JPH0455996B2 - - Google Patents
Info
- Publication number
- JPH0455996B2 JPH0455996B2 JP4920984A JP4920984A JPH0455996B2 JP H0455996 B2 JPH0455996 B2 JP H0455996B2 JP 4920984 A JP4920984 A JP 4920984A JP 4920984 A JP4920984 A JP 4920984A JP H0455996 B2 JPH0455996 B2 JP H0455996B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- weight
- component compound
- aluminum
- nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052796 boron Inorganic materials 0.000 claims description 10
- 150000004767 nitrides Chemical class 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 239000007789 gas Substances 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 description 35
- 239000002245 particle Substances 0.000 description 24
- 239000000843 powder Substances 0.000 description 15
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 13
- 239000002131 composite material Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229920001778 nylon Polymers 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910001960 metal nitrate Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
【発明の詳細な説明】
本発明は新規な多孔性セラミツク及びその製造
方法を提供する。群しくはアルミニウム、ケイ素
及びホウ素よりなる群から選ばれた少なくとも一
種の金属の炭化物又は窒化物よりなる焼結体で、
焼結されて結合された該アルミニウム、ケイ素及
びホウ素よりなる群から選ばれた少なくとも一種
の金属の炭化物又は窒化物の結晶粒子の一部に連
続した孔を構成してなることを特徴とする多孔性
セラミツクである。また本発明はアルミニウム、
ケイ素及びホウ素よりなる群から選ばれた少なく
とも一種の金属の炭化物又は窒化物60〜97重量%
とカーボン3〜40重量%とからなる焼結体を、酸
素又は炭酸ガスを含む雰囲気下に600〜900℃の温
度で加熱して含有カーボンを除去することを特徴
とする多孔性セラミツクの製造方法をも提供する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel porous ceramic and a method for producing the same. A sintered body made of at least one metal carbide or nitride selected from the group consisting of aluminum, silicon, and boron;
A porous structure characterized in that continuous pores are formed in a part of crystal grains of carbide or nitride of at least one metal selected from the group consisting of aluminum, silicon, and boron, which are sintered and bonded. It is a sexual ceramic. The present invention also includes aluminum,
60-97% by weight of at least one metal carbide or nitride selected from the group consisting of silicon and boron
A method for producing porous ceramics, which comprises heating a sintered body consisting of carbon and 3 to 40% by weight of carbon at a temperature of 600 to 900°C in an atmosphere containing oxygen or carbon dioxide gas to remove the carbon contained therein. It also provides the following.
従来、各種産業用及び民生用の機械、機器材或
いは電子機器材料等に種々のセラミツク又はセラ
ミツク複合体が使用されている。しかしながら特
定の用途に要求されるニーズを満足する材料を工
業的に製造することはしばしば困難を伴う。 Conventionally, various ceramics or ceramic composites have been used in various industrial and consumer machines, equipment materials, electronic equipment materials, and the like. However, it is often difficult to industrially produce materials that meet the needs of specific applications.
本発明者等は特定の性状を有する種々のセラミ
ツク体の開発を鋭意行つて来た。特に多孔性セラ
ミツクを工業的に製造する研究を続けた結果、新
規な多孔性セラミツクの開発に成功し、ここに提
案するに至つた。 The present inventors have worked diligently to develop various ceramic bodies having specific properties. In particular, as a result of continuing research on the industrial production of porous ceramics, we succeeded in developing a new porous ceramic, which we have proposed here.
即ち、本発明ルカリ溶液はアルミニウム、ケイ
素及びホウ素よりなる群から選ばれた少なくとも
一種の金属の炭化物又は窒化物よりなる焼結体
で、焼結されて結合された該アルミニウム、ケイ
素及びホウ素よりなる群から選ばれた少なくとも
一種の金属の炭化物又は窒化物の結晶粒子の一部
に連続した孔を構成してなることを特徴とする多
孔性セラミツクである。また本発明はアルミニウ
ム、ケイ素及びホウ素よりなる群から選ばれた少
なくとも一種の金属の炭化物又は窒化物60〜97重
量%とカーボン3〜40重量%とからなる焼結体
を、酸素又は炭酸ガスを含む雰囲気下に600〜900
℃の温度で加熱して含有カーボンを除去すること
を特徴とする多孔性セラミツクの製造方法をも提
供するものである。 That is, the alkali solution of the present invention is a sintered body made of carbide or nitride of at least one metal selected from the group consisting of aluminum, silicon, and boron, and is made of the aluminum, silicon, and boron bonded by sintering. This porous ceramic is characterized in that continuous pores are formed in a part of crystal grains of at least one metal carbide or nitride selected from the group. Further, the present invention provides a sintered body consisting of 60 to 97% by weight of at least one metal carbide or nitride selected from the group consisting of aluminum, silicon, and boron and 3 to 40% by weight of carbon, in the presence of oxygen or carbon dioxide gas. 600~900 under atmosphere containing
The present invention also provides a method for producing porous ceramics, characterized in that the carbon contained therein is removed by heating at a temperature of .degree.
本発明の多孔性セラミツクはその成分がアルミ
ニウム、ケイ素及びホウ素よりなる群から選ばれ
た少なくとも一種の金属の炭化物又は窒化物(以
下、単に焼結成分化合物と言う)よりなる焼結体
で、該焼結成分化合物の結晶粒子の一部に連続し
た孔を有している。該孔の形状、大きさ等につい
てはその製造方法によつて影響をうけるので一概
に限定出来ないが一般には0.1〜100μmのものか
ら選択出来る。これらの孔がどのように構成され
ているかは多孔性セラミツクを機械的に破断し、
その破断面の電子顕微鏡写真をとることによつて
確認出来る。例えば添付図面第1図は本発明の実
施例1で得られた多孔性セラミツクを機械的に破
断し、その破断面を電子顕微鏡で撮影したもので
ある。第1図から明らかなように焼結成分化合物
(第1図にあつては窒化アルミニウム)の粒子の
結晶が相互に緊密に充填されていて、その粒子の
粒界面の一部の充填部が欠如し、この欠如部が連
続した孔を形成している。従つて焼結成分化合物
同志は相互にその結晶粒の一部が焼結してつらな
つていので、強度は著しく強く、形状の安定性も
すぐれている。例えば該多孔性セラミツクは20%
の空隙率を有するものにあつて20Kg/mm2以上の強
度を有するものさえある。 The porous ceramic of the present invention is a sintered body whose component is at least one metal carbide or nitride (hereinafter simply referred to as sintered component compound) selected from the group consisting of aluminum, silicon, and boron. Some of the crystal grains of the sintered component compound have continuous pores. The shape, size, etc. of the pores are influenced by the manufacturing method and cannot be absolutely limited, but they can generally be selected from 0.1 to 100 μm. How these pores are structured can be determined by mechanically breaking the porous ceramic.
This can be confirmed by taking an electron micrograph of the fractured surface. For example, FIG. 1 of the accompanying drawings shows the porous ceramic obtained in Example 1 of the present invention mechanically fractured and the fractured surface taken with an electron microscope. As is clear from Figure 1, the crystals of the particles of the sintered component compound (aluminum nitride in Figure 1) are tightly packed with each other, and some of the grain boundaries of the particles are missing. However, this missing part forms a continuous hole. Therefore, the sintered component compounds have a part of their crystal grains that are sintered and linked together, so the strength is extremely high and the shape stability is also excellent. For example, the porous ceramic is 20%
Some even have a strength of 20 kg/mm 2 or more with a porosity of .
本発明の多孔性セラミツクはその製造方法を特
に限定するものではないが、その代表的なものを
例示すると次ぎの通りである。先ず、前記焼結成
分化合物となる粉末(以下、第一成分化合物と言
う)とカーボン又はカーボンになる得る化合物
(以下、第二成分化合物と言う)とを混合する。
該第一成分化合物は既に公知の化合物である。本
発明の多孔性セラミツクを得る原料としてはこれ
らの公知の化合物をそのまヽ使用して、焼結すれ
ばよい。一般には焼結性をより好ましくするため
に該第一成分化合物の粒子径は出来るだけ小さ
く、しかも粒度分布が揃つたものが好適である。
これらの粒子径及び粒度分布は該第一成分化合物
の種類、焼結条件等によつて異なり一概に限定出
来ないが一般には例えば平均粒子径が5μm以下好
ましくは2μm以下で、粒度分布は平均粒子径をD
とするとき0.4D〜1.6Dの範囲の粒子が50重量%
以上を占めるようなもので、その純度が95%以上
好ましくは98%以上のものが特に好適に使用され
る。特に第一成分化合物のなかで窒化アルミニウ
ムを用いるときは次ぎのような本発明者等が開発
した新規な窒化アルミニウム粉末を用いると好適
である。 Although there are no particular limitations on the manufacturing method of the porous ceramic of the present invention, typical examples thereof are as follows. First, a powder that will become the sintered component compound (hereinafter referred to as a first component compound) and carbon or a compound that can become carbon (hereinafter referred to as a second component compound) are mixed.
The first component compound is a known compound. As raw materials for obtaining the porous ceramic of the present invention, these known compounds may be used as they are and sintered. Generally, in order to improve sinterability, it is preferable that the particle size of the first component compound be as small as possible and have a uniform particle size distribution.
These particle sizes and particle size distributions vary depending on the type of the first component compound, sintering conditions, etc., and cannot be absolutely limited, but generally, for example, the average particle size is 5 μm or less, preferably 2 μm or less, and the particle size distribution is based on the average particle size. Diameter D
50% by weight of particles ranging from 0.4D to 1.6D
Those with a purity of 95% or more, preferably 98% or more are particularly preferably used. In particular, when aluminum nitride is used as the first component compound, it is preferable to use the following new aluminum nitride powder developed by the present inventors.
例えば、平均粒子径2μm以下、3μm以下の粒子
のものを70容量%以上の割合で含有するもので且
つ酸素含有量3.0重量%以下好ましくは1.5重量%
以下及び窒化アルミニウムの純度が95%以上の窒
化アルミニウム粉末である。 For example, it contains particles with an average particle diameter of 2 μm or less, 3 μm or less in a ratio of 70% by volume or more, and the oxygen content is 3.0% by weight or less, preferably 1.5% by weight.
Aluminum nitride powder with a purity of 95% or more and aluminum nitride.
上記窒化アルミニウム粉末は次のような製造方
法によつて得られる。 The above aluminum nitride powder can be obtained by the following manufacturing method.
即ち、
(1) 平均粒子径が2μm以下で純度が99.0%以上好
ましくは99.9%以上の酸化アルミニウム微粒子
と灰分含量0.2重量%以下好ましくは0.1重量%
以下で平均粒子径が1μm以下のカーボン微粉末
とを液体分散媒体中で緊密に混合し、そのさい
該酸化アルミニウム微粉末対該カーボン微粉末
の重量比は1:0.36〜1:1であり;
(2) 得られた緊密混合物を、適宜乾燥し、窒化又
はアンモニアの雰囲気下で1400〜1700℃の温度
で焼成し;
(3) 次いで得られた微粉末を酸素を含む雰囲気下
で600〜900℃の温度で加熱して未反応のカーボ
ンを加熱除去し、窒化アルミニウム含量が少な
くとも95重量%であり、結合酸素の含量が最大
3.0重量%好ましくは1.5重量%であり、且つ不
純物としての金属化合物の含量が金属として最
大0.3重量%である平均粒子径が2μm以下の窒
化アルミニウム粉末を生成せしめることによつ
て製造することができる。 That is, (1) aluminum oxide fine particles with an average particle diameter of 2 μm or less and a purity of 99.0% or more, preferably 99.9% or more, and an ash content of 0.2% by weight or less, preferably 0.1% by weight.
The fine carbon powder having an average particle size of 1 μm or less is intimately mixed in a liquid dispersion medium, and the weight ratio of the fine aluminum oxide powder to the fine carbon powder is 1:0.36 to 1:1; (2) The intimate mixture obtained is suitably dried and calcined under an atmosphere of nitriding or ammonia at a temperature of 1400-1700°C; (3) The fine powder obtained is then heated under an oxygen-containing atmosphere at a temperature of 600-900°C. The unreacted carbon is removed by heating at a temperature of
3.0% by weight, preferably 1.5% by weight, and can be produced by producing aluminum nitride powder with an average particle size of 2 μm or less, in which the content of metal compounds as impurities is at most 0.3% by weight as metal. .
本発明の多孔性セラミツクの第二成分化合物は
カーボン又は焼結体を製造する過程でカーボンと
なりうる化合物である。従つて、第二成分化合物
の原料として必らずしもカーボンを使用する必要
はない。例えば焼結後にカーボンとなりうる化合
物例えばポリエチレングリコール、デンプン、等
を原料として使用することも出来る。しかしなが
ら、一般にはカーボンブラツク、黒鉛化カーボン
等を原料として使用するのが好ましい。上記第一
成分化合物と第二成分化合物との混合割合は後述
するように多孔性セラミツクの空隙率、孔径等に
影響を与えるので必要に応じて適宜実施すればよ
い。一般には前記第一成分化合物60〜97重量%と
第二成分化合物即ちカーボン3〜40重量%となる
ように選べば良好である。 The second component compound of the porous ceramic of the present invention is carbon or a compound that can become carbon in the process of producing a sintered body. Therefore, it is not necessary to use carbon as a raw material for the second component compound. For example, compounds that can become carbon after sintering, such as polyethylene glycol, starch, etc., can also be used as raw materials. However, it is generally preferable to use carbon black, graphitized carbon, etc. as the raw material. The mixing ratio of the first component compound and the second component compound affects the porosity, pore diameter, etc. of the porous ceramic, as will be described later, so it may be adjusted as necessary. In general, it is preferable to select 60 to 97% by weight of the first component compound and 3 to 40% by weight of the second component compound, that is, carbon.
次いで前記第一成分化合物と第二成分化合物と
を混合した混合物を焼結すると第一成分化合物と
第二成分化合物との複合セラミツクを得ることが
出来るが、該混合に際して、該第一成分化合物の
焼結助剤を例えば0.1〜5重量%となるように用
いることはしばしば好適な実施態様となる。該焼
結助剤は第一成分化合物の種類によつてそれぞれ
多少異なるので、該第一成分化合物の種類に応じ
て公知の焼結助剤から選び決定すればよい。一般
に好適に使用される焼結助剤は周期律表第a
族、同第a族等の金属酸化物該金属炭酸塩、該
金属硝酸塩等である。 Next, by sintering the mixture of the first component compound and the second component compound, a composite ceramic of the first component compound and the second component compound can be obtained. The use of sintering aids, e.g. 0.1 to 5% by weight, is often a preferred embodiment. Since the sintering aid varies somewhat depending on the type of the first component compound, it may be selected from known sintering aids depending on the type of the first component compound. Generally preferred sintering aids are those listed in periodic table a.
metal oxides, metal carbonates, metal nitrates, etc. of group A, metal oxides, metal carbonates, metal nitrates, etc.
前記第一成分化合物と第二成分化合物との原料
混合比が得られる多孔性セラミツクの空隙率を決
定するので得られる多孔性セラツクスに要求され
る空隙率に応じて、予め混合比特に上記第二成分
化合物の混合比を決定しておくのがよい。また同
様に多孔性セラミツクの孔径は原則として前記第
二成分化合物の粒子径によつて影響されるので、
得られる多孔性セラミツクに要求される孔径に応
じて該第二成分化合物の粒子径のものを選ぶとよ
い。また上記混合は特に限定されないが一般に
は、水、炭化水素類、アルコール類、石油エーテ
ル等の公知の液体分散体中で湿式混合することに
よつて混合するのが好適である。 The raw material mixing ratio of the first component compound and the second component compound determines the porosity of the porous ceramic to be obtained. It is better to determine the mixing ratio of the component compounds in advance. Similarly, since the pore size of porous ceramics is in principle influenced by the particle size of the second component compound,
The particle size of the second component compound may be selected depending on the pore size required for the porous ceramic to be obtained. Although the above-mentioned mixing is not particularly limited, it is generally preferable to perform wet mixing in a known liquid dispersion such as water, hydrocarbons, alcohols, petroleum ether, or the like.
上記混合された混合物は必要に応じて乾燥した
後、焼結に供される。該焼結するための温度は前
記第一成分化合物の種類によつて異なり一概に限
定出来ないが一般には1600〜2200℃の温度から選
べば好適である。 The above-mentioned mixture is dried as required and then subjected to sintering. The temperature for sintering varies depending on the type of the first component compound and cannot be absolutely limited, but it is generally suitable to select a temperature from 1,600 to 2,200°C.
前記方法で得られた焼結体は前記第一成分化合
物とカーボンとからなる複合セラミツクである。
この複合セラミツクは次いで酸素又炭酸ガスを含
む雰囲気下に600〜900℃の温度で加熱する。この
加熱処理によつて複合セラミツク中のカーボンが
酸素と反応し、複合セラミツクから除去され、本
発明の多孔性セラミツクとなる。 The sintered body obtained by the above method is a composite ceramic consisting of the first component compound and carbon.
This composite ceramic is then heated at a temperature of 600 DEG to 900 DEG C. in an atmosphere containing oxygen or carbon dioxide. Through this heat treatment, carbon in the composite ceramic reacts with oxygen and is removed from the composite ceramic, resulting in the porous ceramic of the present invention.
本発明の多孔性セラミツクは前記したような
種々の性状を有するが、強度が大きい多孔性セラ
ミツクの出現により、工業的に電子機器、電気部
品、放熱板等種々の用途に広く使用される。 The porous ceramic of the present invention has various properties as described above, but due to the appearance of porous ceramic with high strength, it is widely used industrially for various applications such as electronic equipment, electrical parts, and heat sinks.
本発明を更に具体的に説明するため以下実施例
を挙げて説明するが本発明はこれらの実施例に限
定されるものではない。 EXAMPLES In order to explain the present invention more specifically, the present invention will be described below with reference to Examples, but the present invention is not limited to these Examples.
実施例 1
純度99.99%(不純物分析値を表1に示す)で
平均粒子径0.52μmで3μm以下の粒子の割合が
95vol%のアルミナ100重量部と、灰分0.08wt%で
平均粒子径が0.45μmのカーボンブラツク50重量
部とを、ナイロン製ポツトとナイロンコーテイン
グしたボールを用いエタノールを分散媒体として
均一にボールミル混合した。得られた混合物を乾
燥後、高純度黒鉛製平皿に入れ電気炉内に窒素ガ
スを3/minで連続的に供給しながら1600℃の
温度で6時間加熱した。得られた反応混合物を空
気中で750℃の温度で4時間加熱し、末反応のカ
ーボンを酸化除去した。得られた白色の粉末はx
線回折分析(Xray diffraction analysis)の結
果、単相(single phase)のAlNであり、Al2O3
の回折ピークは無かつた。また該粉末の平均粒子
径は粒度分布測定器(堀場製作所 CAPA−500)
を用いて測定したところ1.31μmであり、3μm以
下が90重量%を占めた。走査型電子顕微鏡による
観察ではこの粉末は平均0.7μm程度の均一な粒子
であつた。また比表面積の測定値は4.0m2/gで
あつた。この粉末の分析値を表2に示す。Example 1 The purity is 99.99% (impurity analysis values are shown in Table 1), the average particle diameter is 0.52 μm, and the proportion of particles of 3 μm or less is
100 parts by weight of 95 vol% alumina and 50 parts by weight of carbon black having an ash content of 0.08 wt% and an average particle size of 0.45 μm were uniformly mixed in a ball mill using a nylon pot and a nylon-coated ball using ethanol as a dispersion medium. After drying the resulting mixture, it was placed in a flat plate made of high-purity graphite and heated at a temperature of 1600° C. for 6 hours while continuously supplying nitrogen gas at 3/min in an electric furnace. The resulting reaction mixture was heated in air at a temperature of 750° C. for 4 hours to oxidize and remove residual carbon. The white powder obtained is x
As a result of Xray diffraction analysis, it is single phase AlN, Al 2 O 3
There was no diffraction peak. The average particle diameter of the powder was measured using a particle size distribution analyzer (Horiba, Ltd. CAPA-500).
When measured using , it was 1.31 μm, and 90% by weight was 3 μm or less. When observed using a scanning electron microscope, this powder was found to be uniform particles with an average size of about 0.7 μm. Further, the measured value of the specific surface area was 4.0 m 2 /g. The analytical values of this powder are shown in Table 2.
表 1
Al2O3粉末分析値
Al2O3含有量 99.99%
元 素 含有量(PPM)
Mg <5
Cr <10
Si 30
Zn <5
Fe 22
Cu <5
Ca <20
Ni 15
Ti <5
表 2 AlN粉末分析値
AlN含有量 97・8%
元 素 含有量
Mg <5(PPM)
Cr 21(〃)
Si 125(〃)
Zn 9(〃)
Fe 20(〃)
Cu <5(〃)
Mn 5(〃)
Ni 27(〃)
Ti <5(〃)
Co <5(〃)
Al 64.8(wt%)
N 33.4(〃)
O 1.1(〃)
C 0.11(〃)
上記窒化アルミニウム粉末80重量部と、平均粒
径0.4μmのカーボンブラツク20重量部とを、ナイ
ロン製ポツトとナイロン・コーテイングしたボー
ルを用い、エタノールを分散媒体として均一にボ
ールミル混合した。得られたスラリー、乾燥器内
で60℃、24時間乾燥を行つた。 Table 1 Al 2 O 3 powder analysis values Al 2 O 3 content 99.99% Element content (PPM) Mg <5 Cr <10 Si 30 Zn <5 Fe 22 Cu <5 Ca <20 Ni 15 Ti <5 Table 2 AlN powder analysis value AlN content 97.8% Element Content Mg <5 (PPM) Cr 21 (〃) Si 125 (〃) Zn 9 (〃) Fe 20 (〃) Cu <5 (〃) Mn 5 ( 〃) Ni 27 (〃) Ti <5 (〃) Co <5 (〃) Al 64.8 (wt%) N 33.4 (〃) O 1.1 (〃) C 0.11 (〃) 80 parts by weight of the above aluminum nitride powder and the average 20 parts by weight of carbon black having a particle size of 0.4 μm were uniformly mixed in a ball mill using a nylon pot and a nylon-coated ball using ethanol as a dispersion medium. The obtained slurry was dried in a dryer at 60°C for 24 hours.
上記混合粉末12gを、窒化硼素粉末を内面に塗
布した内径40mmの黒鉛型中で、200Kg/cm2の加圧
下、1気圧の窒素中に於いて2000℃3時間加圧焼
結した。得られた焼結体は、黒色の光沢を有する
ものであつた。 12 g of the above mixed powder was pressure sintered at 2000° C. for 3 hours in nitrogen at 1 atmosphere under a pressure of 200 kg/cm 2 in a graphite mold with an inner diameter of 40 mm whose inner surface was coated with boron nitride powder. The obtained sintered body had a black luster.
また、この焼結体の密度は29.1g/cm3であつた。 Further, the density of this sintered body was 29.1 g/cm 3 .
次に、上記複合焼結体を電気炉に入れ、空気中
にて800℃12時間焼成してカーボンを酸化除去し
た。酸化処理後の焼結体は灰白色になつていた。
この焼結体は、X線回折により、窒化アルミニウ
ムの回折線のみ検出され、また気孔率を測定した
ところ28%であつたことから、窒化アルミニウム
多孔体であることが判つた。 Next, the composite sintered body was placed in an electric furnace and fired in air at 800°C for 12 hours to oxidize and remove carbon. The sintered body after the oxidation treatment was grayish white.
This sintered body was found to be an aluminum nitride porous body because only the diffraction line of aluminum nitride was detected by X-ray diffraction, and the porosity was 28% when measured.
上記多孔体から、約3mm角、長さ約40mmの試験
片を切り出し、1500番のサンドペーパーで磨いた
後、曲げ強度を測定した。測定条件は、クロス・
ヘツド・スピード1mm/分、スパン20mmの3点曲
げとした。測定値より計算された曲げ強度の平均
値は、6Kg/mmであつた。 A test piece approximately 3 mm square and approximately 40 mm long was cut out from the porous body, polished with No. 1500 sandpaper, and then its bending strength was measured. The measurement conditions are cross
Three-point bending was performed at a head speed of 1 mm/min and a span of 20 mm. The average bending strength calculated from the measured values was 6 kg/mm.
一方、本実施例で得られた窒化アルミニウム多
孔体の加工性を調べたところ、超硬ドリルによる
穿孔、超硬バイトによる高速切削のいずれも容易
に行なえ、快削性であることが判つた。 On the other hand, when the workability of the aluminum nitride porous body obtained in this example was investigated, it was found that it was easy to perform both drilling with a carbide drill and high-speed cutting with a carbide cutting tool, and was free-cutting.
尚、図1は、本実施例で得られた窒化アルミニ
ウム多孔体の機械的破断面の走査電子顕微鏡写真
(倍率3000倍)である。 Note that FIG. 1 is a scanning electron micrograph (3000x magnification) of a mechanically fractured surface of the aluminum nitride porous body obtained in this example.
図1は実施例1で使用した窒化アルミニウム多
孔体の機械的破断面の走査型電子顕微鏡写真であ
る。
FIG. 1 is a scanning electron micrograph of a mechanically fractured surface of the aluminum nitride porous body used in Example 1.
Claims (1)
から選ばれた少なくとも一種の金属の炭化物又は
窒化物よりなる焼結体で、焼結されて結合された
該アルミニウム、ケイ素及びホウ素よりなる群か
ら選ばれた少なくとも一種の金属の炭化物又は窒
化物の結晶粒子の一部に連続した孔を構成してな
ることを特徴とする多孔性セラミツク。 2 アルミニウム、ケイ素及びホウ素よりなる群
から選ばれた少なくとも一種の金属の炭化物又は
窒化物60〜97重量%とカーボン3〜40重量%とか
らなる焼結体を、酸素又は炭酸ガスを含む雰囲気
下に600〜900℃の温度で加熱して含有カーボンを
除去することを特徴とする多孔性セラミツクの製
造方法。[Claims] 1. A sintered body made of a carbide or nitride of at least one metal selected from the group consisting of aluminum, silicon, and boron, and made of the aluminum, silicon, and boron bonded by sintering. A porous ceramic characterized in that continuous pores are formed in a part of crystal grains of at least one metal carbide or nitride selected from the group consisting of: 2. A sintered body consisting of 60 to 97% by weight of at least one metal carbide or nitride selected from the group consisting of aluminum, silicon, and boron and 3 to 40% by weight of carbon in an atmosphere containing oxygen or carbon dioxide gas. A method for producing porous ceramics, which comprises heating at a temperature of 600 to 900°C to remove carbon contained therein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4920984A JPS60195069A (en) | 1984-03-16 | 1984-03-16 | Porous ceramic and manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4920984A JPS60195069A (en) | 1984-03-16 | 1984-03-16 | Porous ceramic and manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60195069A JPS60195069A (en) | 1985-10-03 |
JPH0455996B2 true JPH0455996B2 (en) | 1992-09-07 |
Family
ID=12824584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4920984A Granted JPS60195069A (en) | 1984-03-16 | 1984-03-16 | Porous ceramic and manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60195069A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6310992U (en) * | 1986-07-07 | 1988-01-25 | ||
JPH03121149U (en) * | 1990-03-26 | 1991-12-11 | ||
FR2684092B1 (en) * | 1991-11-21 | 1994-03-04 | Pechiney Recherche | PROCESS FOR THE PREPARATION OF LARGE SPECIFIC METAL CARBIDES FROM ACTIVATED CARBON FOAMS. |
CN110903092A (en) * | 2019-12-13 | 2020-03-24 | 苏州纳迪微电子有限公司 | High-purity porous AlN ceramic and preparation method thereof |
-
1984
- 1984-03-16 JP JP4920984A patent/JPS60195069A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60195069A (en) | 1985-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0475190B2 (en) | ||
JP4106574B2 (en) | Cubic boron nitride sintered body and method for producing the same | |
US4800182A (en) | Silicon nitride-silicon carbide composite material and process for production thereof | |
JP2001080964A (en) | POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME | |
JP3476507B2 (en) | Method for producing cubic boron nitride-containing sintered body | |
JPH0455996B2 (en) | ||
US4122140A (en) | Hot pressing of silicon nitride using beryllium additive | |
JPWO2004069399A1 (en) | Cubic boron nitride, cubic boron nitride synthesis catalyst, and method for producing cubic boron nitride | |
US4623498A (en) | Method of improving quality of hot pressed Si3 N4 bodies | |
JP3970394B2 (en) | Method for manufacturing silicon carbide sintered body | |
JPH09208328A (en) | Porous silicon nitride-based ceramics having high strength and low thermal conductivity and its production | |
JP4110338B2 (en) | Cubic boron nitride sintered body | |
JP3297740B2 (en) | Low temperature sintering method of silicon carbide powder. | |
Bandyopadhyay et al. | Sintering and properties of sialons without externally added liquid phase | |
JPS638265A (en) | Manufacture of composite sintered body | |
JPH0451512B2 (en) | ||
楊建鋒 et al. | Fabrication and mechanical properties of porous silicon nitride ceramics from low-purity powder | |
JPH0448752B2 (en) | ||
JPS63100055A (en) | Alumina base ceramic for cutting tool and manufacture | |
JP3280059B2 (en) | Method for producing activated silicon carbide | |
Vandeneede et al. | Sinterability of Silicon Nitride Powders and Characterisation of Sintered Materials | |
JPS60195056A (en) | Electroconductive ceramics | |
JP3979680B2 (en) | Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same | |
JPH06263410A (en) | Method for increasing beta-fraction of powdery silicon nitride | |
Wang et al. | Effect of CaCN2 addition on the densification behavior and electric properties of AlN ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |