[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0441649A - Aluminum alloy excellent in scc resistance and having high strength and high formability - Google Patents

Aluminum alloy excellent in scc resistance and having high strength and high formability

Info

Publication number
JPH0441649A
JPH0441649A JP15053590A JP15053590A JPH0441649A JP H0441649 A JPH0441649 A JP H0441649A JP 15053590 A JP15053590 A JP 15053590A JP 15053590 A JP15053590 A JP 15053590A JP H0441649 A JPH0441649 A JP H0441649A
Authority
JP
Japan
Prior art keywords
aluminum alloy
strength
resistance
less
scc resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15053590A
Other languages
Japanese (ja)
Inventor
Shoshi Koga
詔司 古賀
Mitsuo Hino
光雄 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15053590A priority Critical patent/JPH0441649A/en
Publication of JPH0441649A publication Critical patent/JPH0441649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain a clad plate of Al alloy excellent in stress corrosion cracking resistance by optimizing a composition containing Mg and Cu as to core material and also optimizing a composition containing Mg and Si as to cladding material. CONSTITUTION:An aluminum alloy which has a composition consisting of 4-10% Mg, 0.2-1.0% Cu, <=0.2% Fe, <=0.2% Si, and the balance Al with impurities or an aluminum alloy which has a composition further containing, besides the above, one or >=2 kinds among 0.01-0.2% Cr, 0.01-0.2% Zr, and 0.02-0.3% Mn is used as a core material and an aluminum alloy which has a composition consisting of 0.4-1.5% Mg, 0.3-2.0% Si, and the balance Al with impurities is used as a cladding material, and further, the thickness of the cladding material is regulated to 2-20% of the whole plate thickness per side, by which the aluminum alloy excellent in SCC resistance and having high strength and high formability can be produced.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は耐SCC性(耐応力腐食割れ性)に優れた高強
度高成形性アルミニウム合金に関し、更に詳しくは、自
動車ボディーパネル、レインフォース部品等のように、
プレス加工後、電着塗装が行われる製品に適し、成形加
工性が優れ、1つ電着塗装後の耐SCC性、耐糸錆性を
改善したアルミニウム合金に関する。 (従来の技術及び解決しようとする課題)従来より、自
動車ボディーパネルやレインフォース部品等のように、
プレス加工により製造される成形加工用アルミニウム合
金として、Mgを2〜5%含有するAQ−Mg系合金(
例、5052.5154.5182)等の軟質材が実用
化されている。 しかし、これらのアルミニウム合金は、成形加工性は良
好であるものの、最近の成形加工品の形状の複雑化には
対応できず、成形加工条件が厳しい場合には割れが発生
すると云う問題がある。 このため、AQ−Mg系合金において、Mg量を多くし
、加工性を良くすることが研究されているが、Mg量が
3.5%を越えると、冷間加工(成形加工)後、高温雰
囲気での使用中に5CC(応力腐食割れ)が発生し易く
なったり、塗装焼付後の耐糸錆性が悪くなり易い問題が
あった。 かぎる問題を解決するために、本出願人は、先に成形加
工性及び耐SCC改善のためにMg:3〜10%を含有
するアルミニウム合金芯材にZn: 0 。 5〜17%を含有するアルミニウム合金皮材をクラッド
した[成形加工性及び耐応力腐食割れ性の優れたアルミ
ニウム合金複合板」を提案した(特公昭62〜1626
3号)。 また、Mg:3〜10%を含有し、或いはMg: 3〜
10%と、Zn:2%以下及びCu:2%以下の1種又
は2種を含有したアルミニウム合金を芯材とし、これに
純AΩをクラッドした「成形加工性及び耐糸錆性の優れ
たアルミニウム合金板」を提案した特公昭63−209
05号)。 更にまた、0.5〜4.0%Mnを含有するアルミニウ
ム合金を皮材としてクラッドした「成形加工性及び耐糸
錆性の優れたアルミニウム合金板」を提案した特開昭6
1−91343号)。 しかし、いずれのアルミニウム合金においても、複合効
果による強度低下や、Zn添加による時効性に伴う強度
変化があり、必ずしも満足できるものとは云えない。 本発明は、上記従来技術の欠点を解消し、ベーキング後
の強度が高く、成形加工性が優れ、且つ耐SCC性も優
れ、また電着塗装後の耐糸錆性を改善し得るアルミニウ
ム合金を提供することを目的とするものである。 (課題を解決するための手段) 前記目的を達成するため、本発明者は、成形加工性を確
保しつつ耐SCC性を改善し、更には焼付塗装後の耐糸
錆性も改善できるアルミニウム合金の開発に努めた結果
、芯材についてはMgとCuを含む成分組成の最適化を
図り、皮材についてはMgとSiを含む成分組成の最適
化を図ることにより可能であることを見い出し、ここに
本発明をなしたものである。 すなわち、本発明は、Mg:4〜10%及びCu:0.
2〜1.0%を含有し、Fe:0.2%以下、Sj二0
.2%以下に規制し、残部がAQ及び不純物からなるア
ルミニウム合金を芯材とし、或いは更にCr:0.01
−0.2%、Zr:0.01−0.2%及びMn:0.
02〜0.3%のうちの1種又は2種以上を含有するア
ルミニウム合金を芯材とし、Mg:0.4〜1.5%及
びSi:0.3〜2.0%を含有し、残部がAQ及び不
純物からなるアルミニウム合金を皮材とし、且つ、皮材
の厚さが片面につき全板厚の2〜20%であることを特
徴とする耐SCC性に優れた高強度高成形性アルミニウ
ム合金を要旨とするものである。 以下に本発明を更に詳細に説明する。 (作用) 先ず、芯材及び皮材の化学成分の限定理由について説明
する。 ■L芥材 Mg: Mgは耐糸錆性、耐SCC性を低下し、成形加工性、強
度向上を付与する元素であり、特に最終熱処理により十
分に固溶させることにより、成形性(均−伸び)の改善
に効果がある。しかし、4%未満では成形加工性が悪く
なり、強度が低下する。 一方、10%を越えると溶解時のMgの酸化や鋳造時に
割れ易くなったり、熱間圧延、冷間圧延時の加工抵抗の
増加により圧延性の低下が起こり、好ましくない。した
がって、Mg含有量は4〜10%の範囲とする。 Cu: Cuは強度、耐SCC性を付与する元素であり、強度は
特に焼付塗装後の強度向上効果が大きい。 一方、耐SCC性については、固溶された状態でのみP
相の析出を抑制するため、効果がある。しかし、含有量
が0.2%未満ではその効果が低く、また1、0%を超
えると強度向上、耐SCC性向上効果も飽和し始めると
同時に、圧延性が低下するため好ましくない。したがっ
て、Cu含有量は0.2〜1.0%の範囲とする。 Cr、Mn、 Zr: Cr、Mn、Zrは成形加工性と強度を向上させ、更に
は耐SCC性向上に効果のある元素であるので、必要に
応じて、少なくともそれらの1種以上を適量で添加する
ことができる。しかし、Cr、Zrがそれぞれ0.01
%未満、Mnが0.02%未満ではそのような効果がな
く、またCrが0.2%、Zrが0.2%、Mnが0.
3%をそれぞれ超えると成形性が劣るようになるので好
ましくない。したがって、Cr含有量は0.01〜0.
2%、Zr含有量は0.01−0.2%、Mn含有量は
0.02〜0゜3%の範囲とする。 Fe、 Si: Fe、Siは成形加工性に付与する元素であるが、含有
量が増加するにつれて粗大な晶出物を生じ、成形加工時
のすベリ変形を阻害し、伸びが低下する。特に各々0.
2%を超えて含有すると成形加工性が悪くなる。したが
って、Fe含有量は0.2%以下、Si含有量は0.2
%以下に規制する必要がある。 なお、鋳塊の結晶粒を微細化するために、通常TiやT
i+Bを添加するが、その場合にはそれぞれTi:0.
1%以下、B:0.02%以下であれば、本発明の効果
(成形加工性、耐糸錆性、耐SCC性)に悪影響を及ぼ
さない。更に、Zn、Ni等の不純物も同様にそれぞれ
0.1%以下であれば、本発明の効果(成形加工性、耐
SCC性)に悪影響を及ぼさない。 U皮材 皮材は、芯材よりも耐糸錆性、耐SCC性が良好で、且
つ成形加工性も良好なことが要求される。 更に塗装焼付後の強度を向上できるものであることが望
ましい。 Mg: MgはSiと結合して素材強度及び焼付により強度を向
上させるが、0.4%未満では耐糸錆性、耐SCC性及
び成形性は良いものの、焼付後の強度が低くなり、また
1、5%を超えて含有すると、素材強度、焼付後の強度
は高くなるが、成形性が低下する。したがって、Mg含
有量は0.4〜l。 5%の範囲とする。 Sj: SiはMgと結合して素材の強度及び焼付後の強度を上
昇させ、更にMg2Siの組成比よりも過剰に添加した
場合にはSi粒子が分散することにより、成形加工中ら
均一変形を起こし易くなり、成形性が向上する。しかし
、0.3%未満では強度及び焼付後の強度が低く、また
2、0%を超えて含有すると素材の強度、焼付後の強度
は高くなるが、熱間圧延性、成形加工性が低下する。更
に、塗装後の耐糸錆性も低下する。したがって、Si含
有量は0.3〜2.0%の範囲とする。 なお、上記組成のアルミニウム合金に強度、成形加工性
を付与するために、必要に応じて、Cu、Zn:0.5
%以下、Fe、Mn、Cr、V、Zr:0゜2%以下、
Ti:0.1%以下、B:0.02%以下の1種又は2
種以上を含有させてもよい。その場合、2種以上のとき
は1%以下に規制するのがよい。これらの含有量の上限
値を超えると耐糸錆性、成形加工性が劣るようになるの
で留意する。 次に芯材に対する皮材の厚さを規制した理由について説
明する。 (3)皮材の厚さ 皮材は、芯材の片面又は両面のいずれに設けてもよいが
、皮材の厚さは、片面につき、全板厚の2〜20%の割
合とするのが好ましい。しかし、2%未満では、製造中
に皮材が破損し、耐糸錆性及び耐SCC性の向上が認め
られず、また皮材が破損しない場合でも、皮材の厚さが
全板厚の2%未満と薄いため、耐SCC性、耐糸錆性の
向上効果は少なく、そして、皮材の厚さが20%を超え
るような厚さでは、耐糸錆性及び耐SCC性は良好であ
るものの、成形加工性の低下が大きくなるので好ましく
ない。 よって、皮材の厚さは、耐SCC性、耐糸錆性、成形加
工性の兼合いにより、片面について全板厚の2〜20%
の範囲とする。 (実施例) 次に本発明の実施例を示す。 失胤桝↓ 芯材及び皮材として、第1表に示す化学成分を有するア
ルミニウム又はアルミニウム合金につき、400〜b 80〜5oO℃)〜250℃間で板厚5i+mまで熱間
圧延(合せ圧延を含む)し、続いて板厚1.5m■まで
冷間圧延し、その後、350″CX2時間の中間焼鈍を
行った。次いで板厚1.0mm(皮材厚さは片面につき
5%の割合で芯材両面に設ける)まで冷間圧延を行った
。この1i++o厚のアルミニウム合金板を480〜5
30℃に急速加熱し、その温度に10秒間保持し、その
後、600℃/winの平均冷却速度で急冷して供試材
とした。 得られた各供試材について、素材の引張強さ、焼付後の
引張強さ、エリクセン値(成形加工性)を調べると共に
、耐SCC性、塗装後の耐糸錆性を調査した。それらの
結果を第2表に示す。 なお、耐SCC性試験法、耐糸錆性試験方法は以下の要
領で実施した。 (1)耐SCC性試験法 llll11厚の供試材を0.7mmまで冷間圧延し、
120℃×7日の鋭敏化処理を施した後、0.70+u
+t X 20mmw X 80mmQに切出し、SC
C試験を行った。SCC試験条件としては、応力負荷は
U字曲げによる定歪法を用い、腐食雰囲気として3.5
%NaCQ水溶液中で5 m A / 1nch2の電
流を流した促進試験法により実施した。耐SCC性は0
(600分以上で割れなし)、△(240分以上で割れ
なし)、X(240分未満で割れ発生)により評価した
。 (2)耐糸錆性試験方法 ■試験片の作製 70mmX 150mmの試験片→脱脂→リン酸亜鉛処
理→カチオン電着塗装(170℃X30分焼付)→中塗
(140℃X30分)→上塗(140℃×30分)で試
験片を作製した。 ■腐食試験 上記試験片にX印の疵(第1図参照)を人工的に付ける
(疵の総長280mm)→塩水噴霧試験(JIS  Z
  2371に準拠、24hr)→湿潤試験(40℃で
80〜85%の温度に240hr)の要領にて腐食試験
を行った。 ■耐糸錆性の評価 第1図に示すように、人口疵(1)を付けた箇所からの
糸錆発生状況により、O(糸錆長さ0.5mm未満)、
△(糸錆長さ0.5m+a以上、2mm未満)、×(糸
錆長さ2ffl11以上)にて評価した。 第2表からもわかるように、本発明例は、比較例に比べ
、耐SCC性、耐糸錆性が優れ、強度、成形加工性が優
れていることは明らかである。 失意1 実施例1に示した芯材(C−1)又は(C−4)と皮材
(S−1)との組み合わせについて、実施例1と同じ方
法にて製造した板厚1.0mmで、皮材を片面につき全
板厚の0〜25%で両面に設けた供試材を製作し、実施
例1の場合と同様の試験により、皮材の厚さと引張強さ
、成形性及び耐SCC性の関係を調べた。その結果を第
3表に示す。 第3表から明らかなように、皮材厚さが全板厚の2%未
満では耐SCC性が改善されていない。 また、皮材厚さが20%を超えると、耐SCC性は改善
されるものの、エリクセン値が低くなり、成形加工性が
劣るようになる。
(Field of Industrial Application) The present invention relates to a high-strength, high-formability aluminum alloy with excellent SCC resistance (stress corrosion cracking resistance).
The present invention relates to an aluminum alloy that is suitable for products that are subjected to electrodeposition coating after press working, has excellent moldability, and has improved SCC resistance and string rust resistance after electrodeposition coating. (Conventional technology and problems to be solved) Traditionally, such as automobile body panels and reinforcement parts,
AQ-Mg alloy containing 2 to 5% Mg (
For example, soft materials such as 5052.5154.5182) have been put into practical use. However, although these aluminum alloys have good moldability, they cannot cope with the increasingly complex shapes of molded products these days, and they have the problem of cracking when the molding conditions are severe. For this reason, research has been conducted to improve workability by increasing the amount of Mg in AQ-Mg alloys, but if the amount of Mg exceeds 3.5%, high temperature There were problems in that 5CC (stress corrosion cracking) was likely to occur during use in an atmosphere, and thread rust resistance after paint baking was likely to be poor. In order to solve this problem, the applicant first added Zn: 0 to an aluminum alloy core material containing Mg: 3 to 10% in order to improve formability and SCC resistance. We proposed an [aluminum alloy composite plate with excellent formability and stress corrosion cracking resistance] clad with aluminum alloy skin material containing 5 to 17% (Special Publication No. 62-1626).
No. 3). Further, it contains Mg: 3 to 10%, or Mg: 3 to 10%.
The core material is an aluminum alloy containing one or two of Zn: 2% or less and Cu: 2% or less, and is clad with pure AΩ. Tokuko Sho 63-209, which proposed “aluminum alloy plate”
No. 05). Furthermore, Japanese Patent Application Laid-Open No. 1983-1999 proposed an "aluminum alloy plate with excellent formability and thread rust resistance" which was clad with an aluminum alloy containing 0.5 to 4.0% Mn as a skin material.
1-91343). However, in all aluminum alloys, there is a decrease in strength due to the composite effect and a change in strength due to aging due to the addition of Zn, so it cannot be said that they are necessarily satisfactory. The present invention solves the above-mentioned drawbacks of the prior art, and provides an aluminum alloy that has high strength after baking, excellent moldability, excellent SCC resistance, and can improve string rust resistance after electrodeposition coating. The purpose is to provide (Means for Solving the Problems) In order to achieve the above object, the present inventor has developed an aluminum alloy that can improve SCC resistance while ensuring moldability, and further improve thread rust resistance after baking coating. As a result of our efforts to develop the core material, we discovered that it is possible to achieve this by optimizing the component composition containing Mg and Cu, and for the skin material by optimizing the component composition containing Mg and Si. The present invention has been made in this way. That is, in the present invention, Mg: 4 to 10% and Cu: 0.
Contains 2 to 1.0%, Fe: 0.2% or less, Sj20
.. Controlled to 2% or less, with the remainder made of AQ and impurities as the core material, or further Cr: 0.01
-0.2%, Zr: 0.01-0.2% and Mn: 0.
The core material is an aluminum alloy containing one or more of 02 to 0.3%, Mg: 0.4 to 1.5% and Si: 0.3 to 2.0%, High strength and high formability with excellent SCC resistance, characterized in that the skin material is an aluminum alloy with the remainder consisting of AQ and impurities, and the thickness of the skin material is 2 to 20% of the total plate thickness on one side. The focus is on aluminum alloys. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components of the core material and the skin material will be explained. ■ L waste material Mg: Mg is an element that reduces string rust resistance and SCC resistance, and improves moldability and strength. It is effective in improving elongation. However, if it is less than 4%, moldability deteriorates and strength decreases. On the other hand, if it exceeds 10%, Mg becomes oxidized during melting and cracks easily during casting, and rollability decreases due to increased processing resistance during hot rolling and cold rolling, which is not preferable. Therefore, the Mg content is in the range of 4 to 10%. Cu: Cu is an element that imparts strength and SCC resistance, and has a great effect of improving strength, especially after baking coating. On the other hand, regarding SCC resistance, P only exists in a solid solution state.
It is effective because it suppresses phase precipitation. However, if the content is less than 0.2%, the effect will be low, and if the content exceeds 1.0%, the effects of improving strength and SCC resistance will begin to be saturated, and at the same time, rolling properties will decrease, which is not preferable. Therefore, the Cu content is in the range of 0.2 to 1.0%. Cr, Mn, Zr: Cr, Mn, and Zr are elements that improve moldability and strength, and are effective in improving SCC resistance, so at least one or more of them can be added in an appropriate amount as necessary. Can be added. However, Cr and Zr are each 0.01
%, Mn is less than 0.02%, there is no such effect, and Cr is 0.2%, Zr is 0.2%, Mn is 0.
If the content exceeds 3%, moldability becomes poor, which is not preferable. Therefore, the Cr content is between 0.01 and 0.01.
2%, Zr content is in the range of 0.01-0.2%, and Mn content is in the range of 0.02-0.3%. Fe, Si: Fe and Si are elements that impart moldability, but as their content increases, they produce coarse crystallized substances, which inhibits flat deformation during molding and reduces elongation. Especially each 0.
If the content exceeds 2%, moldability will deteriorate. Therefore, the Fe content is 0.2% or less, and the Si content is 0.2%.
% or less. In addition, in order to refine the crystal grains of the ingot, Ti or T is usually added.
i+B, in which case Ti:0.
If B is 1% or less and B: 0.02% or less, the effects of the present invention (molding processability, thread rust resistance, SCC resistance) will not be adversely affected. Furthermore, if impurities such as Zn and Ni are each 0.1% or less, they will not adversely affect the effects of the present invention (molding processability, SCC resistance). U skin material The skin material is required to have better thread rust resistance and SCC resistance than the core material, and also to have better moldability. Furthermore, it is desirable that the strength after baking the paint can be improved. Mg: Mg combines with Si to improve material strength and strength through baking, but if it is less than 0.4%, thread rust resistance, SCC resistance, and formability are good, but the strength after baking is low and If the content exceeds 1.5%, the strength of the material and the strength after baking will increase, but the moldability will decrease. Therefore, the Mg content is 0.4-1. The range shall be 5%. Sj: Si combines with Mg to increase the strength of the material and the strength after baking, and when added in excess of the composition ratio of Mg2Si, Si particles are dispersed to prevent uniform deformation during molding. It becomes easier to raise and improves moldability. However, if the content is less than 0.3%, the strength and strength after baking will be low, and if the content exceeds 2.0%, the strength of the material and the strength after baking will be high, but hot rolling properties and formability will decrease. do. Furthermore, the thread rust resistance after painting is also reduced. Therefore, the Si content is in the range of 0.3 to 2.0%. In addition, in order to impart strength and formability to the aluminum alloy having the above composition, Cu, Zn: 0.5
% or less, Fe, Mn, Cr, V, Zr: 0°2% or less,
One or two of Ti: 0.1% or less, B: 0.02% or less
More than one species may be included. In that case, if there are two or more types, it is best to limit it to 1% or less. It should be noted that if the content exceeds the upper limit, thread rust resistance and moldability will deteriorate. Next, the reason for regulating the thickness of the skin material relative to the core material will be explained. (3) Thickness of the skin material The skin material may be provided on either one or both sides of the core material, but the thickness of the skin material should be 2 to 20% of the total board thickness per side. is preferred. However, if it is less than 2%, the skin material will be damaged during manufacturing, and no improvement in thread rust resistance and SCC resistance will be observed, and even if the skin material is not damaged, the thickness of the skin material will be less than the total board thickness Since it is thin (less than 2%), it has little effect on improving SCC resistance and thread rust resistance, and when the thickness of the skin exceeds 20%, thread rust resistance and SCC resistance are not good. Although this is true, it is not preferable because it greatly reduces moldability. Therefore, the thickness of the skin material should be 2 to 20% of the total board thickness on one side, depending on SCC resistance, thread rust resistance, and moldability.
The range shall be . (Example) Next, an example of the present invention will be shown. As the core material and skin material, aluminum or aluminum alloy having the chemical composition shown in Table 1 is hot rolled (combined rolling The plate was then cold rolled to a thickness of 1.5 m, and then intermediate annealed at 350"C for 2 hours.Then the plate was rolled to a thickness of 1.0 mm (the skin thickness was 5% per side). Cold rolling was carried out until the core material was provided on both sides.This 1i++o thick aluminum alloy plate was
It was rapidly heated to 30°C, held at that temperature for 10 seconds, and then rapidly cooled at an average cooling rate of 600°C/win to obtain a test material. For each of the obtained test materials, the tensile strength of the material, the tensile strength after baking, and the Erichsen value (molding workability) were investigated, as well as the SCC resistance and the thread rust resistance after painting. The results are shown in Table 2. Note that the SCC resistance test method and thread rust resistance test method were carried out in the following manner. (1) SCC resistance test method A sample material with a thickness of 11 was cold rolled to a thickness of 0.7 mm,
After sensitization treatment at 120℃ x 7 days, 0.70+u
+t x 20mmw x 80mmQ cut, SC
C test was conducted. As for the SCC test conditions, the stress load uses the constant strain method using U-shaped bending, and the corrosive atmosphere is 3.5.
% NaCQ aqueous solution using an accelerated test method in which a current of 5 mA/1 nch2 was applied. SCC resistance is 0
(No cracking after 600 minutes or more), Δ (no cracking after 240 minutes or more), and X (cracking occurred after less than 240 minutes). (2) Thread rust resistance test method ■Preparation of test piece 70mm x 150mm test piece → Degreasing → Zinc phosphate treatment → Cationic electrodeposition coating (baking at 170°C for 30 minutes) → Intermediate coating (140°C for 30 minutes) → Top coating (140°C ℃ x 30 minutes) to prepare a test piece. ■ Corrosion test Artificially add a flaw (see Figure 1) marked with an
2371, 24 hr) → Wet test (240 hr at 80-85% temperature at 40° C.) Corrosion test was conducted. ■ Evaluation of thread rust resistance As shown in Figure 1, depending on the occurrence of thread rust from the artificial flaw (1), O (thread rust length less than 0.5 mm), O (thread rust length less than 0.5 mm),
It was evaluated as Δ (thread rust length: 0.5 m+a or more, less than 2 mm), × (thread rust length: 2 ffl11 or more). As can be seen from Table 2, it is clear that the examples of the present invention are superior in SCC resistance and thread rust resistance, as well as in strength and moldability, compared to the comparative examples. Disappointment 1 Regarding the combination of core material (C-1) or (C-4) and skin material (S-1) shown in Example 1, a plate thickness of 1.0 mm manufactured by the same method as Example 1 was used. A test material was prepared with skin material provided on both sides at 0 to 25% of the total board thickness on one side, and the thickness, tensile strength, formability, and durability of the skin material were determined by the same test as in Example 1. We investigated the relationship between SCC and sex. The results are shown in Table 3. As is clear from Table 3, SCC resistance is not improved when the skin thickness is less than 2% of the total plate thickness. Furthermore, when the thickness of the skin material exceeds 20%, although the SCC resistance is improved, the Erichsen value becomes low and the moldability becomes poor.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、耐SCC性は勿
論のこと、成形性も良好で、且つ強度も高く2組糸錆性
にも優れるものであるから、自動車ボディーパネル、レ
インフォース部品等への利用に適し、その工業的効果は
大きい。
(Effects of the Invention) As detailed above, according to the present invention, not only SCC resistance but also good moldability, high strength, and excellent two-ply thread rust resistance are achieved. It is suitable for use in body panels, reinforcement parts, etc., and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐糸錆性試験の試験片及び試験要領を説明する
図である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 t4、@−&さ
FIG. 1 is a diagram illustrating a test piece and test procedure for a thread rust resistance test. Patent applicant: Kobe Steel, Ltd. Patent attorney Nao Nakamura t4, @-&sa

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Mg:4〜10%及び
Cu:0.2〜1.0%を含有し、Fe:0.2%以下
、Si:0.2%以下に規制し、残部がAl及び不純物
からなるアルミニウム合金を芯材とし、Mg:0.4〜
1.5%及びSi:0.3〜2.0%を含有し、残部が
Al及び不純物からなるアルミニウム合金を皮材とし、
且つ、皮材の厚さが片面につき全板厚の2〜20%であ
ることを特徴とする耐SCC性に優れた高強度高成形性
アルミニウム合金。
(1) Contains Mg: 4-10% and Cu: 0.2-1.0% in weight% (the same applies hereinafter), Fe: 0.2% or less, Si: 0.2% or less The core material is an aluminum alloy with the remainder consisting of Al and impurities, and Mg: 0.4~
The skin material is an aluminum alloy containing 1.5% and Si: 0.3 to 2.0%, with the remainder consisting of Al and impurities,
A high-strength, highly formable aluminum alloy with excellent SCC resistance, characterized in that the thickness of the skin material is 2 to 20% of the total plate thickness on one side.
(2)前記芯材が、更にCr:0.01〜0.2%、Z
r:0.01〜0.2%及びMn:0.02〜0.3%
のうちの1種又は2種以上を含有するアルミニウム合金
である請求項1に記載の耐SCC性に優れた高強度高成
形性アルミニウム合金。
(2) The core material further contains Cr: 0.01-0.2%, Z
r: 0.01-0.2% and Mn: 0.02-0.3%
The high-strength, high-formability aluminum alloy with excellent SCC resistance according to claim 1, which is an aluminum alloy containing one or more of the following.
JP15053590A 1990-06-08 1990-06-08 Aluminum alloy excellent in scc resistance and having high strength and high formability Pending JPH0441649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15053590A JPH0441649A (en) 1990-06-08 1990-06-08 Aluminum alloy excellent in scc resistance and having high strength and high formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15053590A JPH0441649A (en) 1990-06-08 1990-06-08 Aluminum alloy excellent in scc resistance and having high strength and high formability

Publications (1)

Publication Number Publication Date
JPH0441649A true JPH0441649A (en) 1992-02-12

Family

ID=15498994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15053590A Pending JPH0441649A (en) 1990-06-08 1990-06-08 Aluminum alloy excellent in scc resistance and having high strength and high formability

Country Status (1)

Country Link
JP (1) JPH0441649A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535508A (en) * 2006-05-02 2009-10-01 アレリス、アルミナム、デュッフェル、ベスローテン、フェンノートシャップ、メット、ベペルクテ、アーンスプラケレイクヘイト Aluminum composite sheet material
WO2013065761A1 (en) * 2011-11-02 2013-05-10 古河スカイ株式会社 Aluminum alloy clad material for molding
US9802273B2 (en) 2011-11-02 2017-10-31 Uacj Corporation Method for manufacturing aluminum alloy cladding material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535508A (en) * 2006-05-02 2009-10-01 アレリス、アルミナム、デュッフェル、ベスローテン、フェンノートシャップ、メット、ベペルクテ、アーンスプラケレイクヘイト Aluminum composite sheet material
WO2013065761A1 (en) * 2011-11-02 2013-05-10 古河スカイ株式会社 Aluminum alloy clad material for molding
US9802273B2 (en) 2011-11-02 2017-10-31 Uacj Corporation Method for manufacturing aluminum alloy cladding material

Similar Documents

Publication Publication Date Title
US5593516A (en) High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
US5393357A (en) Method of minimizing strength anisotropy in aluminum-lithium alloy wrought product by cold rolling, stretching and aging
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
US5738735A (en) Al-Cu-Mg alloy with high creep resistance
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
US4140556A (en) Aluminum alloy sheet
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JPH0441649A (en) Aluminum alloy excellent in scc resistance and having high strength and high formability
JP3749687B2 (en) Aluminum alloy plate and panel structure for bending
JPS62207642A (en) Aluminum alloy flitch having excellent workability, baking hardenability and yarn corrosion resistance
JPH0547615B2 (en)
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPS6410584B2 (en)
JPH01219139A (en) Aluminum alloy for baking finish having excellent stringy rust resistance
JP2948416B2 (en) High strength cold rolled steel sheet and hot dip galvanized steel sheet with excellent deep drawability
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JPH03287739A (en) High formability aluminum alloy
JPH06262719A (en) Aluminum alloy ply metal with excellent moldability, corrosion resistance and baking hardening property
JP3539996B2 (en) Manufacturing method of high strength aluminum alloy sheet for forming
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JPS6320437A (en) Aluminum alloy sheet having superior press workability and its manufacture
JPH10102179A (en) Aluminum alloy sheet excellent in press formability and baking finish hardenability, and its production
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production