JPH0452408B2 - - Google Patents
Info
- Publication number
- JPH0452408B2 JPH0452408B2 JP2772283A JP2772283A JPH0452408B2 JP H0452408 B2 JPH0452408 B2 JP H0452408B2 JP 2772283 A JP2772283 A JP 2772283A JP 2772283 A JP2772283 A JP 2772283A JP H0452408 B2 JPH0452408 B2 JP H0452408B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- silver
- measurement
- liquid
- potential difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052709 silver Inorganic materials 0.000 claims description 18
- 239000004332 silver Substances 0.000 claims description 18
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 17
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 9
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims 1
- 229910052759 nickel Inorganic materials 0.000 claims 1
- 239000007788 liquid Substances 0.000 description 41
- 229910052751 metal Inorganic materials 0.000 description 34
- 239000002184 metal Substances 0.000 description 34
- 238000005259 measurement Methods 0.000 description 30
- 239000000243 solution Substances 0.000 description 23
- 239000007864 aqueous solution Substances 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 16
- 239000011521 glass Substances 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 230000002378 acidificating effect Effects 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000012212 insulator Substances 0.000 description 6
- 238000001139 pH measurement Methods 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 239000003518 caustics Substances 0.000 description 2
- GTKRFUAGOKINCA-UHFFFAOYSA-M chlorosilver;silver Chemical compound [Ag].[Ag]Cl GTKRFUAGOKINCA-UHFFFAOYSA-M 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229940075397 calomel Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical compound Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
本発明は、水溶液中の電解質のイオン濃度を測
定するのに用いられる比較電極に関するものであ
る。
本発明の電極化学的電位差測定装置は水溶液中
とイオン濃度測定用各種イオンメーター、PH測定
用比較電極、各種電気化学的分析用参照電極、高
温高圧条件下での直接測定用比較電極、生体医学
的な分析実験装置等に応用できる。
従来水溶液中のイオン濃度を測定するには、測
定液中に指示電極としてイオン選択性電極と、比
較電極を挿入して測定される。
従来の比較電極としては、一般にカロメル電極
或いは銀−塩化銀電極等が用いられている。
例えば銀−塩化銀電極は周知の如く、ガラス等
で作られた容器内に電解質塩溶液を満し、その中
に塩化銀を被覆した銀を浸漬し、電気化学的半電
池を形成し、かつ容器の一部に所謂液絡部をもつ
ている。
この液絡部を介して被測定液を比較電極の内部
電解質とは、イオンの拡散電導が達成されてい
る。
以上の技術構成故に実際の測定に際しては次の
ような欠点を本質的に有している。
1 液絡部を介して内部電解質のイオンが測定中
に漏出する。このため被測定液が汚染された
り、真のイオン濃度を測定することができない
場合が生ずる。
2 液絡部より漏出により内部電解質液が減少し
たりイオン濃度の変化が起つたりして、比較電
極としての本来の基準電位が変動してしまうこ
とがある。
3 又液絡部が閉塞したりすることも発生し、こ
の場合には前述の電気導通が得られなく、測定
を困難にしてしまう。
4 液絡部での円滑な電気電導を得るには、内部
液は少なくとも被測定液よりも正圧条件である
ことが必要である。
以上のような欠点に対して、極力漏出を少なく
するような工夫として、液絡部の構造を微細化し
たり、電解質をゲル状化したり等して内部電解質
の変質や減耗を図つたり、内部液に加圧を行う装
置を配置したりという各種方法が用いられてい
る。しかしながら本質的に、内部に比較電極とし
ての電位を安定させるため電解質を有し液絡部を
有する従来の技術では上記欠点を払拭できるもの
ではない。
このように従来の測定方法においては、測定液
が原子力発電所での炉水の1次冷却水や、ボイラ
ー水等でみられる高温高圧条件下の場合、従来の
比較電極では、特に液絡部でのトラブルが発生
し、満足されるものがない。
本発明の目的は上述した従来の比較電極のもつ
欠点を克服した新規な電極化学的電位差測定装置
を提供するものである。
第1の目的は、内部電解質をもたない。
第2の目的は、所謂液絡部をもたない。
第3の目的は、測定液の圧力が高くても使用で
きる。
第4の目的は、高温度の測定液に直接使用でき
る。
第5の目的は、極めてコンパクトに設計でき、
その取扱いが簡便容易となる。
本発明は、指示電極と比較電極の少なくとも一
対を用い該電極間に生ずる電気化学的電位差を測
定するための装置において、測定物と接触する比
較電極の電極体が銀、銀と銅の合金又は銀とニツ
ケルと銅の合金、銀の酸化物、銀と銅の合金の酸
化物より選択された何れかの物質よりなる比較電
極を用いたことを特徴とする電気化学的電位差測
定装置である。
以下添付図について、本発明の実施の一例態様
について説明する。
第1図は、本発明の比較電極6の断面図であ
る。
1は金属電極体で測定端子4と電気的に接続さ
れている。
2は絶縁体で、金属電極体1と緊密に固着され
ている。
金属電極体1と端子4との接続手段は、絶縁体
2内に配置させた電気導電体を介して行うことで
もよい。
絶縁体2は、取付金具3に装着され、この装着
界面は気密構造をもつた強固な装着が望ましい。
金属電極体1は少なくとも一部が絶縁物により
被覆される部分を有している。この部分を被覆部
5として示す。
金属電極体1としては、銀、銀と銅の合金、銀
とニツケルと銅の合金、銀酸化物、銀と銅の合金
の酸化物を被覆した金属より選ばれる。
このように構成した比較電極とイオン選択性電
極とを測定液に浸漬し、両電極間に発生する電位
差を測定することにより溶液中のイオン濃度を測
定することができる。
第2図には、本比較電極の特性を調査するため
に用いた実験装置の概略を示す。
第2図における符号のうち、第1図と同一符号
は同一又は類似する構成要素を示す。11は測定
液、12は指示電極で測定対象によつて各種の電
極を用いることができる。1は金属電極体で本発
明で述べている比較電極6に相当する。この金属
電極体1は絶縁体2を介して試験槽10等から電
気的に絶縁されている。15は増巾器で指示電極
12と金属電極1との間の電位差を増巾し、その
出力を電圧計16で測定する。指示電極12は一
般に高い内部抵抗をもつため増巾器15は高入力
抵抗回路をもつており、指示電極12と増巾器1
5を接続するリード線には、シールド17が施し
てある。又金属電極1と増巾器15とを接続する
リード線も、電磁気的誘導雑音等の侵入防止の目
的でシールド17が施してある。薬液槽20,2
1,22は測定数11の水溶液中のイオン濃度を
変化させるための所定と薬液が入つており、19
は切換分岐部、18は薬液導入部で、切換分岐部
19を操作することによつて任意の薬液を測定液
中に導入させることができる。
金属電極体1の表面は、少なくとも、その一部
が直接測定液中に浸漬され、測定水溶液中のイオ
ン濃度に応じて電気化学的ポテンシヤルが平衡し
て発生する。
このように、金属電極体1を比較電極として考
慮すると従来技術でみられる内部電解質がなく、
それ故液絡部をもたない全く新規な構成より成り
立つていることがわかる。
なお、指示電極12をさらに1本以上測定液中
に浸漬し、金属電極体1との間の電位差をおのお
の計測すれば測定液中の電位差分布を計測でき
る。当然金属電極体1と指示電極12の対を複数
対使用しても測定液中の電位差分布を計測でき
る。
以下実施例によつて本発明を説明する。
実施した測定装置を更に詳しく第2図に基いて
説明すると、試験槽10は内容積が約1.8で測
定液として、純水が約1.3入つている。
この試験槽10に指示電極12としてガラス電
極を、比較電極として金属電極体1を測定液11
に浸漬させるよう取付け両電極12,1の電極端
子は夫々テフロン被覆の同軸ケーブルにより高入
力抵抗をもつ増巾器15に接続され、増巾器15
の出力をペン書記録計によつて測定した。
薬液槽20,21、及び22には夫々4.1〜10
%HCl、4.1〜10%NaOH、及び蒸溜水又は中性
液が約50〜500c.c.入つている。
実施例 1
金属電極体として1mmφ長さ60mmの銀を用い
た。
この電極体は一部がセラミツクで被覆され、先
端部は約25mm露出している。
指示電極としてPH測定用のガラス電極を用い
た。
測定液11は純水の状態より切替部19を操作
することにより、酸性又はアルカリ性に変化させ
ることができ、その変化の手段は薬液槽内の酸性
液又はアルカリ性液を所定量測定液内に導入する
ことで達成できる。
この時の指示電極12と比較電極6との間の電
位差を測定記録した結果を第3図に示す。
第3図は、純水の測定液のとき電位差が+20m
Vであり、10%HCl溶液を添加して、測定液のPH
値が2.2となつたときの電位差が+295mVとな
り、更にこの測定液に、10%NaOH溶液を添加
して、測定液のPH値が12.1となつたときの電位差
が−278mVとなり、再度10%HCl溶液を添加し
て測定液のPHH値が2.2となつたときの電位差が
+294mVとなつたことを示すものである。
実施例 2
金属電極体として1.2mmφ、長さ50mmの銀対銀
の混合比が9対1である銀合金を用い、実施例1
で記載した銀の代りにこの銀合金を金属電極体に
置き替えて実施例1で記載されていると同様の手
段によつて測定を行つた。この場合においても測
定液が酸性→アルカリ性→酸性に変化すると、ガ
ラス電極と金属電極体との間の電位差が変化し
た。その結果は次の通りであつた。
The present invention relates to a reference electrode used to measure the ion concentration of an electrolyte in an aqueous solution. The electrode chemical potentiometric measuring device of the present invention includes various ion meters for measuring ion concentration in aqueous solutions, comparison electrodes for pH measurement, reference electrodes for various electrochemical analyses, comparison electrodes for direct measurement under high temperature and high pressure conditions, and biomedical It can be applied to analytical experimental equipment, etc. Conventionally, in order to measure the ion concentration in an aqueous solution, an ion-selective electrode as an indicator electrode and a reference electrode are inserted into the measurement solution. As a conventional reference electrode, a calomel electrode or a silver-silver chloride electrode is generally used. For example, a silver-silver chloride electrode is a well-known method in which a container made of glass or the like is filled with an electrolyte salt solution, silver coated with silver chloride is immersed in the container, and an electrochemical half cell is formed. A part of the container has a so-called liquid junction. Ion diffusion conduction between the liquid to be measured and the internal electrolyte of the reference electrode is achieved through this liquid junction. Due to the above-mentioned technical configuration, there are essentially the following drawbacks in actual measurement. 1 Ions from the internal electrolyte leak through the liquid junction during measurement. As a result, the liquid to be measured may be contaminated or the true ion concentration may not be measured. 2. The internal electrolyte solution may decrease or the ion concentration may change due to leakage from the liquid junction, which may cause the original reference potential of the reference electrode to fluctuate. 3. Also, the liquid junction may become clogged, and in this case, the electrical continuity described above cannot be obtained, making measurement difficult. 4. In order to obtain smooth electrical conduction at the liquid junction, it is necessary that the internal liquid is at least under a more positive pressure condition than the liquid to be measured. To address the above-mentioned drawbacks, we have tried to reduce leakage as much as possible by making the structure of the liquid junction finer, making the electrolyte gelatinous, etc., in order to prevent deterioration and depletion of the internal electrolyte. Various methods are used, such as arranging a device that pressurizes the liquid. However, essentially, the above-mentioned drawbacks cannot be eliminated with the conventional technology which has an electrolyte and a liquid junction inside to stabilize the potential as a reference electrode. In this way, in the conventional measurement method, when the measuring liquid is under high temperature and high pressure conditions such as primary cooling water of reactor water in a nuclear power plant or boiler water, the conventional reference electrode is difficult to measure, especially at the liquid junction. A problem occurred and there was nothing to be satisfied with. An object of the present invention is to provide a novel electrode chemical potentiometric measuring device that overcomes the drawbacks of the conventional reference electrodes mentioned above. The first purpose is to have no internal electrolytes. The second purpose is to have no so-called liquid junction. The third purpose is that it can be used even if the pressure of the measurement liquid is high. The fourth purpose is that it can be used directly for high temperature measurement liquids. The fifth purpose is to be able to design an extremely compact design.
Its handling becomes simple and easy. The present invention provides an apparatus for measuring an electrochemical potential difference generated between the indicator electrode and the reference electrode using at least one pair of the indicator electrode and the reference electrode, in which the electrode body of the reference electrode in contact with the object to be measured is silver, an alloy of silver and copper, or This is an electrochemical potential difference measuring device characterized by using a comparison electrode made of any material selected from an alloy of silver, nickel, and copper, an oxide of silver, and an oxide of an alloy of silver and copper. An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a comparison electrode 6 of the present invention. Reference numeral 1 denotes a metal electrode body electrically connected to the measurement terminal 4. Reference numeral 2 denotes an insulator, which is tightly fixed to the metal electrode body 1. The metal electrode body 1 and the terminal 4 may be connected to each other through an electric conductor disposed within the insulator 2. The insulator 2 is attached to the mounting bracket 3, and it is desirable that this attachment interface has an airtight structure and is firmly attached. The metal electrode body 1 has a portion at least partially covered with an insulator. This portion is shown as a covering portion 5. The metal electrode body 1 is selected from metals coated with silver, an alloy of silver and copper, an alloy of silver, nickel and copper, a silver oxide, and an oxide of an alloy of silver and copper. The ion concentration in the solution can be measured by immersing the reference electrode and the ion-selective electrode configured in this manner in a measurement solution and measuring the potential difference generated between the two electrodes. FIG. 2 shows an outline of the experimental apparatus used to investigate the characteristics of this comparative electrode. Among the symbols in FIG. 2, the same symbols as those in FIG. 1 indicate the same or similar components. Reference numeral 11 denotes a measuring liquid, and 12 denotes an indicator electrode, and various electrodes can be used depending on the object to be measured. 1 is a metal electrode body and corresponds to the comparison electrode 6 described in the present invention. This metal electrode body 1 is electrically insulated from the test chamber 10 and the like via an insulator 2. An amplifier 15 amplifies the potential difference between the indicator electrode 12 and the metal electrode 1, and its output is measured by a voltmeter 16. Since the indicator electrode 12 generally has a high internal resistance, the amplifier 15 has a high input resistance circuit.
A shield 17 is applied to the lead wire connecting the terminals 5 to 5. Further, the lead wire connecting the metal electrode 1 and the amplifier 15 is also provided with a shield 17 for the purpose of preventing intrusion of electromagnetic induced noise and the like. Chemical tank 20, 2
1 and 22 contain a predetermined chemical solution for changing the ion concentration in the aqueous solution with a measurement number of 11, and 19
Reference numeral 18 indicates a switching branch, and 18 indicates a chemical solution introduction section.By operating the switching branch 19, any chemical solution can be introduced into the measurement liquid. At least a portion of the surface of the metal electrode body 1 is directly immersed in the measurement liquid, and an electrochemical potential is generated in equilibrium depending on the ion concentration in the measurement aqueous solution. In this way, when considering the metal electrode body 1 as a reference electrode, there is no internal electrolyte as seen in the conventional technology,
Therefore, it can be seen that it has a completely new configuration that does not have a liquid junction. Note that, if one or more indicator electrodes 12 are further immersed in the measurement liquid and the potential difference between each indicator electrode 12 and the metal electrode body 1 is measured, the potential difference distribution in the measurement liquid can be measured. Naturally, the potential difference distribution in the measurement liquid can be measured even if a plurality of pairs of the metal electrode body 1 and the indicator electrode 12 are used. The present invention will be explained below with reference to Examples. The measuring device used will be described in more detail with reference to FIG. 2. The test tank 10 has an internal volume of about 1.8 liters and contains about 1.3 liters of pure water as the measuring liquid. In this test chamber 10, a glass electrode was placed as an indicator electrode 12, a metal electrode body 1 was placed as a comparison electrode, and a measuring liquid 11 was placed.
The electrode terminals of both electrodes 12 and 1 are respectively connected to an amplifier 15 having a high input resistance by a coaxial cable coated with Teflon.
The output was measured using a pen recorder. 4.1 to 10 in the chemical liquid tanks 20, 21, and 22, respectively.
% HCl, 4.1-10% NaOH, and about 50-500 c.c. of distilled water or neutral liquid. Example 1 Silver with a diameter of 1 mm and a length of 60 mm was used as a metal electrode body. This electrode body is partially covered with ceramic, and the tip is approximately 25 mm exposed. A glass electrode for pH measurement was used as an indicator electrode. The measurement liquid 11 can be changed from pure water to acidic or alkaline by operating the switching unit 19, and the means for this change is to introduce a predetermined amount of acidic or alkaline liquid in the chemical tank into the measurement liquid. This can be achieved by doing. The potential difference between the indicator electrode 12 and the comparison electrode 6 at this time was measured and recorded, and the results are shown in FIG. Figure 3 shows that the potential difference is +20m when measuring pure water.
V, and by adding 10% HCl solution, the pH of the measurement solution is
When the value becomes 2.2, the potential difference becomes +295 mV.Additionally, 10% NaOH solution is added to this measuring solution, and when the pH value of the measuring solution becomes 12.1, the potential difference becomes -278 mV, and 10% HCl is added again. This shows that the potential difference became +294 mV when the PHH value of the measured solution became 2.2 after adding the solution. Example 2 A silver alloy having a silver to silver mixing ratio of 9 to 1 and having a diameter of 1.2 mm and a length of 50 mm was used as the metal electrode body.
Measurements were carried out by the same means as described in Example 1, except that this silver alloy was used in place of the silver described in Example 1. In this case as well, when the measurement liquid changed from acidic to alkaline to acidic, the potential difference between the glass electrode and the metal electrode body changed. The results were as follows.
【表】
実施例 3
1mmφ、長さ60mmの銀線及び1.2mmφ、長さ50
mmの銀合金線(Ag:Cu=9:1)を夫々メチル
アルコールに室温下で2時間浸漬し、その後純水
で十分間洗浄した後、恒温槽内にて100℃30分間
の加温を行い、更に380℃1時間の加熱処理し銀
及び銀合金に酸化皮膜処理を行つた二種類の金属
電極体を用いて、前述実施例2に記載した方法で
ガラス電極と夫々の金属電極体との間に発生する
電位差を測定した。この場合においても測定液が
酸性→アルカリ性→酸性に変化するとガラス電極
と金属電極体との間の電位差が変化した。その結
果は次の通りであつた。[Table] Example 3 1mmφ, length 60mm silver wire and 1.2mmφ, length 50
mm silver alloy wires (Ag:Cu=9:1) were immersed in methyl alcohol for 2 hours at room temperature, then washed with pure water for a sufficient period of time, and then heated at 100°C for 30 minutes in a constant temperature bath. Using two types of metal electrode bodies that had been heat-treated at 380°C for 1 hour to give an oxide film treatment to silver and silver alloy, a glass electrode and each metal electrode body were formed by the method described in Example 2 above. The potential difference generated between the two was measured. In this case as well, when the measurement liquid changed from acidic to alkaline to acidic, the potential difference between the glass electrode and the metal electrode body changed. The results were as follows.
【表】
比較実験例
以上に示した実施例を同様な手段を用いて、他
の金属材質についての実験を行つた。金属電極体
として白金を用いた場合の実験例を第4図に示
す。この場合は、今まで説明してきた拳動と異な
り、測定液のPH値が変化すると発生電位差は変化
するがその値は安定せずしかも測定液のPH値に対
応した安定な電位差を示さなかつた。
銀電極による第3図と白金電極による第4図と
を比較すると顕著な差が認められることがわか
り、これらのことから、本発明者は重要な次の事
実を確認するに至つた。すなわちイオン性水溶液
中で、ある種の金属や金属化合物はその固体表面
状態のままで直接比較電極となることである。
第5図には液温25℃の水溶液のPHを変化させた
ときガラス電極と金属電極体との間の電位差の変
化を示す。図において、Aは実施例1銀電極の場
合、Bは実施例2銀合金電極の場合、Cは実施例
3の銀酸化物の場合、Dは実施例3の銀合金酸化
物のの場合の結果である。破線で示したEはネル
ンストの式より算出した結果の計算値線である。
この結果から、明らかなように、従来の技術に
よるPH測定方法での結果と本発明と銀電極又は銀
合金電極或いはそれらの酸化物電極の結果とが同
様な傾向を示すことがわかる。本発明者が更に詳
しく実施した実験例での実験結果を表3に示す。[Table] Comparative Experimental Examples Experiments were conducted on other metal materials using the same methods as those described above. FIG. 4 shows an experimental example in which platinum was used as the metal electrode body. In this case, unlike the fist movements explained so far, the generated potential difference changes when the PH value of the measuring solution changes, but the value is not stable and does not show a stable potential difference corresponding to the PH value of the measuring solution. . When comparing FIG. 3 with a silver electrode and FIG. 4 with a platinum electrode, it was found that there was a significant difference, and based on these findings, the present inventors came to confirm the following important fact. That is, in an ionic aqueous solution, certain metals and metal compounds directly serve as reference electrodes while remaining in their solid surface state. FIG. 5 shows the change in potential difference between the glass electrode and the metal electrode body when the pH of an aqueous solution at a liquid temperature of 25° C. is changed. In the figure, A is for the silver electrode of Example 1, B is for the silver alloy electrode of Example 2, C is for the silver oxide of Example 3, and D is for the silver alloy oxide of Example 3. This is the result. E indicated by a broken line is a calculated value line calculated from the Nernst equation. As is clear from these results, it can be seen that the results of the conventional PH measurement method and the results of the present invention and the silver electrode, silver alloy electrode, or oxide electrode thereof show similar trends. Table 3 shows the experimental results of experimental examples conducted in more detail by the present inventor.
【表】
表3は指示電極として、前述のガラス電極を用
い、金属電極体として、各種の金属材質を用いた
場合について実験したものである。
周知の如く、PH測定用ガラス電極は水溶液のPH
に比例する起電力を発生(JISZ8805)すること
から本表で示された電位差はこのガラス電極の対
極として用いられた金属電極体自体の水溶液中で
の金属電極体表面上の電位平衡の安定性をとりも
直さず示すこととなり、これによつてある種の金
属、又は金属化合物が測定液の指示電極に対応す
る比較電極となることが判明したわけである。
ある種の金属又は金属化合物として、特に顕著
にその特性が発揮されるものとして銀、銀合金、
銀と銀合金の酸化物、及びこれらの組合せからな
る物質が上げられる。
本実施例では指示電極としてPH測定用ガラス電
極を用いた場合について説明したが、この金属電
極は他の指示電極例えば水溶液中の各種のイオン
濃度電極との組合せにおいても極めて有効に動作
した。
実施例 4
実施例1で説明した比較電極と指示電極として
ガラス電極を用い、測定液のPH値の変化の手段を
「10%硫酸水溶液」と「10%苛性カリ水溶液」を
用いて同様な装置において実験した。
測定液を「酸性」→「アルカリ性」→「酸性」
と変化させると指示電極と比較電極と間の電位差
が変化した。その結果は次の通りであつた。[Table] Table 3 shows the results of experiments in which the aforementioned glass electrode was used as the indicator electrode and various metal materials were used as the metal electrode body. As is well known, the glass electrode for PH measurement is used to measure the PH of an aqueous solution.
(JISZ8805), the potential difference shown in this table is based on the stability of the potential balance on the surface of the metal electrode itself in the aqueous solution used as the counter electrode of this glass electrode. As a result, it was found that a certain metal or metal compound can serve as a comparison electrode corresponding to the indicator electrode of the measuring liquid. Among certain metals or metal compounds, silver, silver alloys,
Examples include oxides of silver and silver alloys, and substances consisting of combinations thereof. In this example, a case was explained in which a glass electrode for PH measurement was used as an indicator electrode, but this metal electrode also operated extremely effectively in combination with other indicator electrodes, such as various ion concentration electrodes in an aqueous solution. Example 4 Glass electrodes were used as the reference electrode and indicator electrode as explained in Example 1, and the PH value of the measuring solution was changed using "10% sulfuric acid aqueous solution" and "10% caustic potassium aqueous solution" in a similar device. I experimented. Change the measurement solution from “acidic” → “alkaline” → “acidic”
When the voltage was changed, the potential difference between the indicator electrode and the reference electrode changed. The results were as follows.
【表】
表4に示すように10%硫酸溶液と10%苛性カリ
水溶液を用いた場合でもネルンストの計算値とほ
ぼ等しい電位差を得ることができ、しかも時間に
対する安定性も10%HCl水溶液と10%NaOH水溶
液を用いた場合とぼぼ同様に短時間で飽和値に達
し安定した。
以上述べたように本発明の比較電極は前述した
ような構成で、構造的には安定した固体を用いた
シンプルなものであるのでイオン性溶液中の電解
質の濃度を測定する比較電極に適用すると、以下
に述べる如く、極めて優れた特徴と効果を示すこ
ととなる。
1 内部電解質をもたず、この故に内部電解質の
液絡部をもたない。
2 測定液を汚染しなく、かつ測定液本来の電位
測定ができる。
3 高温度の液中で使用できる。
4 高圧力条件下で使用できる。
5 極めてコンパクトに設計でき取扱いが簡便容
易となる。
6 液絡部のもつ本質的欠陥を一掃する。
7 使用中に、出力変動が発生したりしたときに
は、金属電極体の表面が磨くとか、洗浄とかの
手段で容易に特性の回復が可能となり、寿命の
向上が図れる。
以上説明したように本発明の比較電極を備えた
電気化学的電位差測定装置は、水溶液中のイオン
濃度測定用各種イオンメーターやPH計の比較電極
あるいは各種電気化学的分析用参照電極、高温、
高圧条件下での直接測定用比較電極、生体医学的
な分析実験装置等に利用でき工業上有用である。[Table] As shown in Table 4, even when using a 10% sulfuric acid solution and a 10% caustic potassium aqueous solution, it is possible to obtain a potential difference that is almost equal to Nernst's calculated value, and the stability over time is also 10% compared to a 10% HCl aqueous solution. The saturation value was reached and stabilized in a short period of time, almost the same as when using an aqueous NaOH solution. As described above, the reference electrode of the present invention has the above-mentioned configuration and is structurally simple using a stable solid, so it can be applied to a reference electrode for measuring the concentration of electrolyte in an ionic solution. As described below, it exhibits extremely excellent characteristics and effects. 1 Does not have an internal electrolyte and therefore does not have an internal electrolyte junction. 2. Can measure the original potential of the measurement solution without contaminating the measurement solution. 3 Can be used in high temperature liquids. 4 Can be used under high pressure conditions. 5. Extremely compact design makes handling simple and easy. 6. Eliminate essential defects in the liquid junction. 7. When output fluctuations occur during use, the characteristics can be easily restored by polishing or cleaning the surface of the metal electrode body, and the life span can be improved. As explained above, the electrochemical potentiometric measuring device equipped with the reference electrode of the present invention can be used as a reference electrode for various ion meters and PH meters for measuring ion concentration in aqueous solutions, or as a reference electrode for various electrochemical analyses.
It is industrially useful as it can be used as a comparison electrode for direct measurement under high pressure conditions, a biomedical analysis experiment device, etc.
第1図は本発明の比較電極を備えた電気化学的
電位差測定装置の一実施例を示す断面図、第2図
は本発明の比較電極の特性を調査するために用い
た実験装置を示す概略図、第3図はガラス電極と
銀を金属電極体として組合せ時間の経過に従い測
定液は酸性→アルカリ性→酸性に変化させて測定
した電位差と測定時間との関係を示すチヤート
図、第4図は、ガラス電極と白金を金属電極体と
して組合せて測定した電位差と測定時間の関係を
示すチヤート図、第5図はPH測定用ガラス電極と
比較電極に用いた金属電極体との間の電位差と水
溶液のPH値との関係を示す特性図である。
1……金属電極体、2……絶縁体、3……取付
金具、4……測定端子、5……被覆部、6……比
較電極、10……試験槽、11……測定液、12
……指示電極、15……増巾器、16……電圧
計、17……シールド、18……薬液導入部、1
9……切換(分岐)部、20,21,22……薬
液槽。
FIG. 1 is a sectional view showing an embodiment of an electrochemical potentiometric measuring device equipped with a reference electrode of the present invention, and FIG. 2 is a schematic diagram showing an experimental apparatus used to investigate the characteristics of the reference electrode of the present invention. Figure 3 is a chart showing the relationship between the potential difference and measurement time measured by combining a glass electrode and silver as a metal electrode body and changing the measurement liquid from acidic to alkaline to acidic over time. , a chart showing the relationship between the potential difference and measurement time measured by combining a glass electrode and platinum as a metal electrode body, and Figure 5 shows the potential difference between the glass electrode for PH measurement and the metal electrode body used as a comparison electrode and an aqueous solution. FIG. 2 is a characteristic diagram showing the relationship between PH value and DESCRIPTION OF SYMBOLS 1... Metal electrode body, 2... Insulator, 3... Mounting bracket, 4... Measurement terminal, 5... Covering part, 6... Reference electrode, 10... Test tank, 11... Measurement liquid, 12
... Indicator electrode, 15 ... Magnifier, 16 ... Voltmeter, 17 ... Shield, 18 ... Chemical solution introduction part, 1
9...Switching (branching) part, 20, 21, 22... Chemical liquid tank.
Claims (1)
該電極間に生ずる電気化学的電位差を測定するた
めの装置において、測定物と接触する比較電極の
電極体が銀、銀と銅の合金又は銀とニツケルと銅
の合金、銀の酸化物、銀と銅の合金の酸化物より
選択された何れかの物質よりなる比較電極を用い
たことを特徴とする電気化学的電位差測定装置。1. In an apparatus for measuring an electrochemical potential difference generated between the indicator electrode and the reference electrode using at least one pair of the electrodes, the electrode body of the reference electrode in contact with the object to be measured is made of silver, an alloy of silver and copper, or silver and nickel. An electrochemical potential difference measuring device characterized in that a reference electrode is made of a material selected from an alloy of copper and copper, an oxide of silver, and an oxide of an alloy of silver and copper.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2772283A JPS59154350A (en) | 1983-02-23 | 1983-02-23 | Reference electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2772283A JPS59154350A (en) | 1983-02-23 | 1983-02-23 | Reference electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59154350A JPS59154350A (en) | 1984-09-03 |
JPH0452408B2 true JPH0452408B2 (en) | 1992-08-21 |
Family
ID=12228903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2772283A Granted JPS59154350A (en) | 1983-02-23 | 1983-02-23 | Reference electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59154350A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528961U (en) * | 1991-06-17 | 1993-04-16 | 義和 小林 | ORP meter for controlling etching liquid |
US5385652A (en) * | 1993-12-17 | 1995-01-31 | Delco Electronics Corporation | Method of etching using a silver/silver oxide reference electrode |
ATE546852T1 (en) | 2007-01-22 | 2012-03-15 | Commissariat Energie Atomique | REFERENCE ELECTRODE, PRODUCTION METHOD AND BATTERY THEREOF |
-
1983
- 1983-02-23 JP JP2772283A patent/JPS59154350A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59154350A (en) | 1984-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3957613A (en) | Miniature probe having multifunctional electrodes for sensing ions and gases | |
US3454485A (en) | Oxygen sensor with scavenger means | |
US4264424A (en) | Hydrogen ion sensor having a membrane sheath of an oxygen ion conducting ceramic | |
US5217596A (en) | Electrode probe for use in aqueous environments of high temperature and high radiation | |
EP0396366B1 (en) | Electrode probe | |
Schuldiner | Hydrogen overvoltage on bright platinum: III. Effect of hydrogen pressure | |
NZ192090A (en) | Measuring a chemical characteristic of a liquid with immersed electrodes ph meter | |
US4360415A (en) | Noise suppressing bypass for reference electrode | |
JPH0473095B2 (en) | ||
US3378478A (en) | Apparatus for continuous oxygen monitoring of liquid metals | |
JP2938514B2 (en) | Gas sensor | |
US3649472A (en) | Porosity testing | |
US2684938A (en) | Device for measuring the ph | |
US4182667A (en) | Ion-sensitive electrodes | |
Garbarz-Olivier et al. | The origin of the electrode effect in various electrolytes | |
JPH0452408B2 (en) | ||
JPH0452407B2 (en) | ||
JPH05196592A (en) | Reference electrode probe used in high- temperature water environment | |
CA1222795A (en) | Electrochemical reference electrode | |
JPH0616024B2 (en) | Apparatus and method for measuring hydrogen concentration in water | |
US2238903A (en) | Electrode for measuring the conductivity of liquids | |
US4207162A (en) | Chemical detector utilizing an electrolytic gel | |
JPH0368339B2 (en) | ||
GB2128751A (en) | Hydrogen concentration meter | |
US2732335A (en) | glass |