトリルが好ましい。 本発明における3元共重合体は、単量体成分単
位として、一般式 CH2=CR1COO−(CH2CH2O)o−R2 (但し、R1は水素原子又はメチル基、R2は炭素
数1〜3のアルキル基、nは2〜8の数を示す。) で表わされる親水基含有ビニル単量体成分を含有
する。 上記一般式において、R1は水素原子又はメチ
ル基であり、R2はメチル基、エチル基又はプロ
ピル基である。R2がブチル基以上の高級アルキ
ル基である場合は、得られる加硫ゴムが水との親
和性に劣ると共に、耐油性を低下するので、本発
明において用いるに適さない。また、上記一般式
において、nは2〜8の数であるが、好ましくは
2〜4である。nが1であるときは、得られる加
硫ゴムが良好な耐寒性をもたず、また、耐油性も
劣る。一方、nが9以上であるときは、共重合性
が低下し、本発明において用いる3元共重合体を
得ることができない。 かかる親水基含有ビニル単量体としては、例え
ば、アクリル酸エチルカルビトール、メタクリル
酸エチルカルビトール、アクリル酸メチルカルビ
トール、メタクリル酸メチルカルビトール、アク
リル酸メチルトリグリコール、メタクリル酸メチ
ルトリグリコール、アクリル酸エチルトリグリコ
ール、メタクリル酸エチルトリグリコール、アク
リル酸メチルテトラグリコール、メタクリル酸メ
チルテトラグリコール、アクリル酸プロピルトリ
グリコール、メタクリル酸エチルペンタグリコー
ル等を挙げることができる。 上記のような親水基含有ビニル単量体は、これ
を構成する対応アクリル酸又はメタクリル酸と、
アルキレングリコールアルキルエーテルとを常法
に従つて、例えば、アクリル酸とその1/2モル量
のジエチレングリコールエチルエーテル(カルビ
トール)とを酸触媒、例えば、p−トルエンスル
ホン酸を用いて、還流下に2時間反応させること
によつて、アクリル酸エチルカルビトールを容易
に得ることができる。 本発明においては、上記のような単量体成分単
位を有する3元共重合体においては、共役ジエン
成分単位55〜95重量%、α,β−不飽和ニトリル
3〜20重量%、及び親水基含有ビニル単量体成分
単位2〜25重量%である。好ましくは、共役ジエ
ン成分単位67〜91重量%、α,β−不飽和ニトリ
ル4〜13重量%、及び親水基含有ビニル単量体5
〜20重量%である。 共役ジエン成分単位が55重量%よりも少ないと
きは、得られる加硫ゴムが耐寒性において十分で
なく、寒冷地において用いられることが多いオイ
ルサンド運搬用コンベヤベルトの表面層として不
適当である。他方、95重量%を越えるときは、耐
油性に乏しくなると共に、水との親和性にも劣る
ようになる。α,β−不飽和ニトリル成分単位が
3重量%よりも少ないときは、耐油性に劣り、20
重量%を越えるときは、弾性に劣るようになり、
コンベヤベルトの表面層ゴムとして好ましくない
と共に、耐寒性にも劣るので、上記と同様に、オ
イルサンド運搬用コンベヤベルトの表面層として
不適当である。 更に、親水基含有ビニル単量体成分単位は、3
元共重合体において、2〜25重量%、好ましく
は、5〜20重量%である。2重量%よりも少ない
ときは、加硫ゴムに満足すべき極性を与えること
ができず、他方、25重量%を越えるときは、伸び
及び強度の低下が著しいので、コンベヤベルトに
用いるには適さない。 また、上記のような3元重合体は、その極限粘
度〔η〕(30℃においてテトラヒドロフラン中)
が1.0〜4.0dl/g、好ましくは1.5〜3.0dl/gであ
る。極限粘度が1.0dl/gよりも小さいときは、
固形保持性が劣つて、取扱いが困難であり、一
方、4.0dl/gを越えるときは、加工性が劣るか
らである。 上記のような3元共重合体は、例えば、共役ジ
エン単量体55〜95重量%、α,β−不飽和ニトリ
ル単量体3〜20重量%及び前記親水基含有ビニル
単量体2〜25重量%の混合物を水性媒体中にて、
又は有機溶剤中にて通常のラジカル共重合させる
ことによつて得ることができる。ラジカル重合開
始剤としては、例えば、ベンゾイルペルオキシ
ド、クメンハイドロペルオキシド、パラメタンハ
イドロペルオキシド、ラウロイルペルオキシド等
の有機化酸化物、アゾビスイソブチルジニトリル
等のビスアゾ化合物、過硫酸カリウム等の過硫酸
塩、有機化合物−硫酸鉄の組み合わせ等のレドツ
クス系触媒等が用いられる。また、必要に応じ
て、分子量調整剤も用いられる。分子量調整剤と
しては、例えば、t−ドデシルメルカプタン、ジ
アルキルキサントゲンジスルフイド等が用いられ
る、共重合反応は、通常、酸素を除去した雰囲気
下に0〜50℃に温度で行なわれる。 本発明におけるゴム配合物は、前記3元共重合
体と共に、適宜の加硫剤を含有する。加硫剤とし
て、通常、イオウ及び/又は含イオウ化合物が配
合される。含イオウ化合物としては、前記3元共
重合体ゴムを加硫することができれば、任意であ
つてよいが、例えば、テトラメチルチウムジスル
フイド、テトラエチルチウムジスルフイド等が好
ましく用いられる。これらの加硫剤は、上記3元
共重合体ゴム100重量部について0.1〜10重量部、
好ましくは1〜5重量部配合される。また、加硫
剤と共に、加硫助剤を併用してもよい。加硫助剤
としても、従来より知られているものが適宜に用
いることができ、例えば、加硫促進剤としてジフ
エニルグアニジン、ジカテコールホウ酸のジオル
トトリルグアニジン塩、2−メルカプトベンゾチ
アゾール、ジベンゾチアジルジスルフイド、N−
シクロヘキシル−2−ベンゾチアジルスルフエン
アミド、テトラメチルチウラムモノスルフイド等
を、また、加硫促進助剤として亜鉛華、酸化マグ
ネシウム、リサージ等の金属酸化物、ステアリン
酸、オレイン酸等の脂肪酸、トリエタノールアミ
ン、ジエタノールアミン等のアミン類、ジエチレ
ングリコール、トリアリルトリメリテート等その
他の活性剤を挙げることができる。 また、本発明において、上記ゴム配合物は、上
記以外に、通常、使用される種々の充填剤を含有
していてもよい。例えば、充填剤としてホワイト
カーボン、カーボンブラツク、シリカ、炭酸カル
シウム、クレー、炭酸マグネシウム、ケイソウ
土、各種ケイ酸塩や有機質充填剤を挙げることが
できる。これらの充填剤を配合するに際して、ジ
(2−エチルヘキシル)フタレート、ジ(2−エ
チルヘキシル)アジペート、ジブチルフタレー
ト、トリ(2−エチルヘキシル)トリメリテー
ト、トリクレジルホスフエート等の可塑剤や、パ
ラフイン系プロセスオイル、芳香族系プロセスオ
イル等の軟化剤を併用することができる。更に、
フエニル−α−ナフチルアミン、N,N′−ジフ
エニル−p−フエニレンジアミン、6−エトキシ
−2,2,4−トリメチル−1,2−ジヒドロキ
ノリン、N−フエニル−N′−イソプロピル−p
−フエニレンジアミン、2−メルカプトベンゾイ
ミダゾール、ジブチルジチオカルバミン酸ニツケ
ル等の老化防止剤を用いることができる。必要に
応じて更に、スコーチ防止剤、加工助剤等も併用
される。 本発明によるゴム配合物を製造するには、通
常、上記成分をバンバリーミキサー、ニーダーミ
キサー又はロール等で混練すればよい。また、ゴ
ム組成物の加硫は通常、130〜170℃の温度で10〜
60分間加圧することにより行なわれる。 本発明によるコンベヤベルトは、上記3元共重
合体を含むゴム配合物を加硫してなる加硫ゴムを
少なくとも表面層として有し、金属や有機繊維コ
ード、帆布等でその長手方向に補給されたコンベ
ヤベルトは、オイルサンドに対してすぐれた非付
着性を有するのみならず、耐油性、柔軟性、低温
特性にすぐれるので、オイルサンド運搬用コンベ
ヤベルトとしてすぐれた性能を発揮する。 第1図は、コンベヤベルトの一例の断面図を示
し、コンベヤベルトの表裏を構成する表面層1及
び2、即ち、カバーゴムの間にクツシヨンゴム3
が積層接合されており、このクツシヨンゴム内に
心材としてのスチールコード4が埋設されてい
る。第2図は、コンベヤベルトの別の一例の断面
図を示し、表面層1及び2とクツシヨンゴム3と
の間の接合を強化するために、中間ゴム層5が更
に積層接合されている。 クツシヨンゴムとしては天然ゴム、イソプレン
ゴム、スチレン−ブタジエンゴム、アクリロニト
リルーブタジエンゴム又はこれらの混合物が好ま
しく用いられるが、特に、アクリロニトリル含量
が15〜25重量%の範囲にあるアクリロニトリル−
ブタジエンゴムが、耐寒性と耐油性のバランスに
すぐれるので特に好ましく用いられる。これらク
ツシヨンゴムにおける加硫剤や充填剤等の配合剤
については、従来、既によく知られているが、本
発明による3元重合体ゴムの場合と同じでもよ
い。 (発明の効果) 以上のように、本発明によるオイルサンド用コ
イルベヤベルトにおいては、前記した親水基含有
ビニル単量体をα,β−不飽和ニトリル−共役ジ
エン共重合体、代表的には、アクリロニトリル−
ブタジエン共重合体の共重合体成分単位として含
有させて、加硫ゴム自体に高い極性を付与したの
で、かかる加硫ゴムを表面層に有するコンベヤベ
ルトは、その表面が高い極性を有し、オイルサン
ドの運搬に際して、オイルサンドが実質的に付着
しない。また、従来の如くベルト表面に燈油若し
くは水等を散布せずに、オイルサンドをその表面
に実質的に付着させないで、採取地点から抽出精
製プラントへ運搬することができる。 また、コンベヤベルト表面に水や不凍液を含む
水性の非付着液を散布する場合でも、表面層が高
極性であるために、ベルト表面に水膜が形成され
る結果、オイルサンドの積載ごとに非付着液を散
布する必要がなく、非付着液の散布回数及び消費
量を著しく低減することができる。勿論、本発明
のコンベヤベルトは耐油性にもすぐれるので、必
要ならば、その表面に燈油等を散布しても何ら差
支えない。 従つて、本発明のコンベヤベルトによれば、不
要は非付着液の経費を節約でき、非付着液による
コンベヤベルトの劣化が生じにくくなると共に、
水等の混入による採取オイルサンドの余分な精製
操作が省略され、採取及び精製コストを低減する
ことができる。また、軽油等の引火性非付着液を
特に使用する必要がないので、それによる火災等
の危険性も解消される。 (実施例) 以下に本発明の実施例を挙げるが、本発明はこ
れら実施例に限定されるものではない。尚、以下
において部は重量部を示す。 実施例 (ゴム配合物及び加硫ゴムの調製) 表に示す成分単位からなる3元共重合体100部、
カーボンブラツク(N−330HAF)55部、酸化亜
鉛5部、ステアリン酸1部及び老化防止剤3部を
密閉式混合機で混合した後、更にオープンロール
にてイオン2部と加硫促進剤1.5部を混合して、
ゴム混合物を調製した。次に、各ゴム配合物を
150℃で30分感加硫した後、その物性を測定した。
結果を表に示す。 比較のために、ゴムとして市販のアクリロニト
リルーブタジエンゴム(日本合成ゴム(株)製
N250S、結合アクリロニトリル量20重量%、ブタ
ジエン80重量%)を用いた以外は、上記と同様に
してゴム配合物を調製し、150℃で30分間加硫し
た後、その物性を測定した。結果を表に示す。 (ゴムシートのオイルサンド付着試験) 本発明によるゴム配合物を加硫してなる実施例
1乃至15の加硫ゴムシート及び比較例1のシート
(厚さ2mm、幅20cm、長さ30cm)について、下記
のオイルサンド付着試験を行なつた。 機長9mの第1のベルトコンベヤ、機長9mの
第2のベルトコンベヤ及び機長4mの第3のベル
トコンベヤをコ字状に配列し、第1から第2へ、
第2から第3へとオイルサンドを順次運搬し得る
ように、試験装置を構成し、中央に位置する第2
のベルトコンベヤ上に上記各加硫ゴムシートを接
着剤にて接着した。 雰囲気温度20〜25℃において、第1のベルトコ
ンベヤの端部上にホツパーを設置し、第1のベル
トコンベヤ端部上にこのホツパーからカナダ産オ
イルサンドを4Kg/分の割合で供給し、各ベルト
コンベヤを40m/分の速度で20分間走行させた。
このようにして、各ベルトコンベヤによ
(Industrial Application Field) The present invention relates to a conveyor belt for transporting oil sand that has excellent oil sand non-adhesion properties. (Prior art) Oil sands are petroleum resources that are abundantly deposited, especially in Canada and Venezuela. Among them, Canada's Athabasca oil sands account for about 1% of the world's oil reserves.
It is famous for having reserves of 3. Taking Athabasca oil sand as an example, it is formed by a thin film of water covering a fine silica sand flow, which is further surrounded by bitumen, and the water film also contains trace amounts of metals. ing. The oil sands generally contain 5 to 20% by weight of heavy viscous tar-like material, or bitumen, and are therefore commercially extracted as a petroleum resource. Collection methods include so-called open-pit mining, and a method in which unnecessary components such as bithyumen and silica sand are separated and collected underground, but in Athabasca, open-pit mining is carried out in which overburden from the oil sand is removed and the oil sand is directly collected. The collected oil sands are then transported to an extraction and purification plant by a conveyor belt. The conveyor belt that transports oil sands has
Conventionally, rubber belts made of a mixed rubber compound of natural rubber and styrene-butadiene rubber or acrylonitrile-butadiene rubber reinforced with steel cords have been used, but these conveyor belts are prone to oil sand adhesion and accumulation on their surfaces. This has the problem of not only contaminating the conveyor belt but also obstructing the conveyor belt from moving straight and reducing its carrying capacity. For this reason, kerosene,
Relatively inexpensive petroleum fractions such as light oil are sprayed onto the conveyor belt to prevent oil sand from adhering to the conveyor belt.
This is transported to an extraction and purification plant. However, this method uses flammable kerosene and diesel oil, which poses a risk of fire, accelerates the deterioration of the conveyor belt, and increases collection costs. Therefore, in recent years, instead of kerosene or diesel oil, water has been used as a non-stick liquid in the summer and an aqueous mixture of water, surfactant and antifreeze in the winter. Not only does antifreeze get mixed in with the oil sands, making separation of the oil sands extra expensive, but there is also the risk that the non-adherent liquid itself may freeze at temperatures as low as -50°C. In order to solve the above problems, Japanese Patent Application Laid-Open No. 58-198548 and No. 58-198550 have already published
Conveyor belts have been proposed that have a surface layer of non-adhesive vulcanized rubber made by vulcanizing a rubber composition mixed with a highly polar material, such as a glycol such as ethylene glycol or propylene glycol.
However, in order to obtain such non-adhesive vulcanized rubber, the conventional rubber processing method of kneading highly polar materials such as ethylene glycol and propylene glycol with rubber in an internal mixer does not allow for the uniform production of highly polar materials such as ethylene glycol or propylene glycol. The amount of material that can be incorporated into rubber is limited. For example, when using acrylonitrile-butadiene rubber with acrylonitrile content of 20% by weight as the rubber and ethylene glycol as the highly polar material, when kneading is carried out in an internal mixer, approximately 5% of the ethylene glycol is mixed with 100 parts by weight of the rubber. Parts by weight is the maximum blending amount in normal kneading operations, and if this is exceeded, the rubber will slip on the roll surface during kneading processing using an internal mixer or open rolls. However, with this level of ethylene glycol content, the vulcanized rubber may still not have sufficient anti-stick properties. (Objective of the Invention) As a result of intensive research to solve the above-mentioned problems, the present inventors have found that a predetermined hydrophilic group-containing vinyl monomer is combined with a conjugated diene such as butadiene or isoprene and an α,β- A rubber compound containing a terpolymer obtained by copolymerization with an unsaturated nitrile has a highly polar surface after vulcanization.
The present invention was based on the discovery that a conveyor belt having extremely good oil sand adhesion resistance and having such vulcanized rubber as at least the surface layer is extremely suitable for conveying oil sand. be. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a conveyor belt for transporting oil sand which is excellent in non-adhesion of oil sand. (Structure of the Invention) The conveyor belt for conveying oil sand according to the present invention comprises (a) 55 to 95% by weight of conjugated diene component units, (b) 3 to 20% by weight of α,β-unsaturated nitrile, and (c) General Formula CH 2 = CR 1 COO-(CH 2 CH 2 O) o -R 2 (where, R 1 is a hydrogen atom or a methyl group, R 2 is an alkyl group having 1 to 3 carbon atoms, and n is a number of 2 to 8 Hydrophilic group-containing vinyl monomer component unit 2 represented by
It is characterized by having at least the surface layer a vulcanized rubber obtained by vulcanizing a compound containing a terpolymer of ~25% by weight. Among the copolymer component units in the present invention, as the conjugated diene, for example, butadiene, isoprene, chloroprene, 1,3-pentadiene, hexadiene, etc. can be used, but α,β-unsaturated nitriles and hydrophilic Butadiene or isoprene is preferred from the viewpoint of ease of copolymerization with the group-containing monomer. As the α,β-unsaturated nitrile, acrylonitrile, methacrylonitrile, etc. can be used, and acrylonitrile is particularly preferred. The terpolymer in the present invention has the general formula CH 2 =CR 1 COO-(CH 2 CH 2 O) o -R 2 (wherein R 1 is a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms, and n represents a number of 2 to 8.) Contains a vinyl monomer component containing a hydrophilic group. In the above general formula, R 1 is a hydrogen atom or a methyl group, and R 2 is a methyl group, an ethyl group, or a propyl group. If R 2 is a higher alkyl group equal to or higher than a butyl group, the resulting vulcanized rubber has poor affinity with water and also has reduced oil resistance, and is therefore not suitable for use in the present invention. Further, in the above general formula, n is a number from 2 to 8, preferably from 2 to 4. When n is 1, the resulting vulcanized rubber does not have good cold resistance and also has poor oil resistance. On the other hand, when n is 9 or more, the copolymerizability decreases, making it impossible to obtain the terpolymer used in the present invention. Examples of such hydrophilic group-containing vinyl monomers include ethyl carbitol acrylate, ethyl carbitol methacrylate, methyl carbitol acrylate, methyl carbitol methacrylate, methyl triglycol acrylate, methyl triglycol methacrylate, and acrylic acid. Examples include ethyl triglycol acid, ethyl triglycol methacrylate, methyltetraglycol acrylate, methyltetraglycol methacrylate, propyl triglycol acrylate, and ethylpentaglycol methacrylate. The above-mentioned hydrophilic group-containing vinyl monomer is composed of the corresponding acrylic acid or methacrylic acid,
For example, acrylic acid and 1/2 molar amount of diethylene glycol ethyl ether (carbitol) are mixed with an alkylene glycol alkyl ether using an acid catalyst such as p-toluenesulfonic acid under reflux. By reacting for 2 hours, ethyl carbitol acrylate can be easily obtained. In the present invention, in the terpolymer having the monomer component units as described above, 55 to 95% by weight of conjugated diene component units, 3 to 20% by weight of α,β-unsaturated nitrile, and hydrophilic group The vinyl monomer component unit content is 2 to 25% by weight. Preferably, conjugated diene component units 67 to 91% by weight, α,β-unsaturated nitrile 4 to 13% by weight, and hydrophilic group-containing vinyl monomer 5
~20% by weight. When the conjugated diene component unit is less than 55% by weight, the resulting vulcanized rubber has insufficient cold resistance and is unsuitable as a surface layer for oil sand conveyor belts that are often used in cold regions. On the other hand, when it exceeds 95% by weight, the oil resistance becomes poor and the affinity with water becomes poor. When the α,β-unsaturated nitrile component unit is less than 3% by weight, oil resistance is poor,
When the weight percentage is exceeded, the elasticity becomes inferior,
It is not preferable as a surface layer rubber for a conveyor belt, and has poor cold resistance, so it is also unsuitable as a surface layer for a conveyor belt for transporting oil sand. Furthermore, the hydrophilic group-containing vinyl monomer component unit is 3
In the original copolymer, it is 2 to 25% by weight, preferably 5 to 20% by weight. If it is less than 2% by weight, satisfactory polarity cannot be given to the vulcanized rubber, while if it exceeds 25% by weight, the elongation and strength will drop significantly, making it unsuitable for use in conveyor belts. do not have. In addition, the terpolymer described above has an intrinsic viscosity [η] (in tetrahydrofuran at 30°C)
is 1.0 to 4.0 dl/g, preferably 1.5 to 3.0 dl/g. When the intrinsic viscosity is less than 1.0dl/g,
This is because the solid retention property is poor and handling is difficult, and on the other hand, when it exceeds 4.0 dl/g, the processability is poor. The terpolymer as described above includes, for example, 55 to 95% by weight of a conjugated diene monomer, 3 to 20% by weight of an α,β-unsaturated nitrile monomer, and 2 to 20% by weight of the hydrophilic group-containing vinyl monomer. 25% by weight of the mixture in an aqueous medium;
Alternatively, it can be obtained by conventional radical copolymerization in an organic solvent. Examples of radical polymerization initiators include organic oxides such as benzoyl peroxide, cumene hydroperoxide, paramethane hydroperoxide, and lauroyl peroxide, bisazo compounds such as azobisisobutyl dinitrile, persulfates such as potassium persulfate, and organic A redox catalyst such as a combination of a compound and iron sulfate is used. A molecular weight regulator may also be used if necessary. As the molecular weight modifier, for example, t-dodecyl mercaptan, dialkylxanthogen disulfide, etc. are used. The copolymerization reaction is usually carried out at a temperature of 0 to 50 DEG C. in an oxygen-free atmosphere. The rubber compound in the present invention contains an appropriate vulcanizing agent together with the terpolymer. Sulfur and/or sulfur-containing compounds are usually blended as the vulcanizing agent. Any sulfur-containing compound may be used as long as it can vulcanize the terpolymer rubber, but for example, tetramethylthium disulfide, tetraethylthium disulfide, and the like are preferably used. These vulcanizing agents are 0.1 to 10 parts by weight per 100 parts by weight of the above terpolymer rubber,
Preferably it is blended in an amount of 1 to 5 parts by weight. Further, a vulcanization aid may be used in combination with the vulcanizing agent. Conventionally known vulcanization aids can be used as appropriate; for example, diphenylguanidine, di-orthotolylguanidine salt of dicatecolboric acid, 2-mercaptobenzothiazole, Dibenzothiazyl disulfide, N-
Cyclohexyl-2-benzothiazyl sulfenamide, tetramethylthiuram monosulfide, etc., and metal oxides such as zinc white, magnesium oxide, litharge, etc., and fatty acids such as stearic acid and oleic acid as vulcanization accelerators. , amines such as triethanolamine and diethanolamine, and other activators such as diethylene glycol and triallyl trimellitate. Furthermore, in the present invention, the rubber compound may contain various commonly used fillers in addition to the above. For example, fillers include white carbon, carbon black, silica, calcium carbonate, clay, magnesium carbonate, diatomaceous earth, various silicates, and organic fillers. When blending these fillers, plasticizers such as di(2-ethylhexyl) phthalate, di(2-ethylhexyl) adipate, dibutyl phthalate, tri(2-ethylhexyl) trimellitate, tricresyl phosphate, and paraffin-based processes are used. A softening agent such as oil or aromatic process oil can be used in combination. Furthermore,
Phenyl-α-naphthylamine, N,N'-diphenyl-p-phenylenediamine, 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p
- Antiaging agents such as phenylene diamine, 2-mercaptobenzimidazole, and nickel dibutyldithiocarbamate can be used. If necessary, scorch inhibitors, processing aids, etc. are also used in combination. In order to produce the rubber compound according to the present invention, the above components are usually kneaded using a Banbury mixer, a kneader mixer, a roll, or the like. In addition, vulcanization of rubber compositions is usually performed at a temperature of 130 to 170 °C for 10 to 10 minutes.
This is done by applying pressure for 60 minutes. The conveyor belt according to the present invention has at least a surface layer of vulcanized rubber made by vulcanizing a rubber compound containing the above-mentioned terpolymer, and is replenished in the longitudinal direction with metal or organic fiber cords, canvas, etc. This conveyor belt not only has excellent non-stick properties against oil sand, but also has excellent oil resistance, flexibility, and low-temperature properties, so it exhibits excellent performance as a conveyor belt for transporting oil sand. FIG. 1 shows a cross-sectional view of an example of a conveyor belt.
are laminated and bonded, and a steel cord 4 as a core material is embedded within this cushion rubber. FIG. 2 shows a sectional view of another example of a conveyor belt, in which an intermediate rubber layer 5 is further laminated and bonded in order to strengthen the bond between the surface layers 1 and 2 and the cushion rubber 3. As the cushion rubber, natural rubber, isoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, or mixtures thereof are preferably used, and in particular, acrylonitrile-butadiene rubber having an acrylonitrile content in the range of 15 to 25% by weight is used.
Butadiene rubber is particularly preferably used because it has an excellent balance of cold resistance and oil resistance. The compounding agents such as vulcanizing agents and fillers in these cushion rubbers are well known in the art, but may be the same as in the case of the terpolymer rubber according to the present invention. (Effects of the Invention) As described above, in the coil conveyor belt for oil sands according to the present invention, the hydrophilic group-containing vinyl monomer described above is replaced with an α,β-unsaturated nitrile-conjugated diene copolymer, typically , acrylonitrile-
Containing the butadiene copolymer as a copolymer component unit imparts high polarity to the vulcanized rubber itself, so conveyor belts with such vulcanized rubber in the surface layer have high polarity on the surface and oil When the sand is transported, oil sand is not substantially attached. Further, the belt can be transported from the collection point to the extraction and purification plant without spraying kerosene or water on the surface of the belt as in the past, and without substantially adhering oil sand to the belt surface. Furthermore, even when spraying an aqueous non-adhesive liquid containing water or antifreeze on the conveyor belt surface, the surface layer is highly polar, so a water film is formed on the belt surface, resulting in non-adhesive liquid every time oil sand is loaded. There is no need to spray the adhering liquid, and the number of times of spraying and consumption of the non-adhering liquid can be significantly reduced. Of course, since the conveyor belt of the present invention has excellent oil resistance, if necessary, kerosene or the like may be sprinkled on its surface without any problem. Therefore, according to the conveyor belt of the present invention, the cost of unnecessary non-adhesive liquid can be saved, and deterioration of the conveyor belt due to non-adherent liquid is less likely to occur.
Extra refining operations for collected oil sand due to contamination with water etc. are omitted, and costs for collection and refining can be reduced. Furthermore, since there is no need to use a flammable non-adhesive liquid such as light oil, the risk of fire or the like caused by it is also eliminated. (Examples) Examples of the present invention are listed below, but the present invention is not limited to these Examples. Note that in the following, parts indicate parts by weight. Examples (Preparation of rubber compound and vulcanized rubber) 100 parts of a terpolymer consisting of the component units shown in the table,
After mixing 55 parts of carbon black (N-330HAF), 5 parts of zinc oxide, 1 part of stearic acid, and 3 parts of anti-aging agent in an internal mixer, 2 parts of ions and 1.5 parts of vulcanization accelerator were mixed in an open roll. Mix the
A rubber mixture was prepared. Next, each rubber compound
After sensitive vulcanization at 150°C for 30 minutes, its physical properties were measured.
The results are shown in the table. For comparison, commercially available acrylonitrile-butadiene rubber (manufactured by Japan Synthetic Rubber Co., Ltd.) was used as a rubber.
A rubber compound was prepared in the same manner as above except that N250S, bound acrylonitrile amount 20% by weight, butadiene 80% by weight) was used, and after vulcanization at 150°C for 30 minutes, its physical properties were measured. The results are shown in the table. (Oil sand adhesion test on rubber sheets) Regarding the vulcanized rubber sheets of Examples 1 to 15 obtained by vulcanizing the rubber compound according to the present invention and the sheet of Comparative Example 1 (thickness: 2 mm, width: 20 cm, length: 30 cm) The following oil sand adhesion test was conducted. A first belt conveyor with a machine length of 9 m, a second belt conveyor with a machine length of 9 m, and a third belt conveyor with a machine length of 4 m are arranged in a U-shape, and from the first to the second belt conveyor,
The test equipment was constructed so that the oil sand could be transported sequentially from the second to the third, and the second
Each of the above vulcanized rubber sheets was adhered onto a belt conveyor using an adhesive. At an ambient temperature of 20-25°C, a hopper is installed on the end of the first belt conveyor, and Canadian oil sands are fed from this hopper onto the end of the first belt conveyor at a rate of 4 kg/min. The belt conveyor was run for 20 minutes at a speed of 40 m/min.
In this way, each belt conveyor

【表】【table】

【表】 つてオイルサンド80Kgを運搬した後、第2のベル
トコンベヤにおける加硫ゴムシート中央部(面積
10x10cm)に付着したオイルサンドをへらでかき
取り、その重量をオイルサンド付着量として測定
した。結果を表に示す。 表から明らかなように、本発明による前記3元
共重合体ゴム配合物を加硫してなる加硫ゴムシー
トには少量のオイルサンドが付着しただけである
が、従来のゴム配合物(比較例1)によるゴムシ
ートには大量のオイルサンドが付着した。
[Table] After transporting 80 kg of oil sand, the central part of the vulcanized rubber sheet (area
The oil sand adhering to the surface (10 x 10 cm) was scraped off with a spatula, and the weight was measured as the amount of oil sand adhering. The results are shown in the table. As is clear from the table, only a small amount of oil sand adhered to the vulcanized rubber sheet obtained by vulcanizing the tertiary copolymer rubber compound according to the present invention, whereas the conventional rubber compound (comparison) A large amount of oil sand adhered to the rubber sheet according to Example 1).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はコンベヤベルトの例を示す
断面図である。 1及び2……表面層、3……クツシヨンゴム、
4……心材、5……中間ゴム層。
1 and 2 are cross-sectional views showing examples of conveyor belts. 1 and 2... surface layer, 3... cushion rubber,
4... Heartwood, 5... Intermediate rubber layer.

Claims (1)

【特許請求の範囲】 1 (a) 共役ジエン成分単位55〜95重量%、 (b) α,β−不飽和ニトリル3〜20重量%、 及び (c) 一般式 CH2=CR1COO−(CH2CH2O)o−R2 (但し、R1は水素原子又はメチル基、R2は炭素
数1〜3のアルキル基、nは2〜8の数を示す。) で表わされる親水基含有ビニル単量体成分単位2
〜25重量% よりなる3元共重合体を含む配合物を加硫してな
る加硫ゴムを少なくとも表面層として有すること
を特徴とするオイルサンド用コンベヤベルト。 2 共役ジエンがブタジエン又はイソプレンであ
り、α,β−不飽和ニトリルがアクリロニトリル
であることを特徴とする特許請求の範囲第1項記
載のオイルサンド運搬用コンベヤベルト。 3 親水基含有ビニル単量体成分単位がアクリル
酸エチルカルビトールであることを特徴とする特
許請求の範囲第1項記載のオイルサンド運搬用コ
ンベヤベルト。 4 親水基含有ビニル単量体成分単位がアクリル
酸メチルトリグリコールであることを特徴とする
特許請求の範囲第1項記載のオイルサンド運搬用
コンベヤベルト。
[Scope of Claims] 1 (a) 55 to 95% by weight of conjugated diene component units, (b) 3 to 20% by weight of α,β-unsaturated nitrile, and (c) General formula CH 2 =CR 1 COO-( Hydrophilic group represented by CH 2 CH 2 O) o −R 2 (wherein, R 1 is a hydrogen atom or a methyl group, R 2 is an alkyl group having 1 to 3 carbon atoms, and n is a number of 2 to 8) Containing vinyl monomer component unit 2
1. A conveyor belt for oil sands, characterized in that it has at least a surface layer of vulcanized rubber obtained by vulcanizing a compound containing a terpolymer consisting of ~25% by weight. 2. The conveyor belt for transporting oil sands according to claim 1, wherein the conjugated diene is butadiene or isoprene, and the α,β-unsaturated nitrile is acrylonitrile. 3. The conveyor belt for oil sand transport according to claim 1, wherein the hydrophilic group-containing vinyl monomer component unit is ethyl carbitol acrylate. 4. The conveyor belt for oil sand transport according to claim 1, wherein the hydrophilic group-containing vinyl monomer component unit is methyl triglycol acrylate.
JP14276585A 1985-06-28 1985-06-28 Conveyor belt for transporting oil sand Granted JPS621536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14276585A JPS621536A (en) 1985-06-28 1985-06-28 Conveyor belt for transporting oil sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14276585A JPS621536A (en) 1985-06-28 1985-06-28 Conveyor belt for transporting oil sand

Publications (2)

Publication Number Publication Date
JPS621536A JPS621536A (en) 1987-01-07
JPH0455388B2 true JPH0455388B2 (en) 1992-09-03

Family

ID=15323062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14276585A Granted JPS621536A (en) 1985-06-28 1985-06-28 Conveyor belt for transporting oil sand

Country Status (1)

Country Link
JP (1) JPS621536A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333196B1 (en) * 2016-12-09 2020-05-13 ARLANXEO Deutschland GmbH Hydrogenated nitrile diene carboxylic acid ester copolymers
US11286325B2 (en) * 2017-12-21 2022-03-29 Arlanxeo Deutschland Gmbh Nitrile-diene-carboxylic acid ester copolymers

Also Published As

Publication number Publication date
JPS621536A (en) 1987-01-07

Similar Documents

Publication Publication Date Title
JP4847978B2 (en) High damping rubber composition and damping member
SK282304B6 (en) One-component, in hot hardenable mixture based on liquid caoutchoucs, its production method and use
KR20100014936A (en) Nitrile copolymer rubber composition and nitrile copolymer latex composition
KR20120039043A (en) Acrylic rubber composition and crosslinked product thereof
CN100381496C (en) Oil resistant and weather resistant rubber composition and molded product using the same
CN101415767A (en) Rubber composition, crosslinked rubber and molded article
US4517332A (en) Rubber composition containing a silicone raw rubber
JP5569720B2 (en) Method for producing moisture curable composition
JPH0455389B2 (en)
JPH0455388B2 (en)
JP2011057375A (en) Rubber composition for conveyor belt and conveyor belt
JP5485342B2 (en) Chloroprene rubber, production method thereof, chloroprene rubber composition and vulcanized product thereof
KR100572192B1 (en) Chloroprene rubber composition
JP3669874B2 (en) Anti-vibration rubber composition and anti-vibration member for automobile
JP3753493B2 (en) Rubber composition for high damping rubber bearing
JP5423121B2 (en) Rubber crawler
CN111518509B (en) Solvent-free reactive adhesive composition and method for producing tire using same
JP3582113B2 (en) Rubber composition comprising unsaturated nitrile-conjugated diene copolymer and non-black reinforcing filler
TWI656023B (en) Rubber support
JPH10219033A (en) Rubber composition for high-attenuation support
JPS61152748A (en) Rubber composition
JPH09316414A (en) Rubber adhesive composition and production of rubber composite
JP3722774B2 (en) Chloroprene-based rubber composition
JPS61152747A (en) Rubber composition
JP2020084162A (en) Mixed rubber and method for producing the same, crosslinkable rubber composition and rubber crosslinked material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term