JPH0454610B2 - - Google Patents
Info
- Publication number
- JPH0454610B2 JPH0454610B2 JP59091353A JP9135384A JPH0454610B2 JP H0454610 B2 JPH0454610 B2 JP H0454610B2 JP 59091353 A JP59091353 A JP 59091353A JP 9135384 A JP9135384 A JP 9135384A JP H0454610 B2 JPH0454610 B2 JP H0454610B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- silicon
- powder
- silicon nitride
- silicon carbide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000000843 powder Substances 0.000 claims description 30
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 21
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 19
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 18
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 18
- 239000002131 composite material Substances 0.000 claims description 17
- 229910021529 ammonia Inorganic materials 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 9
- -1 respectively) Chemical group 0.000 claims description 9
- 230000035484 reaction time Effects 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 6
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000011261 inert gas Substances 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims 1
- 125000006533 methyl amino methyl group Chemical group [H]N(C([H])([H])[H])C([H])([H])* 0.000 claims 1
- 238000000034 method Methods 0.000 description 36
- 229910052581 Si3N4 Inorganic materials 0.000 description 17
- 239000002245 particle Substances 0.000 description 15
- 229910052710 silicon Inorganic materials 0.000 description 14
- 239000010703 silicon Substances 0.000 description 13
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 235000019270 ammonium chloride Nutrition 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 5
- 238000005121 nitriding Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 150000003377 silicon compounds Chemical class 0.000 description 3
- 239000005049 silicon tetrachloride Substances 0.000 description 3
- 239000011863 silicon-based powder Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003746 solid phase reaction Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- ZYVRJGTVADPHBO-UHFFFAOYSA-N N1=[SiH]N[SiH2]N[SiH2]1 Chemical compound N1=[SiH]N[SiH2]N[SiH2]1 ZYVRJGTVADPHBO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012717 electrostatic precipitator Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen(.) Chemical compound [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 1
- 239000011225 non-oxide ceramic Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Ceramic Products (AREA)
Description
本発明は窒化珪素と炭化珪素とからなる複合微
粉末の製造方法に関する発明である。更に詳しく
は、一般式が〔R1,R2,R3,Si〕2NR4、又は〔−
R1,R2,Si−NR3〕−n(但し式中R1〜R4はそれ
ぞれ水素、アルキル基、アリル基、フエニル,メ
チルアミノ基基等を示し、nは3又は4である)
で示されるシラザン化合物を気相で反応すること
を特徴とする窒化珪素と炭化珪素とからなる複合
微粉末の製造方法に関する発明である。
窒化珪素や炭化珪素等の非酸化物系セラミツク
スはアルミナを中心とする酸化物系セラミツクス
に比べて高温強度や耐熱衝撃性等の高温特性に優
れているので、その製造方法及びその応用に関す
る研究が最近盛んに行われており、高温で作動さ
せるガスタービン、ジーゼルエンジン、熱交換器
等の耐熱構造材料等の高温材料にその用途が拓け
つつある。
高温材料としての炭化珪素は高温での耐酸化性
や強度特性及び熱伝導度が優れている。また窒化
珪素は耐熱衝撃性、熱膨張係数、破壊靱性等が優
れている。その為に両者の長所を取り入れた新規
材料としての複合セラミツクスの開発が最近進め
られている。
この様な窒化珪素や炭化珪素は主として焼結に
より加工成形されるが、高密度の焼結体を得る為
の重要な因子としては、出発原料の組成、純度、
結晶型、粒子径、粒子の形状等があげられる。
非酸化系のシリコン系セラミツクスは一般に難
焼結性であり、このため焼結特性が優れた原料粉
末としてはサブミクロン級の粒子径を有し、均一
なことが特に必要である。
従来、窒化珪素単品の主な製法としては下記の
方法が知られている。
(1) 金属珪素粉末を窒素またはアンモニアガス中
で高温に加熱して窒化する方法。
(2) シリカ粉末とカーボンとの混合物を窒素中で
高温に加熱して還元と窒化とを同時に行う方
法。
(3) 常温または低温で四塩化珪素とアンモニアを
反応させ、生成したシリコンアミドあるいはシ
リコンイミドを分離した後窒素またはアンモニ
ア雰囲気中で高温に加熱するアミドあるいはイ
ミドの熱分解法。
(4) 四塩化珪素とアンモニアとを高温で気相反応
させる方法。
しかし、これらの方法はそれぞれ次の様な解決
すべき問題点を有している。
(1)については、現在工業的に用いられている方
法ではあるが、この方法では微細な粉末が得難
く、この方法で得た生成物は、これを長時間粉砕
する必要がある。このため原料Si中に含まれてい
るFe,Ca,Al,等の不純物が窒化後も残つた
り、粉砕過程で不純物が混入する。
(2)の方法は、原料として充分精製したシリカ粉
末及びカーボン粉末を用いる必要があるばかりで
なく、得られる生成物はα型Si3N4,β型Si3N4,
酸窒化珪素等の混合物であり、粒径及び粒径のバ
ラツキを小さくする事が困難である。
(3)の方法には液相法と気相法とがあるが、いず
れの方法もシリコンアミドやシリコンイミドと共
に大量の塩化アンモニウムが副生する。このため
生成物の分離や熱分解工程における塩化アンモニ
ウムを除去するわずらわしさや腐食あるいは溶媒
使用に依る不純物の混入が起こりやすい。
また、シリコンアミドやシリコンイミドを熱分
解して得られる粉末の粒径や結晶型は、微小粒子
にしたり、整つた等軸的な粒状粒子とするには限
界がある。
これらの中では(4)の気相法が高品質の物が得ら
れると言われている。しかしながら四塩化珪素と
アンモニアの反応が速いため各原料ガス供給管の
出口部分でも反応が起こり、出口部分が閉塞され
てしまい長期の連続運転が出来なくなるばかりで
なく、(3)の方法と同様に副生する塩化アンモニウ
ムを除去する煩わしさや、装置の腐食対策等を講
じなければならない。
更には塩化アンモニウムを完全に除去したとし
ても微量の塩素は除去し難く、以後の結晶化工程
において窒化珪素がβ晶化したり、結晶型が針状
になつたりして焼結せしめる際にも悪影響を及ぼ
すようになる。
また、従来炭化珪素単味の主な製法としては下
記の方法が知られている。
(1) 珪石(SiO2)とコークス(C)を混合してアチ
ソン炉で加熱する方法。
(2) 金属珪素粉末と炭素粉末の固相反応法。
(3) シリカ粉末と炭素粉末との固相反応法。
しかし、いずれの方法も原料中に不揮発性の金
属不純物などが含有されているために、これが製
品中に濃縮して蓄積されたり、あるいは粒径のバ
ラツキを小さくすることが困難である等の欠点が
あつた。
以上のような製法で得られた窒化珪素や炭化珪
素の各単品の粉末は、通常知られたホツトプレ
ス、常圧焼結、反応焼結などの各種の方法で成
形、焼結されるが、前記のような窒化珪素と炭化
珪素の両者の長所を取り入れた複合焼結体の製法
も種々検討されており、例えば、次の様な製法が
知られている。
(1) 窒化珪素と炭化珪素粉末を機械的に混合して
ホツトプレスなどで成形、焼結する方法。
(2) 反応焼結的な手法を用いて、あらかじめ炭化
珪素と珪素の混合物を成形後、窒化反応を行わ
せて窒化珪素質を生成させたり、窒化珪素と炭
素の混合物を成形後、珪素を浸透させて炭化珪
素質を生成させる方法。
(3) 有機珪素ポリマーを原料とし、これに珪素粉
末を加えて、直接あるいは熱処理した後成形
し、窒化反応を行わせて、炭化珪素質と窒化珪
素質を生成させる方法。
しかしながら、これらの試みは通常の原料粉末
を用いたのでは、粒径、形状などの粒子特性のほ
かに混合程度を十分に制御し、各成分を均一に混
合することに限界があること、また機械的粉砕、
混合により不純物が混入しやすいので、好ましい
焼結体が得られない欠点がある。また、反応焼結
的な手法でも多孔質化や、工程、操作が複雑にな
つたり、あるいは組成の均一性にも限界があるこ
とから好ましい焼結体が得られない等の欠点があ
る。
本発明者等は、高温特性に優れた窒化珪素と炭
化珪素の複合系焼結体を得るべく窒化珪素と炭化
珪素の微粉末の合成法について種々の方法を鋭意
研究を行つた。
その結果、特定の有機珪素化合物を気相で反応
せしめる際の反応条件を制御して、窒化珪素と炭
化珪素との複合微粉末を得ることにより、前記の
様な高温特性に優れた焼結体が得られることを見
出して本発明を完成するに至つた。
即ち、本発明は、一般式が〔R1,R2,R3Si〕2
NR4,又は〔−R1,R2,Si−NR3〕−n(但し式中R1
〜R4はそれぞれ水素、アルキル基、アリル基、
フエニル基、メチルアミノ基等を示し、nは3又
は4である)で示されるシラザン化合物を反応に
供するに先立ちアンモニアおよび/または不活性
ガスと均一に混合して反応帯域に供給し、特定の
原料ガス分圧、反応時間、すなわち0.01〜0.5atm
で、60〜0.1秒で気相で反応させて得られる複合
微粉末を1400〜1600℃で熱処理することを特徴と
する結晶質の窒化珪素と炭化珪素とからなる複合
微粉末の製造方法に関するものである。
本発明方法によれば、1ミクロン以下の微粒子
オーダーで窒化珪素と炭化珪素を均一に含む複合
微粉末が容易に得られる。
次に本発明について詳述する。
本発明において、原料として用いるSi,N,C
及びHからなるシラザン化合物としては、一般式
が、〔R1,R2,R3Si〕2NR4または〔−R1,R2,Si−
NR3〕−n(式中R1〜R4はそれぞれ水素、アルキル
基、アリル基、フエニル基、メチルアミノ基等を
示し、nは3または4である)で表される化合物
であり、例えば〔HSi(CH3)2〕2NH,〔(CH3)3
Si〕2NH,〔(CH3)Si〕2NCH3,〔(CH2=CH)Si
(CH3)2〕NH,〔−(CH3)2Si−NH〕−3,〔−
(CH3)2Si−NCH3〕−3または、次の様な構造式で
示される珪素上の装置基としてメチルアミノ基を
有する6員環状のトリス(Nメチルアミノ)トリ
−N−メチル−シクロトリシラゼン等である。
これらの原料は必要に応じて2種以上を混合し
て用いてもよく、また炭化水素類を共存させても
良い。
これらの原料の反応帯への供給は、原料が常温
で液体や固体状の場合、均一な反応を速やかに実
施し、所望の複合粉体を得るために、例えば、適
当な間接加熱等の手段により、原料をガス化しア
ンモニアおよび/または不活性ガスと均一に混合
し、あるいは原料珪素化合物をガス化しながらア
ンモニアおよび/または不活性ガスとを均一に混
合して反応帯域に供給することが均一な複合微粉
末を得るのに重要である。
また、実施例で示す様に原料をNH3,H2,
N2,Ar,He,等の非酸化性ガスに同伴させるこ
とにより、原料分圧の調節や供給速度を制御して
行うこともできるのみならず、同伴させるNH3,
H2,N2,Ar,He,等の非酸化性ガスの選択や
その混合比により生成粉体の組成(SiC,Si3N4
比)を任意にコントロールすることが可能であ
る。
例えばSi3N4の割合を多くしたい場合には、
NH3やH2の量を増加させるのが有効であるが、
珪素化合物の種類や濃度、反応温度、反応時間等
に依つてその必要量が異なつてくる。
反応時間帯における原料ガスの分圧及び反応時
間は生成物の粒径や形状及び空時収量等により決
定されるが、例えば原料ガス分圧は0.01〜0.5atm
程度の範囲が好適である。反応時間は一般的には
120〜0.0.5秒の広い範囲で実施し得るが、均一な
微粉末を得るには60〜0.1秒の範囲が好適である。
これらの値より反応分圧が小さかつたり、反応
時間が長くなる場合は、反応装置が不必要に大型
化して工業的には不利となり、逆にこれらの値よ
り反応分圧が大きかつたり、反応時間が短くなる
場合は実質的に反応が進行しない場合があるので
好ましくない。
また、反応温度は一般的には600〜1600℃の範
囲であり、好ましくは800〜1500℃である。温度
が600℃より低い場合には反応が十分に進行せず
珪素の窒化物及び炭化物の生成率が低く、逆に
1600℃を超える場合には多大のエネルギーを要す
るので経済的でない。
本発明方法の具体的な実施手段としては、例え
ば原料である有機珪素化合物を予めガス化せしめ
て必要な場合にはアンモニア及び非酸化性ガスで
あるH2,N2等と十分に均一に混合したのち、外
部加熱式反応管に導入する。
反応管は空塔あるいは充填塔式の流通型が用い
られるが、ガスの流れが脈動あるいは乱流状にな
らず、熱的にも均一性が保たれる様な構造とする
ことが生成複合微粉末の均一性に重要である。
珪素の窒化物と炭化物を含む生成ガスは冷却さ
れて捕集装置へ導入されるが、本発明に用いられ
る捕集装置は特に制約はなく、通常用いられてい
る充填層形式や濾過方式の集塵機、電気集塵機、
サイクロン等を適宜用いることができるが、生成
ガス中に腐食性ガスの塩化水素や500℃以下に冷
却されると固体となつて析出する塩化アンモニウ
ムなどが含まれていないため、従来の様な高級材
質を用いたり、塩化アンモニウムを除去するため
の処理装置を必要としないので経済的な捕集方式
を選択できる。このようにして得られた非晶質複
合粉末は、そのまま成形、焼結工程へ供給するこ
とは可能であるが、これは化学的に不安定であり
焼結中にガスが発生し易く焼結体に欠陥部を生じ
ることがある。このため得られた非晶質微粉末を
さらに非酸化性ガス雰囲気下に1200〜1700℃、好
ましくは1400〜1600℃で熱処理し安定化、結晶化
される。この熱処理の時間は複合粉末の組成、結
晶化の程度などによりことなるが通常0.5〜5時
間程度である。
得られた複合微粉末は図面の写真が示す様にい
ずれも1ミクロン以下の粒径を持つものであり、
しかも均一な粒度分布を持つものである。
以下に本発明を実施例によつて更に詳しく説明
するが、本発明はこれらの実施例に限定されるも
のではない。
実施例 1〜6
電気炉中に設置された内径25mm、長さ700mmの
高純度アルミナ質反応管と反応管出口部に取りつ
けた反応生成物捕集器とからなる装置を用い所定
の反応温度に保持した。
シラザン化合物をガス化したのち、アンモニア
や非酸化性ガスであるN2またはH2ガスと予め良
く混合し、反応管入口部から吹込み反応させた。
捕集器に捕集された微粉末は、いずれも1ミク
ロン以下の粒子径を有し且つ等軸状の均一な微粒
子であつた。実施例3で得られた捕集微粒子の走
査電子顕微鏡写真を図1に示した。
次にこの生成物を不活性雰囲気下で高純度アル
ミナ管に充填して、アルゴン雰囲気下、1500℃に
加熱されている電気炉中で2時間熱処理を行つ
た。反応条件と得られた粉末の分析結果を表1に
示したが、いずれもX線的に、β−sicとα−Si3
N4成分だけであつた。また、螢光X線分析で不
純物を測定したところ、Fe,Al,Ca,Kaの含有
量はそれぞれ10ppm以下及びClの含有量は
100ppm以下であつた。
The present invention relates to a method for producing composite fine powder made of silicon nitride and silicon carbide. More specifically, the general formula is [R 1 , R 2 , R 3 , Si] 2 NR 4 or [−
R 1 , R 2 , Si-NR 3 ]-n (wherein R 1 to R 4 each represent hydrogen, an alkyl group, an allyl group, a phenyl group, a methylamino group, etc., and n is 3 or 4)
This invention relates to a method for producing a fine composite powder of silicon nitride and silicon carbide, which is characterized by reacting a silazane compound represented by the following in a gas phase. Non-oxide ceramics such as silicon nitride and silicon carbide have superior high-temperature properties such as high-temperature strength and thermal shock resistance compared to oxide ceramics, mainly alumina, so research on their manufacturing methods and their applications is ongoing. Recently, it has been widely used, and its application is opening up to high-temperature materials such as heat-resistant structural materials for gas turbines, diesel engines, heat exchangers, etc. that operate at high temperatures. Silicon carbide as a high-temperature material has excellent oxidation resistance, strength properties, and thermal conductivity at high temperatures. Silicon nitride also has excellent thermal shock resistance, coefficient of thermal expansion, fracture toughness, and the like. For this reason, the development of composite ceramics as a new material that incorporates the advantages of both has been progressing recently. Such silicon nitride and silicon carbide are mainly processed and formed by sintering, but important factors to obtain a high-density sintered body include the composition, purity, and
Examples include crystal type, particle size, particle shape, etc. Non-oxidizing silicon-based ceramics are generally difficult to sinter, and therefore, raw material powder with excellent sintering properties is particularly required to have submicron-level particle diameters and be uniform. Conventionally, the following methods are known as main methods for producing single silicon nitride products. (1) A method of nitriding metallic silicon powder by heating it to high temperatures in nitrogen or ammonia gas. (2) A method of simultaneously reducing and nitriding a mixture of silica powder and carbon by heating it to high temperatures in nitrogen. (3) An amide or imide thermal decomposition method in which silicon tetrachloride and ammonia are reacted at room temperature or low temperature, the resulting silicon amide or silicon imide is separated, and then heated to a high temperature in a nitrogen or ammonia atmosphere. (4) A method in which silicon tetrachloride and ammonia undergo a gas phase reaction at high temperatures. However, each of these methods has the following problems that must be solved. Regarding (1), although this method is currently used industrially, it is difficult to obtain a fine powder, and the product obtained by this method needs to be pulverized for a long time. For this reason, impurities such as Fe, Ca, Al, etc. contained in the raw Si material remain even after nitriding, or impurities are mixed in during the pulverization process. Method (2) not only requires the use of sufficiently purified silica powder and carbon powder as raw materials, but also the resulting products are α-type Si 3 N 4 , β-type Si 3 N 4 ,
It is a mixture of silicon oxynitride, etc., and it is difficult to reduce particle size and variation in particle size. Method (3) includes a liquid phase method and a gas phase method, but in both methods, a large amount of ammonium chloride is produced as a by-product along with silicon amide and silicon imide. Therefore, it is troublesome to separate the product and remove ammonium chloride in the thermal decomposition step, and corrosion or contamination with impurities due to the use of a solvent is likely to occur. Furthermore, there are limits to the particle size and crystal type of powder obtained by thermally decomposing silicon amide or silicon imide, making it possible to form fine particles or regular equiaxed granules. Among these, the gas phase method (4) is said to yield high quality products. However, since the reaction between silicon tetrachloride and ammonia is fast, the reaction also occurs at the outlet of each raw material gas supply pipe, which not only blocks the outlet and makes long-term continuous operation impossible; There is the trouble of removing the by-product ammonium chloride, and measures must be taken to prevent corrosion of the equipment. Furthermore, even if ammonium chloride is completely removed, trace amounts of chlorine are difficult to remove, and silicon nitride may turn into β-crystals in the subsequent crystallization process, or the crystal form may become acicular, which may have an adverse effect on sintering. It begins to affect people. Furthermore, the following methods have been known as main methods for producing silicon carbide alone. (1) A method in which silica stone (SiO 2 ) and coke (C) are mixed and heated in an Acheson furnace. (2) Solid phase reaction method of metallic silicon powder and carbon powder. (3) Solid phase reaction method between silica powder and carbon powder. However, both methods have drawbacks such as non-volatile metal impurities contained in the raw materials, which may accumulate in the product, or make it difficult to reduce particle size variation. It was hot. The individual powders of silicon nitride and silicon carbide obtained by the above manufacturing method are molded and sintered by various commonly known methods such as hot pressing, pressureless sintering, and reaction sintering. Various methods for manufacturing composite sintered bodies that incorporate the advantages of both silicon nitride and silicon carbide have been studied, and for example, the following manufacturing methods are known. (1) A method in which silicon nitride and silicon carbide powder are mechanically mixed, molded using a hot press, etc., and sintered. (2) Using a reaction sintering method, a mixture of silicon carbide and silicon is formed in advance and then a nitriding reaction is performed to generate silicon nitride, or a mixture of silicon nitride and carbon is formed and then silicon is formed. A method of infiltrating and producing silicon carbide. (3) A method in which an organic silicon polymer is used as a raw material, silicon powder is added thereto, the polymer is molded either directly or after heat treatment, and a nitriding reaction is performed to produce silicon carbide and silicon nitride. However, in these attempts, there is a limit to the ability to sufficiently control the particle characteristics such as particle size and shape, as well as the degree of mixing, and to mix each component uniformly by using ordinary raw material powder. mechanical grinding,
Since impurities are likely to be mixed in by mixing, a desirable sintered body cannot be obtained. In addition, even the reaction sintering method has drawbacks such as increased porosity, complicated processes and operations, and limited uniformity of composition, making it impossible to obtain a desirable sintered body. The present inventors have conducted extensive research on various methods for synthesizing fine powders of silicon nitride and silicon carbide in order to obtain a composite sintered body of silicon nitride and silicon carbide with excellent high-temperature properties. As a result, by controlling the reaction conditions when reacting a specific organosilicon compound in the gas phase and obtaining a fine composite powder of silicon nitride and silicon carbide, a sintered body with excellent high-temperature properties as described above can be produced. The present invention was completed based on the discovery that the following can be obtained. That is, in the present invention, the general formula is [R 1 , R 2 , R 3 Si] 2
NR 4 , or [-R 1 , R 2 , Si-NR 3 ]-n (wherein R 1
~ R4 is hydrogen, alkyl group, allyl group, respectively
A silazane compound represented by a phenyl group, a methylamino group, etc., and n is 3 or 4) is uniformly mixed with ammonia and/or an inert gas and supplied to the reaction zone before being subjected to the reaction. Raw material gas partial pressure, reaction time, i.e. 0.01~0.5atm
A method for producing a composite fine powder consisting of crystalline silicon nitride and silicon carbide, characterized in that the composite fine powder obtained by reacting in the gas phase for 60 to 0.1 seconds is heat-treated at 1400 to 1600°C. It is. According to the method of the present invention, a fine composite powder containing silicon nitride and silicon carbide uniformly on the order of fine particles of 1 micron or less can be easily obtained. Next, the present invention will be explained in detail. In the present invention, Si, N, C used as raw materials
and H, the general formula is [R 1 , R 2 , R 3 Si] 2 NR 4 or [-R 1 , R 2 , Si-
NR 3 ]-n (in the formula, R 1 to R 4 each represent hydrogen, an alkyl group, an allyl group, a phenyl group, a methylamino group, etc., and n is 3 or 4), such as [HSi(CH 3 ) 2 ] 2 NH, [(CH 3 ) 3
Si] 2 NH, [(CH 3 )Si] 2 NCH 3 , [(CH 2 =CH)Si
(CH 3 ) 2 ]NH, [−(CH 3 ) 2 Si−NH]− 3 , [−
(CH 3 ) 2 Si-NCH 3 ]- 3 or a 6-membered cyclic tris(N-methylamino) tri-N-methyl- having a methylamino group as a device group on silicon, as shown by the following structural formula: cyclotrisilazene and the like. These raw materials may be used as a mixture of two or more types as required, and hydrocarbons may also be used together. When these raw materials are in a liquid or solid state at room temperature, these raw materials are supplied to the reaction zone by means such as appropriate indirect heating in order to quickly carry out a uniform reaction and obtain the desired composite powder. This allows the raw material to be gasified and mixed uniformly with ammonia and/or inert gas, or the raw material silicon compound to be gasified and ammonia and/or inert gas to be uniformly mixed and supplied to the reaction zone. It is important to obtain composite fine powder. In addition, as shown in the examples, the raw materials are NH 3 , H 2 ,
By entraining non-oxidizing gases such as N 2 , Ar, He, etc., it is possible not only to adjust the raw material partial pressure and control the supply rate, but also to entrain NH 3 ,
The composition of the produced powder (SiC , Si 3 N 4
ratio) can be controlled arbitrarily. For example, if you want to increase the proportion of Si 3 N 4 ,
It is effective to increase the amount of NH 3 and H 2 , but
The required amount varies depending on the type and concentration of the silicon compound, reaction temperature, reaction time, etc. The partial pressure of the raw material gas during the reaction period and the reaction time are determined by the particle size and shape of the product, the space-time yield, etc.
A range of degrees is preferred. The reaction time is generally
Although it can be carried out in a wide range of 120 to 0.0.5 seconds, a range of 60 to 0.1 seconds is suitable to obtain a uniform fine powder. If the reaction partial pressure is smaller than these values or the reaction time is longer, the reactor will become unnecessarily large, which is disadvantageous from an industrial perspective; conversely, if the reaction partial pressure is larger than these values, If the reaction time is too short, the reaction may not substantially proceed, which is not preferable. Further, the reaction temperature is generally in the range of 600 to 1600°C, preferably 800 to 1500°C. If the temperature is lower than 600℃, the reaction will not proceed sufficiently and the production rate of silicon nitrides and carbides will be low;
If the temperature exceeds 1600°C, a large amount of energy is required, so it is not economical. As a specific means of carrying out the method of the present invention, for example, the organic silicon compound as a raw material is gasified in advance and, if necessary, thoroughly and uniformly mixed with ammonia and non-oxidizing gases such as H 2 and N 2 . After that, it is introduced into an externally heated reaction tube. The reaction tube used is either an empty column or a packed column type, but it is important to have a structure that prevents the gas flow from becoming pulsating or turbulent and maintains thermal uniformity. Important for powder uniformity. The generated gas containing silicon nitrides and carbides is cooled and introduced into a collection device, but the collection device used in the present invention is not particularly limited and can be any commonly used packed bed type or filtration type dust collector. , electrostatic precipitator,
A cyclone, etc. can be used as appropriate, but since the generated gas does not contain hydrogen chloride, a corrosive gas, or ammonium chloride, which becomes solid and precipitates when cooled to below 500°C, Since it does not require the use of materials or processing equipment to remove ammonium chloride, an economical collection method can be selected. The amorphous composite powder obtained in this way can be fed as it is to the molding and sintering process, but it is chemically unstable and gas is easily generated during sintering. May cause defects in the body. For this purpose, the obtained amorphous fine powder is further heat-treated at 1200 to 1700°C, preferably 1400 to 1600°C in a non-oxidizing gas atmosphere to stabilize and crystallize it. The time for this heat treatment varies depending on the composition of the composite powder, the degree of crystallization, etc., but is usually about 0.5 to 5 hours. As shown in the photographs in the drawings, the obtained composite fine powders all have a particle size of 1 micron or less,
Moreover, it has a uniform particle size distribution. EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 6 A device consisting of a high-purity alumina reaction tube with an inner diameter of 25 mm and a length of 700 mm installed in an electric furnace and a reaction product collector attached to the outlet of the reaction tube was used to reach a predetermined reaction temperature. held. After the silazane compound was gasified, it was thoroughly mixed with ammonia and non-oxidizing gas N 2 or H 2 gas, and the mixture was blown into the inlet of the reaction tube to cause a reaction. All of the fine powders collected in the collector were equiaxed, uniform fine particles with a particle size of 1 micron or less. A scanning electron micrograph of the collected fine particles obtained in Example 3 is shown in FIG. Next, this product was filled into a high-purity alumina tube under an inert atmosphere, and heat-treated for 2 hours in an electric furnace heated to 1500°C under an argon atmosphere. The reaction conditions and analysis results of the obtained powder are shown in Table 1, and in both cases, β-sic and α-Si 3
There was only N4 component. In addition, when impurities were measured using fluorescent X-ray analysis, the content of Fe, Al, Ca, and Ka was less than 10 ppm each, and the content of Cl was less than 10 ppm.
It was less than 100ppm.
【表】【table】
図1は複合微粉末の粒子の構造を図面により示
すことが出来ないので、図面に代わる写真に依つ
て示したものであり、図1は本発明の実施例3の
方法で得られた複合微粉末の粒子の構造を示す走
査顕微鏡写真である。
Since it is not possible to show the particle structure of the composite fine powder using a drawing, FIG. 1 is a scanning micrograph showing the structure of powder particles.
Claims (1)
[−R1,R2,Si−NR3]−n(但し式中R1〜R4はそ
れぞれ水素、アルキル基、アリル基、フエニル
基、メチルアミノメチル基等を示し、nは3また
は4である)で示されるシラザン化合物を、反応
に供するに先立ちアンモニアおよび/または不活
性ガスと均一に混合して反応帯域に供給し、原料
ガス分圧0.01〜0.5atm、反応時間60〜0.1秒で気
相で反応されて得られる複合微粉末を1400〜1600
℃で熱処理することを特徴とする結晶質の窒化珪
素と炭化珪素とからなる複合微粉末の製造方法。1 The general formula is [R 1 , R 2 , R 3 , Si]NR 4 or [-R 1 , R 2 , Si-NR 3 ]-n (wherein R 1 to R 4 are hydrogen and alkyl groups, respectively) , allyl group, phenyl group, methylaminomethyl group, etc., and n is 3 or 4) is uniformly mixed with ammonia and/or an inert gas before being subjected to the reaction, and then added to the reaction zone. The composite fine powder obtained by reacting in the gas phase at a raw material gas partial pressure of 0.01 to 0.5 atm and a reaction time of 60 to 0.1 seconds is 1400 to 1600
A method for producing a composite fine powder consisting of crystalline silicon nitride and silicon carbide, characterized by heat treatment at ℃.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59091353A JPS60235707A (en) | 1984-05-08 | 1984-05-08 | Production of fine complex powder |
US06/712,036 US4594330A (en) | 1984-03-22 | 1985-03-15 | Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide |
DE19853510264 DE3510264A1 (en) | 1984-03-22 | 1985-03-21 | AMORPHOUS FINE-PART POWDER AND METHOD FOR PRODUCING A FINE-PART POWDER MIXTURE FROM SILICON NITRIDE AND SILICIUM CARBIDE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59091353A JPS60235707A (en) | 1984-05-08 | 1984-05-08 | Production of fine complex powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60235707A JPS60235707A (en) | 1985-11-22 |
JPH0454610B2 true JPH0454610B2 (en) | 1992-08-31 |
Family
ID=14024029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59091353A Granted JPS60235707A (en) | 1984-03-22 | 1984-05-08 | Production of fine complex powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60235707A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0764533B2 (en) * | 1984-11-26 | 1995-07-12 | 三菱瓦斯化学株式会社 | Method for producing fine silicon carbide powder |
JPS6148409A (en) * | 1984-08-16 | 1986-03-10 | Shin Etsu Chem Co Ltd | Fine powder comprising silicon, carbon, and nitrogen, and process for preparing such powder |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4969717A (en) * | 1972-09-05 | 1974-07-05 | ||
JPS54132500A (en) * | 1978-04-05 | 1979-10-15 | Toshiba Ceramics Co | Manufacture of silicon nitride powder |
-
1984
- 1984-05-08 JP JP59091353A patent/JPS60235707A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4969717A (en) * | 1972-09-05 | 1974-07-05 | ||
JPS54132500A (en) * | 1978-04-05 | 1979-10-15 | Toshiba Ceramics Co | Manufacture of silicon nitride powder |
Also Published As
Publication number | Publication date |
---|---|
JPS60235707A (en) | 1985-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4387079A (en) | Method of manufacturing high-purity silicon nitride powder | |
US4613490A (en) | Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof | |
US4619905A (en) | Process for the synthesis of silicon nitride | |
US4346068A (en) | Process for preparing high-purity α-type silicon nitride | |
JPH0476924B2 (en) | ||
JPS6111886B2 (en) | ||
JPS62241812A (en) | Manufacture of silicon nitride | |
JPH0454610B2 (en) | ||
JPS5930645B2 (en) | Manufacturing method of high purity α-type silicon nitride | |
JPH0454609B2 (en) | ||
JPS6111885B2 (en) | ||
JPS61136904A (en) | Production of composite fine powder of silicon nitride and silicon carbide | |
JPS60195099A (en) | Production of silicon nitride whisker | |
JPS61247608A (en) | Preparation of mixture of fine powder of silicon nitride with silicon carbide | |
JPS60200814A (en) | Production of composite fine powder consisting of silicon nitride and silicon carbide | |
JPS6227003B2 (en) | ||
JPS61127606A (en) | Preparation of silicon nitride or silicon carbide | |
JPS60200812A (en) | Production of composite fine powder consisting of silicon nitride and silicon carbide | |
JPS63230508A (en) | Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder | |
JPS6163510A (en) | Production of composite fine powder | |
JPS6163506A (en) | Production of silicon nitride fine powder | |
JPH062568B2 (en) | Method for producing high-purity silicon carbide powder | |
JPH0121090B2 (en) | ||
JPS61127616A (en) | Production of silicon carbide fine powder | |
JPS6140805A (en) | Manufacture of silicon nitride fine powder |