[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0443251B2 - - Google Patents

Info

Publication number
JPH0443251B2
JPH0443251B2 JP59006195A JP619584A JPH0443251B2 JP H0443251 B2 JPH0443251 B2 JP H0443251B2 JP 59006195 A JP59006195 A JP 59006195A JP 619584 A JP619584 A JP 619584A JP H0443251 B2 JPH0443251 B2 JP H0443251B2
Authority
JP
Japan
Prior art keywords
film
ecd
thin film
coloring layer
iridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59006195A
Other languages
Japanese (ja)
Other versions
JPS60150034A (en
Inventor
Ryoji Fujiwara
Isamu Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59006195A priority Critical patent/JPS60150034A/en
Publication of JPS60150034A publication Critical patent/JPS60150034A/en
Publication of JPH0443251B2 publication Critical patent/JPH0443251B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • G02F1/15245Transition metal compounds based on iridium oxide or hydroxide

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

【発明の詳細な説明】 本発明は、全固体薄膜積層型エレクトロクロミ
ツク素子(以下「ECD」という)に関し、詳し
くは改善された透明性を有する酸化発色層を用い
たECDに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an all-solid-state thin film stacked electrochromic device (hereinafter referred to as "ECD"), and more particularly to an ECD using an oxidized coloring layer with improved transparency.

ECDは例えば数字表示素子、X−Yマトリク
ス表示素子、光学シヤツタや絞り機構等に応用す
ることができるもので、例えば第1図に示す全固
体薄膜積層構造のECDが知られている。すなわ
ち、第1図に示すECDは、1対の電極12と1
6間に還元発色層13、中間層14と酸化発色層
15の薄膜積層構造が配置されている。この
ECDは、可逆的な電気化学反応により発色状態
と消色状態の光学変化が得られ、例えば還元発色
層13の側の電極12に負極性とし、酸化発色層
15の側の電極16に正極性とした電圧を印加す
ることによつて、還元発色層13と酸化発色層1
5を発色状態とすることができ、又この電圧の極
性をそれぞれ逆極性とすることにより、発色状態
から消色状態へと光学変化を生じさせることがで
きる。
ECDs can be applied to, for example, numeric display elements, X-Y matrix display elements, optical shutters, aperture mechanisms, etc. For example, an ECD with an all-solid thin film laminated structure shown in FIG. 1 is known. That is, the ECD shown in FIG.
A thin film laminated structure of a reduction coloring layer 13, an intermediate layer 14, and an oxidation coloring layer 15 is arranged between the layers 6 and 6. this
In ECD, an optical change between a colored state and a decolored state is obtained by a reversible electrochemical reaction. For example, the electrode 12 on the side of the reduced coloring layer 13 has a negative polarity, and the electrode 16 on the side of the oxidized coloring layer 15 has a positive polarity. By applying a voltage of
5 can be brought into a colored state, and by setting the polarities of these voltages to opposite polarities, an optical change can be caused from a colored state to a decolored state.

ところで、米国特許第4191453号公報には酸化
イリジウムがアノード反応で発色するECDのア
ノード材料となることが提案されており、又特開
昭56−4679号公報には酸化イリイジウを前述の如
き全固体薄膜積層型ECDの酸化発色層として適
用したECDが提案されている。
By the way, in U.S. Patent No. 4,191,453, it is proposed that iridium oxide can be used as an anode material for ECD that develops color through an anode reaction, and in Japanese Patent Application Laid-open No. 56-4679, iridium oxide is proposed to be used as an anode material for ECD, which develops color through an anode reaction. An ECD applied as an oxidation coloring layer in a thin film laminated ECD has been proposed.

しかし、この様な従来で用いられている酸化イ
リジウムの酸化発色層は応答速度が遅い点や透過
率が低いなど実用上の点で十分な性能をもつてい
ない欠点を有している。
However, the iridium oxide oxidation coloring layer used conventionally has drawbacks such as slow response speed and low transmittance, which do not provide sufficient performance in practical terms.

このため、例えば米国特許第4258984号公報に
記載されている様に、スパツタリングにより形成
した酸化イリジウムの薄膜あるいは金属イリジウ
ムの薄膜を硫酸水溶液中で低周波駆動による陽極
酸化するウエツトプロセスにより、前述の欠点を
解消する方法が提案されているが、この方法で形
成した酸化イリジウム薄膜の透過率はせいぜい70
%程度以下で、十分な透明性を有しておらず又こ
の方法は薄膜積層構造体を作成する時のピンホー
ル発生の原因となつていて適当なものではない。
For this reason, as described in US Pat. No. 4,258,984, for example, a wet process is performed in which a thin film of iridium oxide or a thin film of metallic iridium formed by sputtering is anodized in an aqueous sulfuric acid solution by low frequency drive. A method has been proposed to eliminate this drawback, but the transmittance of the iridium oxide thin film formed by this method is at most 70.
% or less, it does not have sufficient transparency, and this method is not suitable because it causes pinholes when producing a thin film laminated structure.

又、反応性スパツタリングにより作製した酸化
イリジウム薄膜もやはり透明性の高いものが得ら
れず、しかも十分なEC特性(可逆的な電気化学
反応特性)を得るためには、この酸化イリジウム
薄膜に前述の陽極酸化処理を施す必要がある。
Furthermore, it is still difficult to obtain a highly transparent iridium oxide thin film produced by reactive sputtering, and in order to obtain sufficient EC characteristics (reversible electrochemical reaction characteristics), this iridium oxide thin film must be treated with the aforementioned method. It is necessary to perform anodizing treatment.

本発明者らは、ECDの酸化発色層として酸化
イリジウム薄膜を適用する際に生じていた前述の
如き諸問題を解決すべく、鋭意検討を重ねたとこ
ろ、特に反応性スパツトリングにより酸化イリジ
ウム又は水酸化イリジウムの薄膜を形成する際の
反応ガス圧が薄膜の透過率特性と因果関係を有し
ている点を見い出した。
In order to solve the above-mentioned problems that occurred when applying an iridium oxide thin film as an oxidized coloring layer of an ECD, the inventors of the present invention have conducted extensive studies, and have found that, in particular, reactive sputtering can be applied to iridium oxide or hydroxide. We discovered that the reaction gas pressure used to form an iridium thin film has a causal relationship with the thin film's transmittance characteristics.

従つて、本発明の目的はECDの酸化発色層と
して透過率の高い酸化イリジウム(IrOχ;0.5<
χ2、好ましくは1<χ2)又は水酸化イリ
ジウム(ir(OH)n;n2)の薄膜を設けた
ECDを提供することにある。
Therefore, the object of the present invention is to use iridium oxide (IrOχ; 0.5 <
χ2, preferably 1<χ2) or a thin film of iridium hydroxide (ir(OH)n;n2) was provided.
The goal is to provide ECD.

すなわち、本発明は、一対の電極間に酸化発生
層を備えたエレクトロクロミツク素子において、
前記酸化発生層を0.1Torr以上1Torr以下のガス
圧を有する酸素および/又は水蒸気の存在下でイ
リジウムをスパツタリングすることにより形成し
た薄膜で構成したことを特徴とする。これにより
良好なEC特性を有しているとともに透過率の高
い酸化発色層をもつECDを提供することができ
る。しかも、本発明による酸化発色層は十分に可
逆的な電気化学反応を生じうる適度な多孔表面状
態を有しており、応答速度の速いECDを提供す
ることができる。
That is, the present invention provides an electrochromic device including an oxidation generation layer between a pair of electrodes,
The oxidation generation layer is characterized by being formed of a thin film formed by sputtering iridium in the presence of oxygen and/or water vapor having a gas pressure of 0.1 Torr or more and 1 Torr or less. This makes it possible to provide an ECD having good EC characteristics and an oxidized coloring layer with high transmittance. Moreover, the oxidized color forming layer according to the present invention has an appropriate porous surface state that can cause a sufficiently reversible electrochemical reaction, and can provide an ECD with a fast response speed.

以下、本発明を図面に従つて説明する。 The present invention will be explained below with reference to the drawings.

本発明のECDは、第1図に示す薄膜積層構造
体を用いることができ、図中の酸化発色層15と
して前述のIrOχ膜又はIr(OH)n膜を設けたも
のである。又、図中の還元発色層13は、省略す
ることも可能である。
The ECD of the present invention can use the thin film laminated structure shown in FIG. 1, in which the aforementioned IrOx film or Ir(OH)n film is provided as the oxidized coloring layer 15 in the figure. Further, the reduction coloring layer 13 in the figure can be omitted.

本発明のECDで用いうる還元発色層13とし
ては、例えば二酸化タングステン((WO2)、三
酸化タングステン(WO3)、二酸化モリブデン
(MoO2)、三酸化モリブデン(MoO3)や五酸化
バナジウム(V2O5)などの薄膜を用いることが
できる。中間層14は、二酸化ジルコン
(ZrO2)、酸化ケイ素(SiO2)、二酸化ケイ素
(SiO2)、五酸化タンタル(Ta2O5)などの酸化物
あるいはフツ化リチウム(LiF)、フツ化マグネ
シウム(MgF2)などのフツ化物で代表される誘
電体からなる絶縁膜である。
Examples of the reduction color forming layer 13 that can be used in the ECD of the present invention include tungsten dioxide (WO 2 ), tungsten trioxide (WO 3 ), molybdenum dioxide (MoO 2 ), molybdenum trioxide (MoO 3 ), and vanadium pentoxide ( The intermediate layer 14 may be made of zircon dioxide (ZrO 2 ), silicon oxide (SiO 2 ), silicon dioxide (SiO 2 ), tantalum pentoxide (Ta 2 O 5 ) , or the like. This is an insulating film made of a dielectric material, typically an oxide of or a fluoride such as lithium fluoride (LiF) or magnesium fluoride (MgF 2 ).

こを様な酸化発色層15/中間層14/還元発
色層13からなる可逆的な電気化学反応性構造体
は、電極12と16の間に挾持され、電極12は
基体11によつて支持されている。この基体11
は一般的にガラス板によつて形成されるが、これ
はガラス板に限らず、プラスチツク板を用いるこ
ともでき、又その位置に関しても電極16の側に
設けてもよいし、目的に応じて(例えば、保護カ
バーとするなどの目的)両側に設けてもよい。
又、電極12と16としては酸化インジウム、酸
化錫いITO(Indium Tin Oxiee)などの透明導
電膜を用いることができるが、必要に応じて電極
12と16のうち何れか1方を適当な金属膜とす
ることもできる。
A reversible electrochemically reactive structure consisting of the oxidation coloring layer 15 / intermediate layer 14 / reduction coloring layer 13 is sandwiched between the electrodes 12 and 16, and the electrode 12 is supported by the substrate 11. ing. This base 11
is generally formed of a glass plate, but it is not limited to a glass plate, a plastic plate can also be used, and its position may be provided on the side of the electrode 16, or it may be placed on the side of the electrode 16, depending on the purpose. It may be provided on both sides (for example, for the purpose of serving as a protective cover).
Further, as the electrodes 12 and 16, a transparent conductive film such as indium oxide or tin oxide (ITO) can be used, but if necessary, one of the electrodes 12 and 16 can be made of a suitable metal. It can also be a membrane.

本発明で用いる酸化発色層15は、第2図に示
すIrOχ又はIr(OH)n薄膜作成用スパツタリン
グ装置により形成することができる。
The oxidized coloring layer 15 used in the present invention can be formed by a sputtering apparatus for forming an IrOx or Ir(OH)n thin film as shown in FIG.

第2図に示すスパツタリング装置は、真空槽2
01の内部にITO膜を設けたガラス板などの被蒸
着体202(図中では2つの被蒸着体202aと
202bを配置)とターゲツトになる金属イリジ
ウム(Ir)とパレツト203がそれぞれ所定の位
置に配置され、被蒸着体202は冷却水循環パイ
プ204によつて冷却されている支持体205に
よつて支えられておりスパルタリングの際には被
蒸着体を室温程度に保つことができる。又金属イ
リジウムパレツト203は電極体206(ステン
レスなど)の上に配置されている。又、この金属
イリジウムパレツト203に代えて、他のイリジ
ウムに例えばイリジウム酸化物、イリジウム水酸
化物を用いることもできる。この電極体206は
高周波電源207に接続されたマツチングボツク
ス208と接続している。又、真空槽21にはそ
れぞれ反応ガスとして酸素ガスを導入する酸素ガ
スボンベ209と真空ポンプ310に接続され、
それぞれにバルブ311と312が取り付けられ
ている。
The sputtering apparatus shown in FIG.
An object to be evaporated 202 such as a glass plate with an ITO film provided inside it (in the figure, two objects to be evaporated 202a and 202b are placed), a target metal iridium (Ir), and a pallet 203 are placed in their respective predetermined positions. The object 202 to be evaporated is supported by a support 205 which is cooled by a cooling water circulation pipe 204, and the object to be evaporated can be kept at about room temperature during sputtering. Further, the metal iridium pallet 203 is placed on an electrode body 206 (made of stainless steel or the like). Further, instead of this metal iridium pallet 203, other iridium such as iridium oxide or iridium hydroxide may be used. This electrode body 206 is connected to a matching box 208 which is connected to a high frequency power source 207. Further, the vacuum chamber 21 is connected to an oxygen gas cylinder 209 and a vacuum pump 310, respectively, which introduce oxygen gas as a reaction gas.
Valves 311 and 312 are attached to each.

本発明の酸化発色層となるIrOχ膜を形成する
に際して、真空槽201の内部を真空ポンプ31
0の作動により真空状態(10-5Torr)とした後
に、バルブ312を閉じて真空状態を維持する。
しかる後に、バルブ311を開放して酸素ガスボ
ンベ209より真空槽201の内部に酸素ガスを
導入し、そのガス圧が0.1Torr以上、好ましくは
0.1Torr〜1Torrとなる様にする。その後、高周
波電力(周波数13.56MHz:電力1w/cm2以下、好
ましくは0.4w/cm2以下)を電極体206に付与
し、グロー放電を生じさせてスパツタリングを行
なうことによつて、IrOχ膜を非蒸着体202a
と202bの上に形成することができる。この際
に形成されるIrOχ膜は一般的に300Å〜1000Åの
膜厚にすることにより、ECDの酸化発色層とし
て有効に機能することができる。
When forming the IrOχ film which becomes the oxidized color forming layer of the present invention, the inside of the vacuum chamber 201 is
After a vacuum state (10 -5 Torr) is created by operating the valve 312, the vacuum state is maintained by closing the valve 312.
After that, the valve 311 is opened and oxygen gas is introduced into the vacuum chamber 201 from the oxygen gas cylinder 209, and the gas pressure is 0.1 Torr or more, preferably
Set it to 0.1 Torr to 1 Torr. After that, high frequency power (frequency 13.56MHz: power 1w/cm 2 or less, preferably 0.4w/cm 2 or less) is applied to the electrode body 206 to generate glow discharge and perform sputtering to form an IrOχ film. Non-evaporated body 202a
and 202b. The IrOx film formed at this time generally has a thickness of 300 Å to 1000 Å, so that it can effectively function as an oxidized coloring layer for ECD.

第3図は、発振波長633nmのヘリウム・ネオ
ンレーザに対する350ÅのIrOχ膜の透過率と
0.2w/cm2の高周波(13.56MHz)電力下でのスパ
ツタリングの際の酸素ガス圧との関係を明らかに
している。すなわち、スパツタリングの際の酸素
ガス圧を0.05Torr、0.1Torr、0.2Torrと0.3Torr
にそれぞれ設定した時に形成された350ÅのIrOχ
膜の透過率をヘリウム・ネオンレーザを用いて測
定したところ、0.1Torr以上の酸素ガス圧に設定
した時に十分に高い透過率のIrOχ膜を得られる
ことが判明した。又、混合ガス圧の上限値は、均
一なグロー放電を発生することができるまでの値
に設定すべきである。
Figure 3 shows the transmittance of a 350 Å IrOχ film for a helium-neon laser with an oscillation wavelength of 633 nm.
The relationship between oxygen gas pressure and sputtering under high frequency (13.56MHz) power of 0.2w/cm 2 is clarified. In other words, the oxygen gas pressure during sputtering is 0.05Torr, 0.1Torr, 0.2Torr and 0.3Torr.
IrOχ of 350Å formed when
When the transmittance of the film was measured using a helium-neon laser, it was found that an IrOχ film with sufficiently high transmittance could be obtained when the oxygen gas pressure was set to 0.1 Torr or higher. Further, the upper limit of the mixed gas pressure should be set to a value that allows uniform glow discharge to occur.

又、前述のスパツタリングの際酸素ガスに代え
て、水蒸気を用いることによつてIr(OH)n膜を
形成することができ、さらに酸素ガスと水蒸気の
混合ガスを用いることもでき、何れの場合におい
て前述と同様の効果が得られる。
In addition, an Ir(OH)n film can be formed by using water vapor instead of oxygen gas during the sputtering described above, and a mixed gas of oxygen gas and water vapor can also be used. In this case, the same effect as described above can be obtained.

従来のスパツタリングで得たIrOχ膜は、透過
性が悪く、陽極酸化等の後処理をしなければ品位
のよい膜は得られなかつた。これは第3図から明
らかなようにガスの低いところで(およそ
0-3Torr以下)成膜していたからである。
IrOx films obtained by conventional sputtering have poor permeability, and high-quality films cannot be obtained without post-treatment such as anodic oxidation. As is clear from Figure 3, this is the case where the gas is low (approximately
0 -3 Torr or less).

ガス圧を高めれば、たしかに膜の透過性はあが
るわけで、しかしECDの酸化発色層として用い
た場合には応答速度の速いECDを得ることがで
きる。
Increasing the gas pressure certainly increases the permeability of the membrane, but when used as an oxidation coloring layer in an ECD, an ECD with a fast response speed can be obtained.

以下、本発明を実施例に従つて説明する。 Hereinafter, the present invention will be explained according to examples.

実施例 1 ITO膜を設けた0.8mmのガラス基板と金属イリ
ジウムを用意し、それぞれ第2図に示すスパツタ
リング装置に取り付けた。しかる後、スパツタリ
ング装置の真空槽中の空気を真空ポンプにより排
気し、酸素ガス導入管より酸素ガスを真空槽内に
導入し、0.2Torrの酸化ガス圧状態とした。次い
で、周波数13.56MHzの高周波を0.2w/cm2の電力
下で電極体に付与して、約1時間のスパツタリン
グを行い、ITO膜上に350ÅのIrOχ膜を形成し
た。
Example 1 A 0.8 mm glass substrate provided with an ITO film and metal iridium were prepared, and each was attached to a sputtering apparatus shown in FIG. 2. Thereafter, the air in the vacuum chamber of the sputtering apparatus was evacuated by a vacuum pump, and oxygen gas was introduced into the vacuum chamber from an oxygen gas introduction tube to obtain an oxidizing gas pressure of 0.2 Torr. Next, a high frequency of 13.56 MHz was applied to the electrode body under a power of 0.2 W/cm 2 and sputtering was performed for about 1 hour to form an IrOχ film of 350 Å on the ITO film.

この膜の上に、真空蒸着法によりTa2O5膜を
3000Åの膜厚で設けた、この時の真空度は2.1×
10-5Torr、蒸着速度は8Å/secであつた。さら
に、この膜の上に還元発色層となるWO3膜を真
空蒸着法により4000Åの膜厚で設け、さらに半透
明Au膜を300Åの膜厚で設けた。
On top of this film, a Ta 2 O 5 film is deposited by vacuum evaporation method.
The degree of vacuum at this time was 2.1× with a film thickness of 3000 Å.
The deposition rate was 10 -5 Torr and 8 Å/sec. Further, on this film, a WO 3 film serving as a reduction coloring layer was provided with a thickness of 4000 Å using a vacuum evaporation method, and a semi-transparent Au film was further provided with a thickness of 300 Å.

この様にして作成したECDは、従来のものと
比較して高い透明性を有していた。さらに、この
ECDの電極(ITO膜と半透明Au膜)間に2.2Vの
直流電圧(ITO膜電極を正極性にし、半透明Au
膜電極を負極性にした)を印加したところ、極め
て速い応答速度で発色状態に変化した。次いで、
電圧の供給をとめたところ、この発色状態は維持
されており、さらに前述の極性の逆の極性で
2.2Vの直流電圧を印加したところ、発色状態か
ら消色状態へと光学変化を生じた。
The ECD created in this way had higher transparency than conventional ones. Furthermore, this
A DC voltage of 2.2 V was applied between the ECD electrodes (ITO film and semi-transparent Au film) (the ITO film electrode was set to positive polarity, and the semi-transparent Au film was
When a negative polarity of the membrane electrode was applied, the color changed to a colored state with an extremely fast response speed. Then,
When the voltage supply was stopped, this coloring state was maintained, and furthermore, with the opposite polarity to the above-mentioned polarity, the coloring state was maintained.
When a DC voltage of 2.2V was applied, an optical change occurred from a colored state to a decolored state.

実施例 2 実施例1で用いた酸素ガスに代えて水蒸気を用
いた以外は、実施例1と同様の方法でECDを作
成し、さらにそれの評価を行なつたところ、実施
例1と同様の結果が得られた。
Example 2 An ECD was prepared in the same manner as in Example 1 except that water vapor was used instead of the oxygen gas used in Example 1, and when it was further evaluated, it was found to be similar to that in Example 1. The results were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、エレクトロクロミツク素子の断面図
である。第2図は、本発明で用いたスパツタリン
グ装置を模式的に表わす断面図である。第3図
は、ガス圧とIrOχ膜の透過率との関係を表わす
説明図である。 11;基板、12,16;電極、13;還元発
色層、14;中間層、15;酸化発色層、20
1;真空槽、202;被蒸着体、203;金属イ
リジウムパレツト、204;冷却水循環パイプ、
205;支持体、206;電極、207;高周波
電源、208;マツチングボツクス、209;酸
素ガスボンベ、310;真空ポンプ、311,3
12;バルブ。
FIG. 1 is a cross-sectional view of an electrochromic device. FIG. 2 is a cross-sectional view schematically showing the sputtering device used in the present invention. FIG. 3 is an explanatory diagram showing the relationship between gas pressure and transmittance of an IrOx film. 11; Substrate, 12, 16; Electrode, 13; Reduction coloring layer, 14; Intermediate layer, 15; Oxidation coloring layer, 20
1; Vacuum chamber, 202; Evaporation target, 203; Metal iridium pallet, 204; Cooling water circulation pipe,
205; Support, 206; Electrode, 207; High frequency power supply, 208; Matching box, 209; Oxygen gas cylinder, 310; Vacuum pump, 311,3
12; Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 一対の電極間に酸化発生層を備えたエレクト
ロクロミツク素子において、前記酸化発生層を
0.1Torr以上1Torr以下のガス圧を有する酸素お
よび/又は水蒸気の存在下でイリジウムをスパツ
タリングすることにより形成した薄膜で構成した
ことを特徴とするエレクトロクロミツク素子。
1. In an electrochromic device having an oxidation generation layer between a pair of electrodes, the oxidation generation layer is
An electrochromic device comprising a thin film formed by sputtering iridium in the presence of oxygen and/or water vapor having a gas pressure of 0.1 Torr or more and 1 Torr or less.
JP59006195A 1984-01-17 1984-01-17 Electrochromic element Granted JPS60150034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59006195A JPS60150034A (en) 1984-01-17 1984-01-17 Electrochromic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59006195A JPS60150034A (en) 1984-01-17 1984-01-17 Electrochromic element

Publications (2)

Publication Number Publication Date
JPS60150034A JPS60150034A (en) 1985-08-07
JPH0443251B2 true JPH0443251B2 (en) 1992-07-16

Family

ID=11631761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59006195A Granted JPS60150034A (en) 1984-01-17 1984-01-17 Electrochromic element

Country Status (1)

Country Link
JP (1) JPS60150034A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629222B1 (en) * 1988-03-25 1992-04-30 Saint Gobain Vitrage VARIABLE TRANSMISSION GLAZING OF THE ELECTROCHROME TYPE
GB2213606B (en) * 1988-01-05 1992-05-13 Nikon Corp Method for producing electrochromic device
KR19990084108A (en) * 1999-09-14 1999-12-06 강보선 Discoloration film by electric energy

Also Published As

Publication number Publication date
JPS60150034A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
US4350414A (en) All solid state electrochromic device
US4451498A (en) Method for making oxide based electrochromic display devices
JPH0443251B2 (en)
JPH0443252B2 (en)
JPS59119331A (en) Electrochromic element
JPS6042739A (en) Preparation of electrochromic element
JP2707112B2 (en) Method for manufacturing electrochromic device
JP2707113B2 (en) Method for manufacturing electrochromic device
JPH03119325A (en) Production of electrochromic element
JPH01291221A (en) Electrochromic element
JPS59102216A (en) Production of fully solid-state type electrochromic element
JPS6175325A (en) Display cell
JPH0255342A (en) Electrochromic element
JPS61103982A (en) Electrochromic element
JP2770585B2 (en) Electrochromic device
JP2936185B2 (en) Method for manufacturing electrochromic device
JPH03160422A (en) Production of electrochromic element
JPH02240293A (en) Production of anodically oxidized film
JPS59121318A (en) All solid-state electrochromic element
JPS6127524A (en) Production of electrochromic element
JPS6353294A (en) Production of iridium oxide film
JPH0241726B2 (en)
JPS61296380A (en) Manufacture of electrolytic acid thin film
JPS59178433A (en) Fully solid state electrochromic element
JPS60222827A (en) Electrochromic display device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term