[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0444637B2 - - Google Patents

Info

Publication number
JPH0444637B2
JPH0444637B2 JP3707085A JP3707085A JPH0444637B2 JP H0444637 B2 JPH0444637 B2 JP H0444637B2 JP 3707085 A JP3707085 A JP 3707085A JP 3707085 A JP3707085 A JP 3707085A JP H0444637 B2 JPH0444637 B2 JP H0444637B2
Authority
JP
Japan
Prior art keywords
inorganic
hydraulic
lightweight
product according
mica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3707085A
Other languages
Japanese (ja)
Other versions
JPS61197480A (en
Inventor
Tsuneo Genma
Akio Mizobe
Masaki Okazaki
Sotaro Itaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP3707085A priority Critical patent/JPS61197480A/en
Publication of JPS61197480A publication Critical patent/JPS61197480A/en
Publication of JPH0444637B2 publication Critical patent/JPH0444637B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

A 本発明の技術分野 本発明は石綿を使用しなくても寸法安定性、難
燃性及び機械的性能の優れた水硬性軽量無機質抄
造製品と、該る抄造製品を得るための製造方法に
関するものである。 B 従来技術とその問題点 水硬性無機質抄造製品は、石綿セメント板に代
表されるように石綿のような繊維質とセメントの
ような水硬性物質とを主成分とする複合体であ
る。 その主たる製造方法は、石綿等の繊維成分とセ
メント等の水硬性結合成分を他の添加剤と共に水
に添加して5〜30重量%の水分散液(抄造スラリ
ー)とした後、これを丸網上又は長網上に抄き上
げ、脱水後成型、硬化、乾燥して製品とするもの
である。該る方法は、簡単な設備で生産性が高
く、高強度で、寸法安定性に優れ、耐久性のある
安価な不燃建材を提供することができかかる製品
は建築材料として幅広い分野で多量に使用されて
いる。 水硬性無機質抄造製品における石綿の役割は、
セメント粒子等の固形分の捕捉等成形性の付与と
セメント板の物性改善、例えば曲げ強度、寸法安
定性、不燃性、耐久性の改善である。更に石綿は
非常に安価な物質である。斯の如く石綿を含有す
る無機質抄造製品における石綿の役割は極めて重
要であり、優れた物性を有する安価な該製品は石
綿の存在なしには有り得ないとまで言われる所以
である。石綿の該る優れた特性は、石綿がフイブ
リル状物質であること、水硬性物質との親和性に
富むこと、高強力、高ヤング率であること、無機
質繊維であること、保水性が高いこと等に起因す
る。 一方、石綿を生産する時、該石綿を含有する製
品を製造する時、及び加工、施工する時、更には
施工後の使用中等に空気中に石綿を含有した粉塵
を発生する。近年石綿の微細な粉塵が人体に吸引
されると肺ガン等を引き起こすことが明らかにさ
れつゝあり、その使用は次第に法規制等により制
限されはじめ、禁止の方向に向う気配すらある。
更に、石綿産出国が特定国に偏在しており、又資
源枯渇の問題もある。 該る状況下で多量に石綿を含む水硬性無機質抄
造製品に代つて、石綿を全く含まずに石綿使用時
と同等の高生産性と高性能を有する水硬性無機質
抄造製品の提供が強く望まれている。 我々はかかるニーズに応えるべく、発明を行な
い、その結果を特願昭59−150333号として提案し
ている。即ち、パルプ、雲母、無機成形材、補強
繊維、セメントを必須成分とする水硬性無機質抄
造製品及びその製造法であり、この発明によれ
ば、生産性、性能共に石綿スレート板と何ら遜色
のないものを得ることが可能である。しかしなが
ら取扱性、断熱性、コスト等が要求される内外装
材では軽量であるということが重要な因子であ
り、また寸法安定性にも厳しい要求がなされるた
めに、かかる用途には不適当である。 一方石綿を含有する石綿セメント軽量板として
は、例えばJIS A−5413の石綿パーライト板、
JIS A−5414のパルプセメント板、JIS A−5427
のパルプセメントパーライト板がある。該る製品
は石綿を多量に含有しているにもかかわらず、強
度が低く、寸法安定性に劣り、現在においてすら
改善が望まれている。又、JIS A−5418の石綿セ
メント珪酸カルシウム板はオートクレーブ養生を
施した寸法安定性のよい優れた内外装材である。
しかし石綿を含有していることとオートクレーブ
養生が必要なことのために衛生上、経済上に難点
を残している。該る状態でこれ等の軽量板を構成
する石綿を衛生上の理由から取り除くことは生産
技術的にみて至難の業と言われている。内装用と
して用いられる板材は、紙やクロスなどの貼布加
工や塗工加工処理などが行なわれるので、温湿度
の変化に対し、板材の寸法安定性は特に重要な因
子となつている。従来技術として無石綿セメント
軽量板の試みがないわけではないが種々の欠点が
ある。例えば特開昭49−126723号公報に記載され
た発明は、ガラス繊維とセルローズ繊維を主と
し、低密度充填材として、ケイソウ土、真珠岩を
有する水硬性セメント結合材よりなり、オートク
レーブ処理しストービングして得られる耐火ボー
ドを提供するものであるが、かかる本発明ではオ
ートクレーブ養生の必要がありガラス繊維で補強
しているもののガラスの耐アルカリ性が劣る点よ
り耐久性に問題を残している。特開昭51−80327
号公報には、セルローズ繊維や有機合成繊維の合
計が繊維強化物質の5〜100重量%で、軽量化材
として珪藻土岩やバーミキユル石を混入して、ト
ベルモライト又はゾーノトライトを有する珪酸カ
ルシウムで構成された無石綿品が記載されてい
る。しかし得られた板材は多量の有機物を含有す
ることもあつて加熱により亀裂が発生し不燃性は
満足するものではない。又寸法安定性も同様であ
る。特開昭56−114857号は20〜80°SRである叩解
綿を2〜25%用い、有機合成繊維及び結合材によ
つて板材の比重が1.3〜1.9の薄板を提供してい
る。特に石綿代替に叩解綿とベントナイト等のゲ
ル化剤を用い、凝集剤との組合せにより固形分の
損失防止を計つている。しかしながら製品中には
セルロース繊維が4〜15%と多いこともあり、寸
法安定性も悪く、かつ不燃性も不充分である。 英国特許公開公報第2101645号及びヨーロツパ
特許第68741号には、セルロースフアイバーとホ
ゾラニツクシリカを配合し、フイラーには雲母等
を用いる技術が開示されている。該る技術は5%
以上の多量のセルロースフアイバーを主体として
おり、セルロースフアイバーによる不燃性や寸法
安定性等に問題を有している。 特開昭59−73463号公報や同59−131551号公報
には、パルプの量を規定した不燃性でかつ曲げ強
度の大なる板材が提供されているが、軽量性、乾
湿時の寸法安定性の点からは満足できるものでは
ない。また特開昭58−185474号公報には、繊度
0.1〜2デニールのポリビニルアルコール系合成
繊維が石綿なしの抄造製品の曲げ強度の向上に有
効であることが述べられている。しかし板材物性
としては軽量性に問題があり、かつ寸法安定性、
不燃性にも難点がある。 以上のいずれの公知技術においても満足すべき
無石綿水硬性軽量無材質抄造製品を得ることは不
可能である。 本発明者等は、特願昭59−150333号の無石綿水
硬性無機質抄造製品をベースにして、現状の石綿
含有水硬性軽量無機質抄造製品の問題点、即ち衛
生上、品質上(特に寸法安定性)、経済上の問題
を解決すべく検討の結果、特願昭59−150333号の
発明に特定の無機質軽量化材を組合せることでほ
ぼ満足できる結果が得られることを見出し、この
発明を既に昭和60年2月8日付で特許出願を行な
つている。しかしながら、内装材として特長ある
ものにするためには、更に寸法安定性の向上が必
要であることが明らかとなつた。 本発明者等は、かかる寸法安定性向上を計るべ
く鋭意研究した結果、本発明に到達したものであ
る。 C 発明の構成 その要旨は、(1)アスぺクト比20以上で30〜
5000μmの粒子直径を有する雲母粉末と(2)必要に
応じ用いるパルプの分散液に、(3)無機成形材と(4)
無機質軽量化材を添加混合して分散させた後、(5)
0.5デニール未満の補強繊維及び(6)必要に応じ2
価又は3価の金属の水酸化物を加え、さらに(7)セ
メント等の水硬性無機物を添加してなる抄造スラ
リーを(8)凝集剤を加えつつ抄き上げる水硬性軽量
無機質抄造製品及びその製造法である。 本発明者等は、種々の成分を複合するという本
発明と同様な考えに基づいて特願昭59−150333号
の発明を提案した。しかし取扱性、断熱性、経済
性が要求される内外装用途では軽量であるという
ことが重要な因子であるために、かかる用途には
不適切であることが判つた。そこで鋭意、軽量化
材との組合せを検討した結果、驚くべきことに、
先願の特願昭59−150333号の発明に特定の軽量化
材を組み合せるのみで、無石綿でオートクレーブ
養生せずとも従来の石綿セメント軽量板よりも優
れた性能と経済性を有する軽量板を得ることが可
能となり、昭和60年2月8日付けでこの技術を特
許出願した。 しかしながら、典型的は内外装材である石綿セ
メント珪酸カルシウム板と比較すると、石綿を含
有しないので衛生上の問題がないこと、オートク
レーブ養生しないので経済的である等の特長は有
するものの、内外装材で最も重要な物性である寸
法安定性がやゝ劣ることが判明し本発明者はその
改善に取り組んだ。そして、先に2月8日付で出
願した特許の発明をベースにして種々検討した。
寸法安定性を上げる効果的な手段はパルプを除く
ことであるが、パルプを除くとセメント粒子等の
捕捉が出来ず、従つて抄造性に問題を生ずる。そ
こでパルプの代りに寸法安定性を阻害せず、セメ
ント捕捉性等の抄造性を付与する物質を見い出す
べく検討した結果、補強用として用いる繊維の繊
度を0.5デニール未満にすることが効果的である
ことを見い出した。 即ち2月8日付で特許出願した発明中のパルプ
を除く代りに補強用繊維の繊度を0.5デニール未
満にするだけでよいことになる。衛生上の問題を
全く有せず、経済的で石綿セメント珪酸カルシウ
ム板と同等ないしはそれ以上の物性を有するかか
る無石綿セメント軽量板は、本発明で特定した、
雲母、無機質軽量化材、無機質成形材、0.5デニ
ール未満の補強用繊維及び必要に応じて用いる特
定量のパルプ、金属水酸化物及び残部を主として
水硬性物質より構成される系でのみ得られるもの
である。 本発明の効果は、水硬性軽量無機質抄造製品を
構成する各成分の特性のみならず成分間の相互作
用が加わつてはじめて得られたものであり、本発
明の規定する範囲内の成分が一つでも欠けた場合
は充分な性能と生産性は得られない。 以下本発明の構成並びにその作用効果について
さらに詳細に述べる。まず石綿を全く使わずして
抄造可能な抄造スラリーを得るために補強繊維の
均一な分散液を得ることが必要である。 まず0〜2%のパルプ、5〜50%の雲母、1〜
20%の無機質成形材、5〜50%の無機質軽量化材
を水又は白水中に添加、攪拌分散したスラリーに
繊度0.5デニール未満の補強繊維を0.2〜5%添加
し、均一に分散するように攪拌する。このスラリ
ーには、必要に応じ、スラリー調整段階又はチエ
スト等貯蔵攪拌の工程中に2価又は3価の原子価
を有する金属の水酸化物を添加する。例えば微細
な水酸化アルミニウム粒子を添加する。そして最
後に残部である主としてセメントである水硬性無
機質を添加し攪拌することによつて補強繊維が均
一に分散した抄造スラリーを得ることができる。
かかる抄造スラリーを白水等で割りながら凝集剤
を添加しつつ抄造することによりセメント等固形
分捕捉率が90%以上で水位を保ちつつ安定に抄造
することが可能である。以下常法によつて製品と
なすが、養生はオートクレーブの必要はなく常温
から100℃の蒸気養生又は気乾養生でよい。この
ようにして得られた無機質抄造製品は見掛の比重
が0.5〜1.3g/cm3と軽量であり、日本工業規格
(JIS A−1321)に合格する不燃性建材であり、
寸法変化率が極めて小さく、耐久性がよく、かつ
曲げ、引張り、衝撃等の機械的物性の優れた性質
を有するものである。以下本発明を構成する成分
について詳述する。 まず配合する雲母であるが、雲母のアスぺクト
比D/Tが20以上でかつ粒子直径が30〜5000μm
の板状形態を有していれば、化学組成、結晶形、
産地、粉砕法等により何等制限をうけるものでな
い。例えば白雲母、金雲母、黒雲母、〓雲母、ソ
ーダ雲母、合成雲母類から適宜撰択される。特に
カナダ産のソゾオライト雲母はその形態から極め
て好適である。 D/Tが20未満であるとその形状が粒状に近く
なり雲母の偏平性が失なわれてしまい寸法安定性
の効果は少なくなる。本発明に使用する雲母の平
均粒子径は30〜5000μmが必要である。理由は判
らないが30μm未満では不燃性試験のうちの表面
試験には効果が発現されず又寸法変化率への寄与
も小さい。反面5000μmより大きくても表面試験
や寸法変化率には効果はあるもののバツト内に沈
澱を生じたりして抄造時問題を起こすために使え
ない。雲母の添加率は5〜50%がよい。5%未満
では不燃性に関する日本工業規格(JIS A−
1321)に合格せず、寸法変化率への寄与も少な
い。又50%を越える添加では抄造時バツト内への
沈澱を生じたり、抄造フリースの層間剥離を招来
したりして良好な無機質抄造製品を得ることが困
難となる。 次に補強用繊維であるが、その役割はセメント
粒子の捕捉性等の工程通過性の付与と、水硬性無
機質硬化体の弱点である引張り、曲げ、衝撃強度
の改善にある。工程通過性を付与するために補強
用繊維の繊度が重要であり、0.5デニール未満で
なければならない。0.5デニール未満の補強用繊
維を用いると、無機質成形材、無機質軽量化材、
凝集剤との相乗作用によりパルプを使用せずし
て、石綿使用時と同等の工程通過性を得ることが
できるという驚くべき事実を見い出したものであ
る。繊度が0.5デニール以上になると、2重量%
を越えるパルプを使用しないと抄造が難しくな
る。水硬性硬化体の補強という観点から、繊維が
具備すべき条件は、繊維の引張り強度、ヤング率
の高いこと、セメント等水硬性無機質との接着の
よいこと、耐アルカリ性があること、健康上無害
であること、更に安価であることが望ましい等で
ある。 上記条件を満たす最も好ましい補強用繊維はポ
リビニルアルコール(以下PVAと略記)系繊維
であり、更にポリアクリロニトリル系繊維(以下
PANと略記)も好ましく用いられる。その他ア
ミド系、アラミド系繊維、カーボン繊維、耐アル
カリガラス繊維等も用いることができる。これら
の補強用繊維の引張り強度はデニール当り5g以
上、ヤング率はデニール当り90g以上が必要であ
る。又化学的物理的手段にて表面が改質されて水
硬性無機物との接着性が改善されたものであれ
ば、本来疎水性で接着性の悪い繊維、例えばポリ
オレフイン繊維でも強度、ヤング率が前述の値以
上であれば本発明に十分用いることができる。 配合は、抄造スラリー固型分に対して0.2〜5
重量%、好ましくは1〜3重量%がよい。0.2重
量%未満では補強効果及びセメントの捕捉性等の
成形性付与効果がなく、5重量%を越えると分散
不良となり均一なシートが得られないし、高価と
なる。繊維のアスぺクト比(L/D)は200〜
1500が分散性、補強性の兼合いで好ましい範囲で
ある。 該る繊度0.5デニール未満の補強繊維を用いる
とパルプが不要なために、寸法安定性が著しく向
上し、不燃性に優れ、かつパルプに起因する耐久
性の懸念もなくなる。しかしながら、かかるパル
プ使用に伴う問題があまり大きくない範囲でパル
プの効用を引出すことも可能である。例えばパル
プは補強繊維の分散性向上効果や、フリースの保
水性コントロール効果を有する。かかる効果を利
用し、物性をあまり犠牲にしない最大許容添加量
は2重量%であり、カナデイアンフリネスが30〜
750mlに叩解したものを用いる。パルプの種類と
しては天然、合成いずれのパルプでもよい。 無機質軽量化材は板材の見掛の嵩比重を低下さ
せるものである。そのためには添加するものが軽
量であること、更に不燃性の観点から無機物でな
ければならず、又抄造性及び平滑性という点から
は粒子状物である必要がある。該る無機質軽量化
材としては、例えば、発泡した真珠岩、頁岩、蛭
石、粗面岩、黒曜石、焼成珪藻土、シラス、シリ
カ、ガラス等のバルーンのうちいずれか又は2種
以上の組合せ、無機質発泡体粉末を使用すること
ができる。添加材の見掛の嵩比重は0.3g/cm3
下がよく、それより大きいと板材の軽量化に寄与
しない。無機質軽量化材の粒度はJIS A5007によ
る粒度を意味し、その粒度は1.2mm以下がよく、
好ましくは0.6mm以下である。1.2mmを越えて粒子
直径が大きくなるとスラリー中に軽量化材が浮遊
し、抄造性を阻害したり、板材の平滑性を損う等
の問題が起るために好ましくない。板材の見掛の
比重を0.5〜1.3g/cm3にするためには、抄造性を
損わない範囲で特定した軽量化材の添加率を規定
する必要がある。軽量化材の添加率は5〜50%が
よく、5%未満では板材の軽量性は得られず、50
%を越えると抄造性が悪くなり好ましくない。よ
り好適な範囲は10〜35%である。 次に無機質成形材とは、直径または長さが1×
10-2〜1×10-5mmの粒子又は繊維状物を意味し、
該物質を添加することにより、(a)補強用繊維の分
散性が向上すること、(b)パルプや補強用繊維と無
機質軽量化材とセメント凝集剤を併用することに
より凝集性能が相乗的に向上しセメント捕捉性を
増し、適度な水性を与えるなどの抄造性の向上
することを見い出した。更にはグリーンシート成
形時には、(c)抄造フリースの積層性向上、(d)メー
キングロールでの水われ現象の防止、(e)メーキン
グロールでの亀裂やしわ及び展開時の亀裂発生の
防止、(f)表面平滑性、プレス成型時に型付け性の
付与等の効果もあることを見い出した。 かかる無機成形材の添加量は1〜20重量%であ
る。1重量%未満ではその効果は発揮されず、20
重量%を越すとセメントの捕捉性が低下したり、
保水性が過剰となつたりしてメーキングローラ上
の成形性が悪化する。平均粒子径が1×10-2〜1
×10-5mmである理由は、1×10-2mm以上では成形
材添加効果が発揮されず、又1×10-5mm以下では
粉砕、分級するための労力やエネルギーが必要と
なり、コスト高であり、抄造時にシリンダーの目
を通つたりして経済的でない。無機質成形材の種
類は天然の石灰石粉、重質炭カル、チヨーク、胡
粉で示されるもの又は合成して得られる軽微性炭
カル、極微細炭カルと呼ばれる炭酸カルシウムか
ら選ばれるもの、その他塩基性炭酸マグネシウ
ム、ドロマイトなど炭酸塩からなる粉末を用いる
ことができる。更に粘土鉱物で代表される珪酸塩
化合物、例えば天然のカオリン、クレー、ボール
クレー、ろう石クレー、パイロフイライト、ベン
トナイト、モンモリロナイト、ノントロナイト、
サポナイト、セリサイト、ゼオライト、ネフエリ
ンシナイト、タルク等の板状又は薄板状のもの、
更にアタパルジヤイト、セピオライト、ワラスト
ナイト等の繊維状又は針状のものを用いることが
できる。又合成品として合成珪酸アルミ、合成珪
酸カルシウムも用いることができる。珪酸として
は天然品の珪藻土、珪石粉等がある。又合成品と
しては含水微粉珪酸、無水微粉珪酸、ホワイトカ
ーボンと呼ばれるもの、工業用副産物あるいは廃
棄物としてのシリカダスト、シリカフユーム、石
灰石、フライアツシユ、スレート板粉末等も使用
することができる。 本発明に用いられる無機質成形材とは、非発泡
状(非多孔質)のものであり、この点で前述した
無機質軽量化材とは異なるものである。また無機
質成形材に雲母が含まれないのは言うまでもな
い。 次に2価又は3価の原子価を有する水酸化物に
は、アルミニウム、鉄、マグネシウム、亜鉛の水
酸化物がある。水酸化アルミニウム、水酸化鉄、
水酸化マグネシウム、水酸化亜鉛の粒子は微細な
程好ましく、特にコロイド状に存在する場合がよ
い。その添加量は必要に応じ10%未満の範囲内で
なければならない。本発明の組合せで比較的有機
物の添加量が多くて、日本工業規格(JIS A−
1321)の「建築物の内装材料及び工法の難燃性試
験法」には基材試験として810℃を越え難燃1級
不合格の場合は該る金属水酸化物を10重量%未満
の範囲内で添加すると難燃1級となり建築基準法
による不燃建材の認定を得ることができる。添加
しない場合は難燃2級となり準不燃となる。該る
金属水酸化物を10重量%より多く添加すると板材
の亀裂を起すために好ましくない。 凝集剤は一般的な凝集剤でよい。有機系、無機
系あるいはアニオン、ノニオン、カチオンのいず
れのイオン性のものでもよいが、セメント凝集剤
として一般に用いられているアニオン系高分子凝
集剤が好ましく用いられる。凝集剤の使用量は抄
造スラリー固形分に対して、20〜500ppmが好ま
しい。20ppm未満では効果が乏しく、500ppmよ
り多くても凝集力が強すぎて凝集体が大きなフロ
ツク状になつたり、水性がよすぎて、抄造時の
ヘツド差がとれないなど均一なシートを形成する
ことが難しい。更にフエルトを汚染し生産性を損
うなどの欠点を招来する。 以上の如く特定した雲母、補強用繊維、無機質
軽量化材、無機質成形剤、凝集剤及び必要に応じ
パルプ、金属水酸化物を夫々特定した量で組合せ
ることによつてのみ石綿セメント軽量板と同等の
生産性とオートクレーブなしで石綿セメント珪酸
カルシウム板と同等あるいはそれ以上の性能を有
する経済性に優れた無石綿軽量板を得ることがで
きる。その理由は判然としないがそれぞれ単品の
効果から予想されるよりも驚くべき大きな効果を
呈することにより考えて相乗作用があるものと思
われる。 最後に本発明で使用できる水硬性無機物として
は次のようなものがある。代表的なものはポルト
ランドセメントであり、ポルトランドセメントに
は、普通ポルトランドセメント、中層熱ポルトラ
ンドセメント、早強ポルトランドセメント、超早
強ポルトランドセメント、白色ポルトランドセメ
ント、耐硫酸塩ポルトランドセメント等がある。
混合セメントとしては、高炉セメントA種、B
種、C種、フライアツシユセメントA種、B種、
C種、シリカセメントA種、B種、C種、があ
る。特殊セメントとしてのアルミナセメント、超
速硬セメント、コロイドセメント、膨張セメン
ト、油井セメント等が用いられる。その他石こう
を用いた半水セツコウ及び水和セツコウとスラグ
との混合水硬性物質、マグネシアなどを用いるこ
とも可能である。基本的には水硬性物質であれば
いずれでもよい。 又目的に応じ水硬性無機物の一部を他の物質に
置きかえることも可能であり、本発明の範囲内に
含まれる。例えば膨張性混和材としてのカルシウ
ムサルホアルミネート系、石灰系のもの、有機軽
量化剤としてのフエノール、エポキシ、ポリスチ
レン、ポリエチレン、ポリプロピレンの発泡体及
び発泡剤等を用いることができる。 実施例1、比較例1、参考例1 無機質成形材としてシリカフラワー(日本重化
学社製のS.Fパウダー、平均粒径0.36μ)を抄造固
形分として所定量(以下特にことわらないかぎり
添加率は表−1に示した。)となるようにスラツ
シヤー付パルパーに添加し、1%濃度として約10
分間攪拌分散した。なおパルプを添加する場合
(実施例1、テストNo.4)は、あらかじめ叩解し
たNUKP(針葉樹未晒パルプ;叩解度はカナデイ
アンフリーネス100ml)をシリカフラワーと同時
に添加して約10分間攪拌分散した。 その後軽量化材としてパーライト(宇部興産社
製PCライト、嵩比重0.18、粒度0.3mm以下)と雲
母(クラレ製ソゾライトマイカ40S 平均粒子径
400μ、平均アスぺクト比60)を添加し、約5分
間混合攪拌した。 しかる後に補強用繊維を添加し、約2分間混合
攪拌し、均一に分散してスラリーとした。用いた
補強繊維はPVA繊維で繊度0.15dr(drはデニール
の略)、強度13.4g/dr、ヤング率300g/dr、繊
維長4mm(アスぺクト比1000)のものである。 かかる水分散液に水硬性物質であるポルトラン
ドセメントを添加し、5分間攪拌した後チエスト
に移送し、約120g/の抄造用スラリーとした。
なお比較例1は実施例のうち特定した各種添加物
のうち、いずれか一種を添加しない以外は実施例
1と同一条件で実施したものである。 該抄造用スラリーにアニオン系凝集剤(市川毛
織製IKフロツクT−210)及び必要量の割水を添
加しながら、抄造槽(バツト)へ導入した。なお
凝集剤添加率はすべて抄造時のスラリー中固形物
に対する値で示す。かかるスラリーを60メツシユ
の丸網にて抄き上げメーキングローラーに巻き取
り切断後の生板を50℃で24時間、その後室温で4
週間放置して養生後製品物性を測定し表−1に記
載した。 評価基準、測定条件については以下に述べる方
法で実施した。 分散性は繊維状物質の分散状態を意味し、抄造
スラリーを丸網へ抄き上げる際の丸網上のデコボ
コ状態を観察し、デコボコの少い非常に良好な分
散状態を◎、デコボコの多い分散不良状態を×と
し、その間を2ランクにわけて○、△とした。 次にバツト内水位は、充分均一なシートを抄き
上げ可能な場合を◎、水位がほとんどとれずに均
一なシートが出来ない場合及び水が悪過ぎてバ
ツトより抄造スラリーがオーバーフローするよう
な状態を×、その中間ランクを○、△として定性
的に判断した。 セメントや無機成形材等の固形分の捕捉率は抄
造槽内の抄き上げ前のスラリー濃度(W1)と丸
網を通して排出された排水濃度(W2)から (1−W2 W1)×100%として求めた。 層間剥離はメーキングロール後の生板を手で層
間を剥離させることにより定性的に判断した。フ
リースの積層したものを剥すように力を加えても
層間が不明確で剥離し難い状態を◎、簡単に剥離
する状態を×、その間を2ランクに分けて○、△
とした。 かさ比重は、JIS A 5418に準拠し、試験片を
かき混ぜ機付空気乾燥器に入れ、105±5℃で24
時間乾燥し、その後シリカゲルで調湿したデシケ
ーターに入れて常温まで冷却したのち、そのとき
の重量を測り、乾燥時の重量(W)gとする。次
に、長さ、幅及び厚さを測定し、計算により体積
(V)cm3を求める。かさ比重は次式により求めた。 かさ比重=W/V 曲げ強度はJIS A 1408「建築ボード類の曲げ
試験法」により測定し、抄造方向(タテ方向)と
その直角方向(ヨコ方向)の平均値で示した。水
硬性物質等の捕捉率が変わると補強繊維の配合量
が実質的に変化したことになるので、真の補強性
を比較するために水硬性物質等固形分の捕捉率を
100%となるように補正を加えた曲げ強度を示し
た。 衝撃強度はJIS K−7110のIzod試験法によりタ
テ方向のみをノツチなしで測定した値を示した。 長さ変化率はJIS A−5418に準拠し、1ケ月間
気乾状態に放置後、60℃一昼夜乾燥したものを基
準とし、20℃一昼夜水に浸漬した吸水時の長さを
測定し、基準からの変化率を求めた。 難燃性試験はJIS A−1321の「建築物の内装材
料及び工法の難燃性試験方法」に依り基材試験及
び表面試験を行い難燃1級、2級等の判定を行つ
た。 加工性評価としての釘打ち性試験は、一辺30cm
の正方形試験片の対角線上それぞれ角より1cmの
ところに直径1.9mmの釘で木柱に打ち付けたとき
試験片のひび割れの発生を観察した。1枚の試験
片で4箇所打ち付けを行ない4箇所ともひび割れ
の発生しないものを◎、3箇所では○、1〜2箇
所では△、全部発生した場合は×とした。 鋸引き性試験は家庭用鋸を用いて手で切断した
時の切れ具合いをみた。軽い力で切断面のかど欠
け、ひび割れなどもなく最後まで容易に切れたも
のを○、かど欠けやひび割れなどが起つたものを
×とした。 鉋掛け性試験は鋸切断後の面取りを家庭用鉋を
用いて軽い力で、かつ面取り部分がきれいに仕上
つた時を○、そうでない時を×とした。 抄造性の判定は、参考例1テストNo.10の石綿と
同一程度のものを◎とし、抄造上問題のあるもの
を×、その中間ランクを○、△として判断した。 製品物性の判定は、参考例1テストNo.10,11の
石綿セメントパーライト板または石綿セメントけ
い酸カルシウム板並またはそれ以上のものを◎と
し、難燃性不合格またはその他物性に問題のある
ものを×、その中間ランクを○、△として判断し
た。 衛生性は石綿を含有しないものを○、含有する
ものを×とした。 総合判定は最終的に抄造性と製品物性両方を満
足し、さらに石綿を含有しないものを◎とし、何
れかに問題のあるものを×、その中間ランクを
○、△として判断した。
A: Technical Field of the Invention The present invention relates to a hydraulic lightweight inorganic paper product that has excellent dimensional stability, flame retardance, and mechanical performance without using asbestos, and a manufacturing method for obtaining the paper product. It is. B. Prior Art and its Problems Hydraulic inorganic paper products are composites whose main components are fibrous materials such as asbestos and hydraulic substances such as cement, as typified by asbestos-cement boards. The main manufacturing method is to add fiber components such as asbestos and hydraulic binding components such as cement to water together with other additives to make a 5-30% by weight water dispersion (papermaking slurry), and then roll this into balls. It is made into a product by papering it on a screen or fourdrinier, dehydrating it, molding it, curing it, and drying it. This method is highly productive with simple equipment, and can provide inexpensive noncombustible building materials with high strength, excellent dimensional stability, and durability, and such products are used in large quantities as building materials in a wide range of fields. has been done. The role of asbestos in hydraulic inorganic paper products is
These include imparting formability such as capturing solid content such as cement particles, and improving the physical properties of the cement board, such as improving bending strength, dimensional stability, nonflammability, and durability. Furthermore, asbestos is a very cheap material. The role of asbestos in inorganic paper products containing asbestos is extremely important, and it is said that such inexpensive products with excellent physical properties would not be possible without the presence of asbestos. The excellent properties of asbestos are that it is a fibrillar material, has high affinity with hydraulic substances, has high strength and Young's modulus, is an inorganic fiber, and has high water retention. Due to etc. On the other hand, asbestos-containing dust is generated in the air when asbestos is produced, when products containing asbestos are manufactured, processed, installed, and even used after installation. In recent years, it has become clear that fine asbestos dust, if inhaled into the human body, can cause lung cancer, etc., and its use is gradually being restricted by laws and regulations, and there are even signs that it is heading toward being banned.
Furthermore, asbestos-producing countries are unevenly distributed in certain countries, and there is also the problem of resource depletion. Under such circumstances, it is strongly desired to provide a hydraulic inorganic paper product that does not contain asbestos and has the same high productivity and performance as when using asbestos, instead of a hydraulic inorganic paper product that contains a large amount of asbestos. ing. In order to meet such needs, we have made an invention and proposed the result as Japanese Patent Application No. 150333/1982. That is, it is a hydraulic inorganic paper product containing pulp, mica, an inorganic molding material, reinforcing fiber, and cement as essential components, and a method for manufacturing the same. It is possible to get something. However, lightness is an important factor for interior and exterior materials that require ease of handling, heat insulation, cost, etc., and strict requirements are also placed on dimensional stability, making them unsuitable for such applications. be. On the other hand, asbestos cement lightweight boards containing asbestos include, for example, asbestos perlite boards of JIS A-5413,
JIS A-5414 pulp cement board, JIS A-5427
There is a pulp cement perlite board. Although such products contain a large amount of asbestos, they have low strength and poor dimensional stability, and even now, improvements are desired. In addition, JIS A-5418 asbestos cement calcium silicate board is an excellent interior and exterior material that has been autoclaved and has good dimensional stability.
However, it remains hygienic and economical because it contains asbestos and requires autoclave curing. Removing the asbestos constituting these lightweight plates under such conditions for sanitary reasons is said to be extremely difficult from a production technology standpoint. Board materials used for interior decoration are pasted with paper, cloth, etc., and coated, so the dimensional stability of the board materials against changes in temperature and humidity is a particularly important factor. Asbestos-free cement lightweight boards have been attempted in the prior art, but they have various drawbacks. For example, the invention described in JP-A No. 49-126723 is made of a hydraulic cement binder mainly composed of glass fibers and cellulose fibers and having diatomaceous earth and pearlite as low-density fillers, and is autoclaved and stoved. However, although the present invention requires autoclave curing and is reinforced with glass fiber, durability remains a problem due to the poor alkali resistance of glass. Japanese Patent Publication No. 51-80327
The publication states that the total amount of cellulose fibers and organic synthetic fibers is 5 to 100% by weight of the fiber reinforcing material, diatomite or vermiculite is mixed as a weight reducing material, and the fiber is composed of calcium silicate with tobermolite or zonotrite. Asbestos-free products are listed. However, the obtained plate material may contain a large amount of organic matter, cracks occur when heated, and its nonflammability is not satisfactory. The same applies to dimensional stability. JP-A No. 56-114857 uses 2 to 25% of beaten cotton having an SR of 20 to 80 degrees, and provides a thin board with a specific gravity of 1.3 to 1.9 by using organic synthetic fibers and a binder. In particular, asbestos substitutes include beaten cotton and gelling agents such as bentonite, which are used in combination with flocculants to prevent loss of solid content. However, the product may contain as much as 4 to 15% cellulose fiber, resulting in poor dimensional stability and insufficient flame resistance. British Patent Publication No. 2101645 and European Patent No. 68741 disclose a technique in which cellulose fiber and porphyry silica are blended and mica or the like is used as a filler. Applicable technology is 5%
As mentioned above, it mainly consists of a large amount of cellulose fiber, and there are problems with nonflammability and dimensional stability due to the cellulose fiber. JP-A-59-73463 and JP-A-59-131551 provide plate materials that are nonflammable and have high bending strength with a specified amount of pulp, but they lack lightness and dimensional stability in dry and wet conditions. It is not satisfactory from this point of view. In addition, Japanese Patent Application Laid-open No. 185474/1983 describes fineness
It has been stated that polyvinyl alcohol-based synthetic fibers of 0.1 to 2 denier are effective in improving the bending strength of asbestos-free paper products. However, in terms of physical properties of the plate material, there are problems with lightness, dimensional stability,
There are also drawbacks to nonflammability. In any of the above-mentioned known techniques, it is impossible to obtain a satisfactory asbestos-free, hydraulically lightweight, material-free paper product. Based on the asbestos-free hydraulic inorganic paper product of Japanese Patent Application No. 59-150333, the present inventors have investigated the problems of current asbestos-containing hydraulic lightweight inorganic paper products, namely hygiene and quality issues (particularly dimensional stability). As a result of studies to solve economic problems, it was discovered that almost satisfactory results could be obtained by combining the invention of Japanese Patent Application No. 150333/1980 with a specific inorganic lightweighting material, and this invention was developed. A patent application has already been filed on February 8, 1985. However, it has become clear that it is necessary to further improve the dimensional stability in order to make it unique as an interior material. The present inventors have arrived at the present invention as a result of intensive research aimed at improving such dimensional stability. C. Structure of the invention The gist is (1) aspect ratio of 20 or more and 30 to 30
Mica powder having a particle diameter of 5000 μm and (2) a dispersion of pulp used as necessary, (3) an inorganic molding material and (4)
After adding and dispersing the inorganic lightweighting material, (5)
Reinforcing fibers less than 0.5 denier and (6) 2 if necessary
Hydraulic lightweight inorganic paper-made products made by adding a hydroxide of a valent or trivalent metal and further adding (7) a hydraulic inorganic material such as cement to a paper-making slurry while adding (8) a flocculant, and the like. It is a manufacturing method. The present inventors proposed the invention of Japanese Patent Application No. 150333/1983 based on the same idea as the present invention of combining various components. However, since light weight is an important factor in interior and exterior applications that require ease of handling, heat insulation, and economic efficiency, it was found to be unsuitable for such applications. Therefore, as a result of intensive consideration of combinations with lightweight materials, surprisingly,
A lightweight board that is asbestos-free and has better performance and economy than conventional asbestos-cement lightweight boards without autoclave curing by simply combining the invention of the earlier patent application No. 150333/1980 with a specific lightweight material. It became possible to obtain this technology, and a patent application was filed for this technology on February 8, 1985. However, compared to asbestos-cement calcium silicate boards, which are typically used as interior and exterior materials, they do not contain asbestos, so there are no hygienic problems, and they are economical because they are not cured in an autoclave. It was found that dimensional stability, which is the most important physical property, was somewhat inferior, and the inventors of the present invention worked to improve it. Then, various studies were conducted based on the invention of the patent filed earlier on February 8th.
An effective means of increasing dimensional stability is to remove pulp, but if pulp is removed, cement particles etc. cannot be captured, and therefore problems arise in paper formability. Therefore, we investigated to find a material that does not impede dimensional stability and provides papermaking properties such as cement retention in place of pulp, and we found that it is effective to reduce the fineness of the fibers used for reinforcement to less than 0.5 denier. I discovered that. That is, instead of removing the pulp in the invention for which the patent application was filed on February 8, it is only necessary to reduce the fineness of the reinforcing fiber to less than 0.5 denier. Such an asbestos-free cement lightweight board that has no hygienic problems, is economical, and has physical properties equivalent to or better than asbestos-cement calcium silicate boards is specified in the present invention.
Products that can only be obtained from systems consisting mainly of hydraulic substances, including mica, inorganic lightweighting materials, inorganic molding materials, reinforcing fibers of less than 0.5 denier, a specified amount of pulp used as necessary, metal hydroxides, and the remainder. It is. The effects of the present invention are obtained not only by the characteristics of each component constituting the hydraulic lightweight inorganic paper product, but also by the interaction between the components, and it is believed that the effects of the present invention are obtained not only by the characteristics of each component constituting the hydraulic lightweight inorganic paper product, but also by the interaction between the components. However, if it is lacking, sufficient performance and productivity cannot be obtained. The structure of the present invention and its effects will be described in more detail below. First, in order to obtain a papermaking slurry that can be made without using asbestos at all, it is necessary to obtain a uniform dispersion of reinforcing fibers. First, 0-2% pulp, 5-50% mica, 1-
Add 20% inorganic molding material and 5 to 50% inorganic lightweighting material to water or white water, stir and disperse the slurry, add 0.2 to 5% reinforcing fiber with a fineness of less than 0.5 denier, and make sure to disperse it evenly. Stir. If necessary, a divalent or trivalent metal hydroxide is added to the slurry during the slurry preparation step or during the storage and stirring step such as CHEST. For example, fine aluminum hydroxide particles are added. Finally, by adding the remaining hydraulic inorganic material, which is mainly cement, and stirring, a papermaking slurry in which reinforcing fibers are uniformly dispersed can be obtained.
By diluting such a papermaking slurry with white water and adding a coagulant during papermaking, it is possible to stably produce paper while maintaining the water level with a solid content capture rate of 90% or more. The following products are produced using conventional methods; however, autoclaving is not necessary for curing, and steam curing at room temperature to 100°C or air dry curing may be used. The inorganic paper product thus obtained is lightweight with an apparent specific gravity of 0.5 to 1.3 g/ cm3 , and is a noncombustible building material that passes the Japanese Industrial Standards (JIS A-1321).
It has extremely small dimensional change rate, good durability, and excellent mechanical properties such as bending, tension, and impact. The components constituting the present invention will be explained in detail below. First, the mica to be blended has an aspect ratio D/T of 20 or more and a particle diameter of 30 to 5000 μm.
If it has a plate-like morphology, the chemical composition, crystal shape,
There are no restrictions on production area, crushing method, etc. For example, it is appropriately selected from muscovite, phlogopite, biotite, mica, soda mica, and synthetic mica. In particular, sozoolite mica from Canada is extremely suitable due to its morphology. When D/T is less than 20, the shape becomes close to granular, the flatness of mica is lost, and the effect of dimensional stability is reduced. The average particle diameter of mica used in the present invention is required to be 30 to 5000 μm. Although the reason is unknown, when the thickness is less than 30 μm, the surface test of the nonflammability test has no effect, and its contribution to the dimensional change rate is small. On the other hand, even if it is larger than 5000 μm, although it is effective for surface testing and dimensional change rate, it cannot be used because it may cause precipitation in the vat and cause problems during papermaking. The addition rate of mica is preferably 5 to 50%. If it is less than 5%, it will meet the Japanese Industrial Standards (JIS A-
1321), and its contribution to the dimensional change rate is small. Moreover, if it is added in excess of 50%, precipitation may occur in the vat during paper making, or delamination of the paper fleece may occur, making it difficult to obtain a good inorganic paper product. Next, the role of reinforcing fibers is to provide process passability such as the ability to capture cement particles, and to improve tensile, bending, and impact strength, which are the weak points of hydraulic inorganic cured products. The fineness of the reinforcing fiber is important in order to provide process passability, and must be less than 0.5 denier. When reinforcing fibers of less than 0.5 denier are used, inorganic molding materials, inorganic lightweight materials,
The surprising fact was discovered that due to the synergistic effect with a flocculant, it is possible to obtain the same process passability as when using asbestos without using pulp. When the fineness is 0.5 denier or more, 2% by weight
Paper making becomes difficult unless a pulp exceeding 100% is used. From the perspective of reinforcing hydraulic hardened materials, the fibers must have high tensile strength and Young's modulus, good adhesion to cement and other hydraulic inorganic materials, alkali resistance, and no health hazards. It is desirable that it be the same, and that it is also inexpensive. The most preferable reinforcing fibers that meet the above conditions are polyvinyl alcohol (hereinafter abbreviated as PVA) fibers, and polyacrylonitrile fibers (hereinafter abbreviated as PVA).
(abbreviated as PAN) is also preferably used. In addition, amide fibers, aramid fibers, carbon fibers, alkali-resistant glass fibers, etc. can also be used. These reinforcing fibers must have a tensile strength of 5 g or more per denier and a Young's modulus of 90 g or more per denier. In addition, if the surface has been modified by chemical or physical means to improve its adhesion to hydraulic inorganic substances, even fibers that are inherently hydrophobic and have poor adhesion, such as polyolefin fibers, will have the same strength and Young's modulus as described above. If the value is greater than or equal to , it can be sufficiently used in the present invention. The ratio is 0.2 to 5 for the solid content of the papermaking slurry.
% by weight, preferably 1 to 3% by weight. If it is less than 0.2% by weight, there will be no reinforcing effect or effect of imparting formability such as cement trapping ability, and if it exceeds 5% by weight, dispersion will be poor, making it impossible to obtain a uniform sheet and making it expensive. Fiber aspect ratio (L/D) is 200~
1500 is a preferable range in terms of both dispersibility and reinforcing properties. When such reinforcing fibers with a fineness of less than 0.5 denier are used, pulp is not required, so dimensional stability is significantly improved, nonflammability is excellent, and there are no concerns about durability caused by pulp. However, it is also possible to bring out the benefits of pulp to the extent that the problems associated with the use of such pulp are not so great. For example, pulp has the effect of improving the dispersibility of reinforcing fibers and controlling the water retention of fleece. Taking advantage of this effect, the maximum allowable addition amount without sacrificing physical properties is 2% by weight, and Canadian Friness is 30~30% by weight.
Use the one beaten to 750ml. The type of pulp may be either natural or synthetic. The inorganic lightweight material reduces the apparent bulk specific gravity of the plate material. For this purpose, the additive must be lightweight, must be inorganic from the viewpoint of nonflammability, and must be particulate from the viewpoint of paper formability and smoothness. Examples of such inorganic lightweight materials include foamed pearlite, shale, vermiculite, trachyte, obsidian, calcined diatomaceous earth, shirasu, silica, glass, etc., or a combination of two or more of them; Foam powder can be used. The apparent bulk specific gravity of the additive material is preferably 0.3 g/cm 3 or less, and if it is larger than that, it will not contribute to reducing the weight of the board material. The particle size of inorganic lightweighting material refers to the particle size according to JIS A5007, and the particle size is preferably 1.2 mm or less.
Preferably it is 0.6 mm or less. If the particle diameter becomes larger than 1.2 mm, the lightweighting material will float in the slurry, which is undesirable because problems such as hindering paper forming properties and impairing the smoothness of the plate material will occur. In order to set the apparent specific gravity of the plate material to 0.5 to 1.3 g/cm 3 , it is necessary to specify the addition rate of the specified lightweighting material within a range that does not impair paper formability. The addition rate of the lightweighting material is preferably 5 to 50%; if it is less than 5%, the lightness of the board cannot be obtained;
If it exceeds %, the paper-formability deteriorates, which is not preferable. A more preferred range is 10-35%. Next, an inorganic molding material is a diameter or length of 1×
10 -2 - 1 x 10 -5 mm particles or fibrous matter,
By adding this substance, (a) the dispersibility of the reinforcing fibers is improved, and (b) the coagulation performance is synergistically improved by using the pulp and reinforcing fibers, inorganic lightweight material, and cement flocculant together. It has been found that papermaking properties can be improved by increasing cement retention and providing an appropriate amount of water. Furthermore, when forming the green sheet, (c) improving the lamination properties of the paper-made fleece, (d) preventing water leakage on the making roll, (e) preventing cracks and wrinkles on the making roll and cracking during unfolding, ( f) It was found that it also has effects such as providing surface smoothness and moldability during press molding. The amount of such inorganic molding material added is 1 to 20% by weight. If it is less than 1% by weight, the effect will not be exhibited, and 20
If the weight percentage is exceeded, the capture ability of cement will decrease,
The water retention becomes excessive and the formability on the making roller deteriorates. Average particle size is 1×10 -2 ~1
×10 -5 mm The reason for this is that if it is more than 1 × 10 -2 mm, the effect of adding the molding material will not be exhibited, and if it is less than 1 × 10 -5 mm, labor and energy will be required for crushing and classifying, which will increase the cost. It is expensive, and it is not economical because it passes through the cylinder during paper making. The types of inorganic molding materials are selected from natural limestone powder, heavy charcoal, charcoal, calcium carbonate such as white charcoal, light charcoal obtained by synthesis, calcium carbonate called ultrafine charcoal, and other basic ones. Powders made of carbonates such as magnesium carbonate and dolomite can be used. Furthermore, silicate compounds represented by clay minerals, such as natural kaolin, clay, ball clay, waxite clay, pyrofluorite, bentonite, montmorillonite, nontronite,
Platy or thin plate-like materials such as saponite, sericite, zeolite, nephelinsinite, and talc;
Furthermore, fibrous or acicular materials such as attapulgite, sepiolite, and wollastonite can be used. Furthermore, synthetic aluminum silicate and synthetic calcium silicate can also be used as synthetic products. Examples of silicic acid include natural products such as diatomaceous earth and silica powder. As synthetic products, hydrated fine silicic acid, anhydrous fine silicic acid, what is called white carbon, silica dust, silica fume, limestone, fly ash, slate plate powder, etc. as industrial by-products or wastes can also be used. The inorganic molding material used in the present invention is non-foamed (non-porous) and is different from the above-mentioned inorganic lightweight material in this respect. It goes without saying that the inorganic molding material does not contain mica. Next, divalent or trivalent hydroxides include hydroxides of aluminum, iron, magnesium, and zinc. aluminum hydroxide, iron hydroxide,
The finer the particles of magnesium hydroxide and zinc hydroxide, the more preferable they are, and it is particularly preferable that they exist in colloidal form. The amount added must be within a range of less than 10%, if necessary. The combination of the present invention has a relatively large amount of organic matter added, and is compliant with the Japanese Industrial Standards (JIS A-
1321) "Flame Retardant Test Methods for Building Interior Materials and Construction Methods" states that if the base material test exceeds 810℃ and fails grade 1 flame retardant, the metal hydroxide must be contained within a range of less than 10% by weight. If added within the range, it becomes class 1 flame retardant and can be certified as a noncombustible building material under the Building Standards Act. If it is not added, it will be flame retardant class 2 and will be semi-nonflammable. Addition of more than 10% by weight of such metal hydroxide is not preferable because it causes cracks in the plate material. The flocculant may be a common flocculant. It may be organic, inorganic, anionic, nonionic, or cationic, but anionic polymer flocculants that are commonly used as cement flocculants are preferably used. The amount of coagulant used is preferably 20 to 500 ppm based on the solid content of the papermaking slurry. If it is less than 20ppm, the effect will be poor, and if it is more than 500ppm, the cohesive force will be too strong and the aggregates will become large flocs, or the water-based properties will be too strong and the difference in head during paper making will not be able to be corrected, resulting in the formation of a uniform sheet. is difficult. Furthermore, it causes disadvantages such as contaminating the felt and impairing productivity. Only by combining the mica, reinforcing fiber, inorganic lightweighting agent, inorganic molding agent, flocculant, pulp, and metal hydroxide specified above in the specified amounts, can an asbestos-cement lightweight board be produced. It is possible to obtain an economical asbestos-free lightweight board that has performance equivalent to or better than an asbestos-cement calcium silicate board with the same productivity and without the need for an autoclave. The reason for this is not clear, but it is thought that there is a synergistic effect, as each product has a surprisingly greater effect than expected from the effect of each product alone. Finally, hydraulic inorganic substances that can be used in the present invention include the following. A typical example is Portland cement, which includes ordinary Portland cement, medium heat Portland cement, early strength Portland cement, ultra early strength Portland cement, white Portland cement, and sulfate-resistant Portland cement.
Blast furnace cement types A and B are used as mixed cements.
Type, C type, fly attachment type A, B type,
There are C type, silica cement type A, B type, and C type. Special cements such as alumina cement, super quick-hardening cement, colloid cement, expansive cement, and oil well cement are used. In addition, it is also possible to use semi-hydrated plaster using gypsum, a mixed hydraulic material of hydrated plaster and slag, magnesia, etc. Basically, any hydraulic material may be used. It is also possible to replace a part of the hydraulic inorganic substance with other substances depending on the purpose, and this is included within the scope of the present invention. For example, calcium sulfoaluminate-based and lime-based materials can be used as expandable admixtures, and phenol, epoxy, polystyrene, polyethylene, and polypropylene foams and blowing agents can be used as organic lightening agents. Example 1, Comparative Example 1, Reference Example 1 Silica flour (SF powder manufactured by Nippon Heavy Chemical Co., Ltd., average particle size 0.36μ) was added as an inorganic molding material in a predetermined amount as a papermaking solid content (unless otherwise specified, the addition rate is shown below). -1) to the pulper with a slushier to give a 1% concentration of about 10
Stir and disperse for a minute. In addition, when adding pulp (Example 1, Test No. 4), pre-beaten NUKP (softwood unbleached pulp; beating degree: Canadian Freeness 100 ml) was added at the same time as the silica flour, and the mixture was stirred and dispersed for about 10 minutes. . After that, pearlite (PC light manufactured by Ube Industries, Ltd., bulk specific gravity 0.18, particle size 0.3 mm or less) and mica (Sozolite Mica 40S manufactured by Kuraray, average particle size) were used as lightweight materials.
400μ, average aspect ratio 60) was added and mixed and stirred for about 5 minutes. Thereafter, reinforcing fibers were added, mixed and stirred for about 2 minutes, and uniformly dispersed to form a slurry. The reinforcing fibers used were PVA fibers with a fineness of 0.15 dr (dr is an abbreviation for denier), a strength of 13.4 g/dr, a Young's modulus of 300 g/dr, and a fiber length of 4 mm (aspect ratio of 1000). Portland cement, which is a hydraulic substance, was added to the aqueous dispersion, stirred for 5 minutes, and then transferred to Chiest to obtain a slurry for papermaking of about 120 g/ml.
Comparative Example 1 was carried out under the same conditions as Example 1, except that one of the various additives specified in the Examples was not added. The papermaking slurry was introduced into a papermaking tank (vat) while adding an anionic flocculant (IK Flock T-210, manufactured by Ichikawa Keori Co., Ltd.) and a necessary amount of water. All coagulant addition rates are expressed as values relative to the solids in the slurry during papermaking. The slurry was made using a 60-mesh round screen, wound around a making roller, and the raw board after cutting was heated at 50°C for 24 hours, then at room temperature for 4 hours.
After being left to stand for a week, the physical properties of the product were measured and are listed in Table 1. The evaluation criteria and measurement conditions were performed using the methods described below. Dispersibility refers to the state of dispersion of fibrous substances, and when the papermaking slurry is drawn up into a round screen, the uneven state on the round screen is observed, and ◎ is a very good dispersion state with few bumps, and ◎ is a very good dispersion state with few bumps. The poor dispersion state was marked as x, and the poor dispersion was divided into two ranks and marked as ○ and △. Next, the water level in the vat is ◎ when it is possible to make a sufficiently uniform sheet, and when the water level is almost too low to form a uniform sheet, or when the water level is so bad that the papermaking slurry overflows from the vat. It was qualitatively judged as ×, and intermediate ranks as ○ and △. The capture rate of solids such as cement and inorganic molding materials is calculated from the slurry concentration in the papermaking tank before papermaking (W 1 ) and the concentration of wastewater discharged through a circular screen (W 2 ) (1 - W2 W1 ) x 100 It was calculated as a percentage. Delamination was qualitatively determined by manually peeling off the layers of the raw board after being rolled. Even if you apply force to peel off layers of fleece, the interlayers are unclear and it is difficult to peel off: ◎, the state where it peels off easily is ×, and the two ranks are ○ and △.
And so. Bulk specific gravity is determined in accordance with JIS A 5418 by placing the test piece in an air dryer with an agitator and drying it at 105±5℃ for 24 hours.
After drying for a period of time, the sample was placed in a desiccator whose humidity was controlled with silica gel and cooled to room temperature, and then the weight was measured and determined as the dry weight (W) g. Next, measure the length, width, and thickness, and calculate the volume (V) cm 3 . The bulk specific gravity was determined using the following formula. Bulk specific gravity = W/V The bending strength was measured according to JIS A 1408 "Bending test method for architectural boards" and was expressed as the average value in the papermaking direction (vertical direction) and the direction perpendicular thereto (horizontal direction). If the capture rate of hydraulic substances, etc. changes, the blended amount of reinforcing fibers will essentially change, so in order to compare the true reinforcing properties, the capture rate of solids such as hydraulic substances, etc. will be changed.
The bending strength has been corrected to be 100%. The impact strength is a value measured only in the vertical direction without notches according to the Izod test method of JIS K-7110. The length change rate is based on JIS A-5418, and after being left to air dry for one month, the length is measured after drying at 60℃ overnight, and the length after soaking in water at 20℃ overnight is measured. The rate of change from . The flame retardancy test was conducted in accordance with JIS A-1321 ``Flame retardant test method for building interior materials and construction methods'', and a base material test and a surface test were conducted to determine whether the flame retardancy was 1st grade or 2nd grade. The nailing test for workability evaluation was conducted on a side of 30 cm.
When nails with a diameter of 1.9 mm were nailed to a wooden post at 1 cm from each corner on the diagonal of a square test piece, the occurrence of cracks in the test piece was observed. One test piece was nailed at 4 locations, and if no cracks occurred in all 4 locations, it was rated ◎, 3 locations were rated O, 1 to 2 locations were Δ, and all cracks were rated ×. The sawing property test was to see how well the material was cut by hand using a household saw. A piece that could be easily cut to the end without any edge chipping or cracking with light force was rated as ○, and a piece with edge chipping or cracking was rated as ×. In the planerability test, the chamfering after saw cutting was done using a household plane with light force, and when the chamfered part was finished neatly, it was evaluated as ○, and when it was not, it was evaluated as ×. The paperability was evaluated as ◎ if it was the same as asbestos in Test No. 10 of Reference Example 1, × if there was a problem in papermaking, and ○ or △ in the middle. Product physical properties will be judged as ◎ if the asbestos cement pearlite board or asbestos cement calcium silicate board of Reference Example 1 Test No. 10 and 11 or better is ◎, and those with flame retardancy failure or other problems with physical properties will be judged as ◎. was judged as ×, and intermediate ranks were judged as ○ and △. Hygiene was rated ○ if it did not contain asbestos, and × if it did contain asbestos. In the final overall evaluation, those that satisfied both papermaking properties and product physical properties and did not contain asbestos were given a rating of ◎, those that had any problems were given a ×, and the intermediate ranks were given a rating of ○ and △.

【表】【table】

【表】【table】

【表】 実施例1は本発明構成要素よりなる配合の場合
であり、その内テストNo.1,2,3は軽量化材の
パーライトの添加量を変更した時、それぞれ満足
できる抄造性、かさ比重ならびに製品物性が得ら
れたことを示している。一般にパルプを全く用い
ないノンアスベスト配合では抄造性を得ることは
非常に困難とされているが、本発明の実施例では
満足できる抄造性と物品物性を有しているものが
得られた。テストNo.4は、テストNo.1にパルプを
1%配合したものであり、繊維の分散性が顕著に
向上したが、寸法安定性はわずかに悪化したにと
どまつた。 比較例1を説明すれば、テストNo.5は本発明の
構成部分である軽量化材を用いない場合で、この
場合には製品のかさ比重が大きく重い板材で、釘
打性、鋸びき性、鉋かけ性等の加工性が劣るもの
となつた。テストNo.6は、雲母を添加しない場合
で、この場合には長さ変化率が非常に大きく、更
に表面試験に不合格となつた。テストNo.7は、
0.5dr未満の補強繊維を添加しない場合であり、
この場合にはセメント等の捕捉率が極めて悪く、
メーキングロールからの生板剥離ができず、抄造
板は得られなかつた。テストNo.8は、無機質成形
材のシリカフラワーを添加しない場合で、補強繊
維の分散性が劣り、層間剥離が発生した。 以上の通り比較例1のテストNo.5〜8は、本発
明を構成する物質のうち水硬性物質以外の必須成
分5種類の何れか1種類が欠けた場合は抄造性と
製品物性の両方を満足するものが得られないこと
を示している。 参考例1のテストNo.9は特願昭59−150333号の
実施例1テストNo.1のデーター及び追試を行つた
結果である。テストNo.10は、石綿セメントパーラ
イト板であり、表−1に記載の配合で実施例1と
同様に抄造した結果である。またテストNo.11は、
石綿セメントけい酸カルシウム板の場合であり、
表−1に記載の配合で実施例1と同様に抄造し
た。但し175℃でオートクレーブ養生をした。 表−1より、実施例1は、比較例1に比し優れ
た抄造性と製品物性を有し、石綿を使用した参考
例1のテストNo.10よりすぐれ、オートクレーブ養
生した石綿セメント珪酸カルシウム板であるテス
トNo.11とほぼ同等のものが得られたことが明らか
である。いずれにしても内外装として衛生性、経
済性、製品物性上の観点から、すべてを満足する
ものは実施例以外にない。 実施例2、比較例2 補強繊維の繊度とその添加率を変更し、その他
は実施例1のテストNo.3の抄造条件で抄造した。 実施例2及び比較例2に用いた補強繊維は
PVA繊維で、その繊維物性、及び添加率は表−
2に示すものである。 実施例2、テストNo.12の曲げ強度は繊維添加率
が1%で若干低めであるが、いずれも満足すべき
結果となつた。 比較例2は繊度が大きいのでセメント等固形分
の捕捉率が低く抄造性に問題があつた。
[Table] Example 1 is a case of a formulation consisting of the constituent elements of the present invention, and in Test Nos. 1, 2, and 3, when the amount of pearlite added as a lightweight material was changed, satisfactory paper formability and bulk were obtained. This shows that specific gravity and product physical properties were obtained. Generally, it is said that it is very difficult to obtain paper formability with non-asbestos formulations that do not use pulp at all, but in the examples of the present invention, products with satisfactory paper formability and article physical properties were obtained. Test No. 4 was a mixture of Test No. 1 with 1% pulp added, and the fiber dispersibility was significantly improved, but the dimensional stability was only slightly deteriorated. To explain Comparative Example 1, Test No. 5 is a case in which the lightweight material that is a component of the present invention is not used. , processability such as planeability became inferior. Test No. 6 was a case in which mica was not added, and in this case, the rate of change in length was extremely large, and the surface test was also failed. Test No.7 is
This is the case when reinforcing fibers of less than 0.5 dr are not added.
In this case, the capture rate of cement etc. is extremely poor,
The raw board could not be peeled off from the making roll, and no paper-made board could be obtained. Test No. 8 was a case in which silica flour, which is an inorganic molding material, was not added, and the dispersibility of the reinforcing fibers was poor, and delamination occurred. As mentioned above, Tests Nos. 5 to 8 of Comparative Example 1 show that if any one of the five essential components other than the hydraulic substance of the substances constituting the present invention is missing, both paper formability and product physical properties will be affected. It shows that you are not getting what you are satisfied with. Test No. 9 of Reference Example 1 is the result of the data of Test No. 1 of Example 1 of Japanese Patent Application No. 59-150333 and a supplementary test. Test No. 10 is an asbestos-cement perlite board, which was produced in the same manner as in Example 1 using the formulation shown in Table-1. Also, test No. 11 is
In the case of asbestos cement calcium silicate board,
Paper-making was carried out in the same manner as in Example 1 using the formulations shown in Table-1. However, it was autoclaved at 175℃. From Table 1, Example 1 has superior paper formability and product properties compared to Comparative Example 1, and is superior to Test No. 10 of Reference Example 1 using asbestos. It is clear that almost the same result as Test No. 11 was obtained. In any case, there is nothing other than the example that satisfies all of the interior and exterior aspects from the viewpoints of hygiene, economy, and product properties. Example 2, Comparative Example 2 The fineness of the reinforcing fiber and its addition rate were changed, and the paper-making conditions were otherwise as in Test No. 3 of Example 1. The reinforcing fibers used in Example 2 and Comparative Example 2 were
For PVA fiber, its fiber properties and addition rate are shown in the table below.
This is shown in 2. Although the bending strength of Example 2 and Test No. 12 was slightly lower due to the fiber addition rate of 1%, the results were satisfactory in both cases. In Comparative Example 2, the fineness was large, so the capture rate of solids such as cement was low, and there was a problem in paper formability.

【表】【table】

【表】 実施例3、比較例3 軽量化材として用いたパーライトのかさ比重と
粒度を変更した。粒子の破壊防止のためテストNo.
18のパーライト添加時のみ攪拌時間を1分とし
た。表−3に示す軽量化材としてのパーライトの
粒度を変更するのみでその他は実施例1のテスト
No.3と同一条件で行つた。その結果を表−3にま
とめた。
[Table] Example 3, Comparative Example 3 The bulk specific gravity and particle size of pearlite used as a lightweight material were changed. Test No. to prevent particle destruction.
The stirring time was set to 1 minute only when adding No. 18 pearlite. The test was the same as in Example 1 except that the particle size of pearlite as a lightweight material shown in Table 3 was changed.
It was conducted under the same conditions as No. 3. The results are summarized in Table 3.

【表】【table】

【表】 実施例3のテストNo.16,17はパーライトをそれ
ぞれ所定の粒度に粉砕して使用した場合の結果で
ある。何れも満足できる抄造性と製品物性を得
た。粒度の小さいテストNo.16の小製品の方が表面
平滑性にすぐれている。 比較例3のテストNo.18は、粒度の大きいパーラ
イトを用いた場合である。抄造時パーライト粒子
の浮遊と層間剥離が若干発生した。また製品表面
の外観が劣つた。 実施例4、比較例4 雲母としてソゾライトマイカ((株)クラレ製)を
使用し、表−4に示すように粉砕分級してアスぺ
クト比及び添加率を変更した。上記以外は実施例
1のテストNo.3と全く同様な方法で抄造した。そ
の結果を表−4に示した。 但し用いた雲母の形状のアスぺクト比60のもの
は平均直径500μmであり、アスぺクト比20のも
のは平均直径は20μmである。
[Table] Test Nos. 16 and 17 of Example 3 are the results when pearlite was used after being crushed to a predetermined particle size. Satisfactory papermaking properties and product properties were obtained in both cases. The small product of Test No. 16, which has a smaller particle size, has better surface smoothness. Test No. 18 of Comparative Example 3 is a case where pearlite with a large particle size is used. During papermaking, floating of pearlite particles and some delamination occurred. In addition, the appearance of the product surface was poor. Example 4, Comparative Example 4 Sozolite mica (manufactured by Kuraray Co., Ltd.) was used as the mica, and the mica was pulverized and classified to change the aspect ratio and addition rate as shown in Table 4. Other than the above, the paper was made in exactly the same manner as Test No. 3 of Example 1. The results are shown in Table-4. However, the shape of mica used with an aspect ratio of 60 has an average diameter of 500 μm, and the shape of mica with an aspect ratio of 20 has an average diameter of 20 μm.

【表】【table】

【表】 実施例4のテストNo.19〜21は雲母の添加率をか
えた場合の結果である。長さ変化率は雲母の添加
率の大きいものほど小さくなり、寸法安定性が向
上した。なお製品物性に関しても何れも良好だつ
た。 比較例4のテストNo.22は、雲母のアスぺクト比
が小さいと雲母の性質を発揮することはできず、
長さ変化率が稍大きく、難燃製性は不合格である
ことを示している。テストNo.23は、雲母の添加量
が少ない場合で、抄造製はよいものの寸法変化率
が稍大きく、難燃性が不合格となつたことを示し
ている。テストNo.24は雲母の添加率を多くした場
合で、この場合には、雲母が大半を占めるように
なり、抄造時の繊維の分散性は阻害され、セメン
ト等固型分の捕捉性も低下し、かつ生板の粘結性
がなくなりボロボロの状態となり連続抄造運転が
困難であつた。このように実施例以外は何らかの
問題があり好ましくない。 D 用途 本発明によつて得られる石綿を含有しない水硬
性軽量無機質抄造製品は既存の石綿セメント珪酸
カルシウム板、石綿セメントパーライト板、石綿
スレート軟質板、パルプセメント板、パルプセメ
ントパーライト板、セツコウスラグ板、及びそれ
らの化粧板等の代替として利用できるものであ
る。石綿を含有していないということ並びにすぐ
れた製品品質よりカーテンウオール、耐火間仕切
壁、外壁パネル、サイデイング材等の建築物及び
船舶等の内外装材、あるいは場合によつてはシン
グル洋瓦等、その用途は更に拡がることが期待で
きる。 また本願で特定した雲母の種類及び粒子径、添
加率により板材表面に見える模様を内装材として
の壁紙やクロスを貼付けたり、表面を塗工するこ
となしに生地のまま使用することができるという
利点を有している。
[Table] Test Nos. 19 to 21 of Example 4 are the results when the mica addition rate was changed. The rate of change in length became smaller as the mica addition rate increased, and the dimensional stability improved. The physical properties of the products were also good. Test No. 22 of Comparative Example 4 shows that when the aspect ratio of mica is small, the properties of mica cannot be exhibited.
The rate of change in length was slightly large, indicating that the flame retardant property was rejected. Test No. 23 was a case in which the amount of mica added was small, and although the papermaking was good, the dimensional change rate was slightly large, and the flame retardance was rejected. Test No. 24 is a case where the addition rate of mica is increased. In this case, mica accounts for the majority, which inhibits the dispersibility of fibers during papermaking and also reduces the ability to capture solids such as cement. However, the green sheet lost its caking properties and became crumbly, making continuous papermaking operation difficult. As described above, the methods other than the examples have some problems and are not preferable. D Application The asbestos-free hydraulic lightweight inorganic paper product obtained by the present invention can be used in existing asbestos cement calcium silicate boards, asbestos cement perlite boards, asbestos slate soft boards, pulp cement boards, pulp cement perlite boards, Setsukou slag boards, It can also be used as a substitute for decorative laminates, etc. Due to the fact that it does not contain asbestos and has excellent product quality, it can be used as interior and exterior materials for buildings and ships, such as curtain walls, fireproof partition walls, exterior wall panels, siding materials, and in some cases, single Western tiles, etc. It is expected that the applications will further expand. Another advantage is that, depending on the type, particle size, and addition rate of mica specified in this application, the pattern visible on the surface of the board can be attached to wallpaper or cloth as an interior material, or it can be used as a fabric without coating the surface. have.

Claims (1)

【特許請求の範囲】 1 雲母が抄造スラリー固形分に対して5〜50重
量%(以下特にことわらない限り抄造スラリー固
型分に対する重量%)、パルプが0〜2%、繊度
が0.5デニール未満である補強繊維が0.2〜5%、
無機質軽量化材が5〜50%、無機質成形材が1〜
20%、2価又は3価の原子価を有する金属の水酸
化物が0〜10%、残部が主として水硬性無機質よ
りなる見掛の比重0.5〜1.3g/cm3の水硬性軽量無
機質抄造製品。 2 雲母のアスぺクト比(雲母の直径とその厚さ
の比を言う。以後D/Tと略記す。)が20以上で、
粒子直径が30〜5000μmの雲母粉末である特許請
求の範囲第1項記載の水硬性軽量無機質抄造製
品。 3 補強用繊維の繊度が0.5デニール未満、繊維
のアスぺクト比(繊維の長さとその直径の比を言
う。以後L/Dと略記す。)が200〜1500、引張り
強度がデニール当り5g以上、ヤング率がデニー
ル当り90g以上である特許請求の範囲第1〜2項
のいずれかに記載の水硬性軽量無機質抄造製品。 4 補強用繊維がポリビニルアルコール系又はポ
リアクリロニトリル系繊維である特許請求の範囲
第1〜3項のいずれかに記載の水硬性軽量無機質
抄造製品。 5 無機質軽量化材が、見掛の嵩比重0.3g/cm3
以下でその粒度が1.2mm以下の無機質の発泡体で
ある特許請求の範囲第1〜4項のいずれかに記載
の水硬性軽量無機質抄造製品。 6 無機質軽量化材が、発泡した真珠岩、頁岩、
蛭石、粗面岩、黒曜石、焼成珪藻土、又はシラ
ス、シリカ、ガラス等のバルーンのうちいずれか
又は2種以上の組合せの無機質発泡体粉末である
特許請求の範囲第1〜5項のいずれかに記載の水
硬性軽量無機質抄造製品。 7 無機質成形材の平均粒子直径、又は繊維状の
場合は平均繊維長さが、1×10-2〜1×10-5mmで
ある特許請求の範囲第1〜6項のいずれかに記載
の水硬性軽量無機質抄造製品。 8 無機質成形材が、珪酸、珪酸塩、炭酸塩のう
ちいずれか又は2種以上の組合せの無機粉末であ
る特許請求の範囲第1〜7項のいずれかに記載の
水硬性軽量無機質抄造製品。 9 2価又は3価の原子価を有する化合物が、ア
ルミニウム、鉄、マグネシウム、亜鉛の水酸化物
である特許請求の範囲第1〜8項のいずれかに記
載の水硬性軽量無機質抄造製品。 10 パルプのカナデイアンフリネスが30〜750
mlである特許請求の範囲第1〜9項のいずれかに
記載の水硬性軽量無機質抄造製品。 11 0〜2%のパルプ、5〜50%の雲母、1〜
20%の無機質成形材および5〜50%の無機質軽量
化材を水又は白水中に添加、攪拌、分散したスラ
リーに繊度0.5デニール未満の補強繊維0.2〜5%
を添加し、更に2価又は3価の原子価を有する金
属の水酸化物が該スラリー中に0〜10%存在する
ように添加し、残部の主として水硬性無機物を添
加して抄造スラリーをつくり、該抄造スラリーに
20〜500ppmの凝集剤を添加しつつ抄造すること
を特徴とする見掛けの比重0.5〜1.3g/cm3の水硬
性軽量無機質製品の湿式抄造法。 12 雲母のアスぺクト比(D/T)が20以上
で、粒子直径が30〜5000μmの雲母粉末である特
許請求の範囲第11項記載の水硬性軽量無機質製
品の湿式抄造法。 13 補強用繊維の繊度が0.5デニール未満、
L/Dが200〜1500、引張り強度がデニール当り
5g以上、ヤング率がデニール当り90g以上であ
る特許請求の範囲第11〜12項のいずれかに記
載の水硬性軽量無機質製品の湿式抄造法。 14 補強用繊維がポリビニルアルコール(以下
PVAと略記する)系又はポリアクリロニトリル
(以下PANと略記する)系繊維である特許請求の
範囲第11〜13項のいずれかに記載の水硬性軽
量無機質製品の湿式抄造法。 15 無機質軽量化材が見掛の嵩比重0.3g/cm3
以下で、その粒度が1.2mm以下の無機質の発泡体
である特許請求の範囲第11〜14項のいずれか
に記載の水硬性軽量無機質抄造製品の湿式抄造
法。 16 無機質軽量化材が、発泡した真珠岩、頁
岩、蛭石、粗面岩、黒曜石、焼成珪藻土、又はシ
ラス、シリカ、ガラス等のバルーンのうちいずれ
か又は2種以上の組合せの無機質発泡体粉末であ
る特許請求の範囲第11〜15項のいずれかに記
載の水硬性軽量無機質抄造製品の湿式抄造法。 17 無機質成形材の平均粒子直径又は繊維状の
場合は平均繊維長さが1×10-2〜1×10-5mmであ
る特許請求の範囲第11〜16項のいずれかに記
載の水硬性軽量無機質製品の湿式抄造法。 18 無機質成形材が珪酸又は珪酸塩、又は炭酸
塩からなる無機粉末である特許請求の範囲第11
〜17項のいずれかに記載の水硬性軽量無機質製
品の湿式抄造法。 19 2価又は3価の原子価を有する化合物が、
アルミニウム、鉄、マグネシウム、亜鉛の水酸化
物である特許請求の範囲第11〜18項のいずれ
かに記載の水硬性軽量無機質製品の湿式抄造法。 20 パルプのカナデイアンフリネスが30〜750
mlである特許請求の範囲第11〜19項のいずれ
かに記載の水硬性軽量無機質製品の湿式抄造法。
[Claims] 1. Mica is 5 to 50% by weight based on the solid content of the papermaking slurry (hereinafter referred to as weight% based on the solid content of the papermaking slurry unless otherwise specified), pulp is 0 to 2%, and the fineness is less than 0.5 denier. 0.2-5% reinforcing fiber,
5-50% inorganic lightweighting material, 1-50% inorganic molding material
A hydraulic lightweight inorganic paper product with an apparent specific gravity of 0.5 to 1.3 g/cm 3, consisting of 20% divalent or trivalent metal hydroxide and 0 to 10% and the remainder mainly hydraulic inorganic material. . 2 The aspect ratio of mica (the ratio of the diameter of mica to its thickness, hereinafter abbreviated as D/T) is 20 or more,
The hydraulic lightweight inorganic paper product according to claim 1, which is mica powder having a particle diameter of 30 to 5000 μm. 3 The fineness of the reinforcing fiber is less than 0.5 denier, the fiber aspect ratio (the ratio of the length of the fiber to its diameter, hereinafter abbreviated as L/D) is 200 to 1500, and the tensile strength is 5 g or more per denier. The hydraulic lightweight inorganic paper product according to any one of claims 1 to 2, which has a Young's modulus of 90 g or more per denier. 4. The hydraulic lightweight inorganic paper product according to any one of claims 1 to 3, wherein the reinforcing fibers are polyvinyl alcohol-based or polyacrylonitrile-based fibers. 5 The inorganic lightweight material has an apparent bulk specific gravity of 0.3 g/cm 3
The hydraulic lightweight inorganic paper product according to any one of claims 1 to 4, which is an inorganic foam having a particle size of 1.2 mm or less. 6 Inorganic lightweight materials are foamed pearlite, shale,
Any one of claims 1 to 5, which is an inorganic foam powder of vermiculite, trachyte, obsidian, calcined diatomaceous earth, or a balloon of shirasu, silica, glass, etc., or a combination of two or more thereof. Hydraulic lightweight inorganic paper products described in . 7. The inorganic molding material according to any one of claims 1 to 6, wherein the average particle diameter or, in the case of a fibrous material, the average fiber length is 1 x 10 -2 to 1 x 10 -5 mm. Hydraulic lightweight inorganic paper product. 8. The hydraulic lightweight inorganic paper product according to any one of claims 1 to 7, wherein the inorganic molding material is an inorganic powder of any one or a combination of two or more of silicic acid, silicate, and carbonate. 9. The hydraulic lightweight inorganic paper product according to any one of claims 1 to 8, wherein the divalent or trivalent compound is a hydroxide of aluminum, iron, magnesium, or zinc. 10 Pulp Canadian friness is 30-750
The hydraulic lightweight inorganic paper product according to any one of claims 1 to 9, which is ml. 11 0-2% pulp, 5-50% mica, 1-
0.2-5% reinforcing fibers with a fineness of less than 0.5 denier are added to a slurry in which 20% inorganic molding material and 5-50% inorganic lightweighting material are added, stirred and dispersed in water or white water.
and further add divalent or trivalent metal hydroxides so that the slurry contains 0 to 10% of the slurry, and the remainder mainly contains hydraulic inorganic substances to create a papermaking slurry. , to the papermaking slurry
A wet papermaking method for a hydraulic lightweight inorganic product having an apparent specific gravity of 0.5 to 1.3 g/cm 3 , which is characterized in that papermaking is carried out while adding a flocculant of 20 to 500 ppm. 12. The wet papermaking method for a hydraulic lightweight inorganic product according to claim 11, wherein the mica powder has a mica aspect ratio (D/T) of 20 or more and a particle diameter of 30 to 5000 μm. 13 The fineness of the reinforcing fiber is less than 0.5 denier,
The wet papermaking method for a hydraulic lightweight inorganic product according to any one of claims 11 to 12, wherein L/D is 200 to 1500, tensile strength is 5 g or more per denier, and Young's modulus is 90 g or more per denier. 14 The reinforcing fiber is polyvinyl alcohol (hereinafter referred to as
14. The wet papermaking method for a hydraulic lightweight inorganic product according to any one of claims 11 to 13, which is a PVA (abbreviated as PVA) type fiber or a polyacrylonitrile (hereinafter abbreviated as PAN) type fiber. 15 The apparent bulk specific gravity of the inorganic lightweighting material is 0.3 g/cm 3
The wet papermaking method for a hydraulic lightweight inorganic paper product according to any one of claims 11 to 14, which is an inorganic foam having a particle size of 1.2 mm or less. 16 Inorganic foam powder in which the inorganic lightweighting material is any one or a combination of two or more of foamed pearlite, shale, vermiculite, trachyte, obsidian, calcined diatomaceous earth, or balloons such as shirasu, silica, glass, etc. A wet papermaking method for a hydraulic lightweight inorganic papermaking product according to any one of claims 11 to 15. 17. Hydraulic properties according to any one of claims 11 to 16, wherein the inorganic molding material has an average particle diameter or, in the case of a fibrous material, an average fiber length of 1 x 10 -2 to 1 x 10 -5 mm. Wet papermaking method for lightweight inorganic products. 18 Claim 11, wherein the inorganic molding material is an inorganic powder made of silicic acid, silicate, or carbonate.
A wet papermaking method for a hydraulic lightweight inorganic product according to any one of items 1 to 17. 19 A compound having a divalent or trivalent atomic valence is
A wet papermaking method for a hydraulic lightweight inorganic product according to any one of claims 11 to 18, which is a hydroxide of aluminum, iron, magnesium, or zinc. 20 Pulp Canadian friness is 30-750
20. A wet paper-making method for a hydraulic lightweight inorganic product according to any one of claims 11 to 19, wherein the amount is ml.
JP3707085A 1985-02-25 1985-02-25 Hydraulic lightweight inorganic papered products and manufacture Granted JPS61197480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3707085A JPS61197480A (en) 1985-02-25 1985-02-25 Hydraulic lightweight inorganic papered products and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3707085A JPS61197480A (en) 1985-02-25 1985-02-25 Hydraulic lightweight inorganic papered products and manufacture

Publications (2)

Publication Number Publication Date
JPS61197480A JPS61197480A (en) 1986-09-01
JPH0444637B2 true JPH0444637B2 (en) 1992-07-22

Family

ID=12487287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3707085A Granted JPS61197480A (en) 1985-02-25 1985-02-25 Hydraulic lightweight inorganic papered products and manufacture

Country Status (1)

Country Link
JP (1) JPS61197480A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514462B2 (en) * 1990-10-22 1996-07-10 株式会社クボタ Cement board manufacturing method

Also Published As

Publication number Publication date
JPS61197480A (en) 1986-09-01

Similar Documents

Publication Publication Date Title
US6268042B1 (en) High strength low density board for furniture industry
JPH0444636B2 (en)
JPH0549619B2 (en)
JPH0669901B2 (en) Hydraulic inorganic papermaking product and method for producing the same
EP0220649B1 (en) Asbestos-free, wet-formed hydraulic inorganic article and production thereof
JPH0444637B2 (en)
EP0225932A1 (en) Asbestos-free, hydraulic inorganic material-based sheet products and process for their production
JPH0260626B2 (en)
JPS6278136A (en) Manufacture of hydraulic inorganic paper product
JP3763614B2 (en) Inorganic curable composition, inorganic molded body, and method for producing the same
JP2001140454A (en) Floor structure of building and its floor substrate material
JPH0717427B2 (en) Hydraulic inorganic papermaking product and method for producing the same
JP3245408B2 (en) Amorphous powder
JP3302959B2 (en) Composite cured materials and composite building materials
JP2001132212A (en) Free-access-floor and its foundation material
JP2000282399A (en) Composite hardened material and composite building material
JP4814411B2 (en) Calcium silicate plate and method for producing the same
JP2001032197A (en) Composite hardened body and composite building material
JP2000296576A (en) Building material
JP2003267768A (en) Hydraulic board formed by wet process for building wall material and building wall using it
JP2001131900A (en) Composite cured material and composite building material
JP2003003592A (en) 2' x 4' wooden structure and structural plane material thereof
JP2001152573A (en) Internal wall substrate, and wall structure using it
JP2001152603A (en) Wall panel
JP2001140401A (en) Material for interior finishing work