JPH044074B2 - - Google Patents
Info
- Publication number
- JPH044074B2 JPH044074B2 JP58217288A JP21728883A JPH044074B2 JP H044074 B2 JPH044074 B2 JP H044074B2 JP 58217288 A JP58217288 A JP 58217288A JP 21728883 A JP21728883 A JP 21728883A JP H044074 B2 JPH044074 B2 JP H044074B2
- Authority
- JP
- Japan
- Prior art keywords
- welding
- current
- arc
- consumable electrode
- droplet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003466 welding Methods 0.000 claims description 125
- 238000000034 method Methods 0.000 claims description 57
- 239000010953 base metal Substances 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 5
- 239000011324 bead Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- GNFTZDOKVXKIBK-UHFFFAOYSA-N 3-(2-methoxyethoxy)benzohydrazide Chemical compound COCCOC1=CC=CC(C(=O)NN)=C1 GNFTZDOKVXKIBK-UHFFFAOYSA-N 0.000 description 1
- 206010027339 Menstruation irregular Diseases 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
- B23K9/091—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/124—Circuits or methods for feeding welding wire
- B23K9/125—Feeding of electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
Description
技術分野
本発明は、消耗電極と母材との間で短絡とアー
ク発生とを繰り返す消耗電極式アーク溶接方法に
関する。
従来技術
第1図は短絡とアーク発生とを交互に繰り返す
消耗電極式アーク溶接法の溶滴の形成と移行の過
程を示しており、1は消耗電極(以下、溶接ワイ
ヤという)、2は溶接ワイヤ1の先端に形成され
た溶滴、3はアーク、4は溶融池すなわち母材で
ある。aは溶滴2が溶融池4と接触した短絡初期
状態、bは溶滴2と溶融池4との接触が確実とな
つて溶滴2が溶融池4へ移行している短絡中期状
態、cは溶滴2が溶融池4側へ移行して溶接ワイ
ヤ1と溶融池4との間の溶滴2にくびれが生じた
短絡後期状態、dは短絡が破れて溶接アーク3が
発生した瞬間、eは溶接ワイヤ1の先端が溶融し
て溶滴2が成長するアーク発生状態、f,gは溶
滴2が溶融池4と短絡する直前のアーク発生状態
を夫々示し、a〜gの過程が繰り返し行なわれ
る。
第2図は、リアクトルを併用した定電圧特性を
有する従来の溶接電源を用いた場合の溶接電流と
溶接電圧の波形を示している。この第2図におい
て、波形上の過程を示す符合a〜gは第1図に示
す溶滴の形成と移行の過程a〜gに夫々対応して
いる。
この従来の溶接電源を用いた場合には、以下の
様な問題が生じる。過程aでは、溶滴2と溶融池
4との短絡の直後にある時定数を有して溶接電流
が増加し始め、溶滴2と溶融池4との接触部Aの
断面積が小さいとき、すなわち、溶滴2の溶融池
4への移行が進まないうちに溶接電流が大きくな
ると、短絡が破れてアークが発生し、この時にス
パツタを発生する。過程c,dでは、溶滴2にく
びれが生じ、短絡が破れてアークが再発生する。
このアーク再発生時には電流値は最も高い値とな
り、アークの反撥エネルギーにより、スパツタを
多量に発生させるとともに、溶融池4を大きく振
動させる。アーク発生後の過程e,fでは、前の
短絡期間が長いときには溶接電流が増加し、前の
短絡期間が短いときには溶接電流が減少する。し
たがつて、過程e,fで形成される溶滴2の大き
さがばらつき、ときには、過程gにおいて溶滴が
小さ過ぎると、溶接ワイヤ1の未溶融部が溶融池
4へ突つ込んで、溶接が著しく不安定になること
がある。また、過程f,gで、溶滴2と溶融池4
とを短絡に近づけさらに短絡させるためには、溶
接電流が小さいことが必要である。しかるに、こ
のときの溶接電流は、回路のインダクタンスLと
等価抵抗Rに応じて、第2図に示すようにe-(L/R)t
の値に比例して減少する。このため、溶接ワイヤ
の送給速度が高く、従つて、溶接電流の平均値が
高い場合には、過程f,gにおいて電流が高くな
り、短絡が生じにくくなる。さらに、溶接電流が
定電圧特性であるため、アーク長が短くなるにつ
れて電流が増加する。この結果、ますます短絡が
生じにくくなり、溶滴が大きく成長し、規側的な
短絡の周期が期待できないばかりでなく、大粒の
スパツタが発生する。
発明の目的
本発明は上記問題に鑑みてなされたものであ
り、その目的は、短絡とアーク発生とを繰り返す
過程を安定化するとともに、スパツタの発生を減
少させた消耗電極式アーク溶接方法を提供するこ
とである。
発明の概要
消耗電極と母材との間で短絡とアーク発生とを
繰り返す消耗電極式アーク溶接方法であつて、消
耗電極と母材とが短絡すると、溶接電流を比較的
低レベルの第1の電流値に保持する過程と、続い
て溶接電流を比較的高レベルの第2の電流値に保
持する過程と、溶接電流を第2の電流値を保持す
る間に消耗電極と母材との間の溶接部にくびれが
生じると、溶接電流を低レベルの第3の電流値に
低下させる過程と、続いて消耗電極と母材との間
にアークが発生したタイミングで溶接電流を増大
させて、比較的高レベルの第4の電流値に保持す
る過程と、続いて消耗電極と母材とが短絡するま
で溶接電流を比較的低レベルの第5の電流値に保
持する過程とを有し、第5の電流値より比較的低
レベルの第1の電流値を保持する過程へと上記一
連の過程を繰り返す。
実施例
以下、本発明の一実施例について説明する。
本発明では、溶接ワイヤをノズルを介して所定
速度で母材に対して送給する一方、上記ノズルか
らシールドガスを噴射しつつ、溶接ワイヤと母材
との間で発生するアーク部分を包囲するととも
に、溶接ワイヤと母材との間で短絡とアーク発生
とを繰り返して溶接を行う消耗電極式アーク溶接
法において、溶接電流を制御する。
本発明者らは、短絡とアーク発生とを交互に繰
り返す消耗電極式アーク溶接法において、溶接電
流の出力波形について種々検討した結果、第3図
に示す波形が最適であることが分つた。
第3図は溶接電流と溶接電圧の波形を示してお
り、波形上の過程a〜gは上述の第1図に示す溶
滴の形成と移行の過程a〜gに夫々対応してい
る。
溶接ワイヤ1と溶融池4との短絡の直後の過程
a〜bでは、溶接電流を低レベルである電流IDに
保持し、溶滴2と溶融池4との接触を強固にする
ことを阻害する溶接電流のピンチ力が溶滴2と溶
融池4との接触部Aに働かないようにする。この
低レベルの電流IDを保持する期間TDは、1〜
4msecであり、最適には1.5〜2.5msecである。電
流IDは、溶滴2と溶融池4との接触部Aに電流ピ
ンチ力が働かないようにするためにはできるだけ
小さい方が望ましく、一般に100A以下である。
溶接ワイヤの送給速度が小さいときには、電流ID
はさらに低い方が良いことが確認された。
溶滴2と溶融池4との結合が強固になつた過程
bから、溶滴2の溶融池4への移行を促進するた
めにジユールエネルギーとピンチ力を与える適当
な高電流ISPを印加する。この高電流ISPは、溶接
ワイヤ1の未溶融部分が溶融池4へ突つ込まない
うちに溶滴2を溶融池4へ移行させるとともに、
移行の後に溶滴2にくびれを生じさせるために印
加されるものであり、この高電流ISPが印加され
ないと、溶接の過程は著しく不安定になる高電流
ISPを印加する期間は溶滴2にくびれが生じる過
程cまでであるが、この期間は通常1〜5msecの
間でばらつくので、予め設定することは不可能で
ある。しかし、溶滴のくびれを溶接ワイヤと母材
間の抵抗変化、電圧変化あるいは電流変化などに
より検知して、短絡の状況に応じて、くびれが生
じたら高電流ISPの印加を終了するように、自動
的に制御する必要がある。溶滴のくびれの検出は
具体的にはたとえば溶接ワイヤと母材との間の電
圧Vの時間変化(微分値dV/dt)が一定値を越
えたことによつて検出する。
溶滴2にくびれが発生した過程cにおいて、溶
接電流を低レベルである電流IRAへ急激に減少さ
せる。そして、過程cに続く過程dにおいてアー
クが発生する。過程cにおいて電流を急激に減少
させるのは、溶滴2のくびれ部Bが破断してアー
クが発生した時に溶滴2の一部が飛散するのを防
止するとともに、アークが発生した瞬間に溶融池
にアークにより加えられる圧力を弱めるためであ
る。この圧力が強いと、溶融池4がビード外周に
押され、、ビード外観の均一性を損なうばかりで
なく、時には溶融池の一部を飛散させてスパツタ
となる場合がある。
過程cにおいて、電流を低下させてしまうと、
溶滴が破断せず、アークが再発生しないという疑
念が生じるが、溶滴にくびれが生じると、後は表
面張力とでくびれ部は破断する。したがつて、過
程bにおいては、溶滴2が表面張力と重力により
破断する程度のくびれが生じるまで高電流ISPを
印加すればよい。また、低レベルの電流IRAは、
溶接ワイヤの送給速度などによつても左右される
が、20〜200Aが望ましい。電流IRAが20A以下に
なると、アーク再発生時にアークが消えるアーク
切れが発生する可能性が増し、また、200A以上
であると、スパツタの発生量が増加する。この電
流IRAとしては、理想的には、アーク切れが発生
しない電流値でできるだけ小さい方が良いてわけ
であり、20Aに限定されるものではない。
過程dにおいてアークが発生したタイミング
で、溶接電流を高レベルである電流IAPまで増加
させ、この高電流IAPを過程eまでの予め定めら
れた期間保存する。過程dから過程eまでの期間
TAPは、次回の短絡で溶融池4へ移行させるため
の溶滴を溶接ワイヤ先端に形成する期間である。
この期間TAPにおいて溶滴が所望の大きさになる
ように、期間TAPと電流値IAPとを定める。この期
間TAPで溶接ワイヤと溶融池との短絡が生じる
と、必要な溶滴が形成されないで短絡するため、
溶接ワイヤの未溶融部分が溶融池に入り、アーク
再発生に時間を要するとともに、溶接の安定性を
著しく損なう。したがつて、期間TAPにおける電
流IAPは、短絡の発生を防止するのに充分である
高レベルな電流を用いる。
この期間TAPにおいて短絡を防止するのに充分
な電流IAPは、溶接ワイヤの送給速度に応じて変
化し、例えば、ワイヤ送給速度が5.2m/min(平
均溶接電流180A)のときには260A程度であり、
ワイヤ送給速度が8.4m/min(平均溶接電流
240A)のときには340A程度である。この電流IAP
は、平均溶接電流より高いレベルでなければなら
ない。また、この期間TAPにおいて、短絡を生じ
させないためには、上述のように電流を充分に高
くすることもひとつの手段であるが、アーク長が
短くなると電流が増加して短絡が生じにくくなる
定電圧特性にすることも有効である。この場合、
電流が増加すると、アーク力が強くなり、且つ、
溶接ワイヤの燃え上り量を増加させ、溶滴と溶融
池との間隙を増加させる。
期間TAPにおいて溶滴が形成された後の過程e
〜fでは、溶滴2を溶融池4へできるだけ早く短
絡させるために溶接電流を低レベルの電流IABに
保つ。この場合、アーク長が短くなると電流が増
加する定電圧特性では、短絡が近づくと、電流が
増加してアーク力が大きくなり、このアーク力に
よつて溶融池を押圧するので、溶滴と溶融池との
間隙を保つて短絡が生じにくい状況をつくること
になる。従つて、過程e〜fでは、アーク長が短
くなつても電流値が不変である略定電流特性とす
ることが望ましい。また、電流IABが高すぎると、
短絡が発生しにくくなつて溶滴が必要以上大きく
なるとともに、短絡の周期が一定しないばかりで
はなく、大粒のスパツタの発生を助長する。この
アーク発生時における低レベルの電流IABは、短
絡が生じる過程gまで保持される。
以上の5段階の状態は連続しており、この5段
階の一連の状態が繰り返される。そして、夫々の
段階は互いに相関関係を有しており、どのひとつ
の段階を除いても、スパツタの減少、良好なビー
ド外観、良好なアークの安定性の3つの条件を満
足させることができない。
実験例
以下、本発明の実験例について説明する。
3種類の実験例1,2,3は、上述のように、
溶接ワイヤ1と溶融池4とが短絡すると、溶接電
流を比較的低レベルの第1の電流値IDに保持する
第1の過程と、この第1の過程に続いて溶接電流
を比較的高レベルの第2の電流値ISPに保持する
第2の過程と、この第2の電流値ISPを保持する
間に溶接ワイヤ1と溶融池4との間の溶融部にく
びれが生じると、溶接電流を低レベルの第3の電
流値IRAに低下させる第3の過程と、この第3の
過程に続いて、溶接1と溶融池4との間にアーク
が発生したタイミングで溶接電流を増大させて、
比較的高レベルの第4の電流値IAPに保持する第
4の過程と、この第4の過程に続いて溶融ワイヤ
1と溶融池4とが短絡するまで溶接電流が比較的
低レベルの第5の電流値IABに保持する第5の過
程とを設け、かつ第1の電流値IDを第5の電流値
IABよりも低くし、上記第1ないし第5の一連の
過程を繰り返すようにして行なつた。
さらに、具体的には、各実験例1,2,3にお
いて共通に用いた溶接条件は次の通りである。
溶接ワイヤ :YCW−2,1.2φ
シールドガス:CO2,20/min
溶接母材 :SS41,板厚12mm
溶接方法 :溶接トーチを台車に保持し、ビー
ドオンプレート溶接を10分間行なつた。
上記以外の溶接条件であるワイヤ送給速度、期
間TD,TAP、電流ID,ISP,IRA,IAPを実験例1,
2,3の夫々について第1表に示す。また、第1
表には3種類の従来例1,2,3について溶接条
件であるワイヤ送給速度と平均電流を示す。
TECHNICAL FIELD The present invention relates to a consumable electrode type arc welding method in which short circuits and arc generation are repeated between a consumable electrode and a base material. Prior Art Figure 1 shows the process of droplet formation and transfer in the consumable electrode arc welding method, which alternately repeats short circuits and arc generation, where 1 shows the consumable electrode (hereinafter referred to as welding wire) and 2 shows the welding process. A droplet is formed at the tip of the wire 1, 3 is an arc, and 4 is a molten pool, that is, a base material. a is the initial short-circuit state where the droplet 2 is in contact with the molten pool 4, b is the intermediate short-circuit state where the contact between the droplet 2 and the molten pool 4 is ensured and the droplet 2 is moving to the molten pool 4, and c d is the late short circuit state where the droplet 2 moves to the molten pool 4 side and a constriction occurs in the droplet 2 between the welding wire 1 and the molten pool 4, and d is the moment when the short circuit is broken and the welding arc 3 is generated. e indicates the arc generation state where the tip of the welding wire 1 melts and the droplet 2 grows, and f and g indicate the arc generation state immediately before the droplet 2 short-circuits with the molten pool 4. It is done repeatedly. FIG. 2 shows the waveforms of welding current and welding voltage when using a conventional welding power source having constant voltage characteristics that also uses a reactor. In FIG. 2, symbols a to g indicating processes on the waveform correspond to processes a to g of droplet formation and transfer shown in FIG. 1, respectively. When this conventional welding power source is used, the following problems occur. In process a, the welding current begins to increase with a certain time constant immediately after the short circuit between the droplet 2 and the molten pool 4, and when the cross-sectional area of the contact area A between the droplet 2 and the molten pool 4 is small, That is, if the welding current increases before the transfer of the droplet 2 to the molten pool 4 progresses, the short circuit is broken, an arc is generated, and at this time spatter is generated. In steps c and d, a constriction occurs in the droplet 2, the short circuit is broken, and the arc is generated again.
When the arc is regenerated, the current value reaches its highest value, and the repulsion energy of the arc generates a large amount of spatter and causes the molten pool 4 to vibrate greatly. In processes e and f after arc generation, the welding current increases when the previous short-circuit period is long, and decreases when the previous short-circuit period is short. Therefore, the sizes of the droplets 2 formed in steps e and f vary, and sometimes, if the droplets are too small in step g, the unmelted part of the welding wire 1 will plunge into the molten pool 4. Welding may become extremely unstable. In addition, in processes f and g, droplet 2 and molten pool 4
The welding current needs to be small in order to bring the welding current closer to a short circuit and further short circuit the welding current. However, the welding current at this time is e - (L/R)t as shown in Fig. 2, depending on the inductance L and equivalent resistance R of the circuit.
decreases in proportion to the value of Therefore, when the welding wire feeding speed is high and the average value of the welding current is high, the current becomes high in processes f and g, and short circuits are less likely to occur. Furthermore, since the welding current has constant voltage characteristics, the current increases as the arc length becomes shorter. As a result, it becomes increasingly difficult for short circuits to occur, the droplets grow larger, and not only can a short circuit period on the outside cannot be expected, but also large spatters occur. Purpose of the Invention The present invention has been made in view of the above problems, and its purpose is to provide a consumable electrode type arc welding method that stabilizes the process of repeating short circuits and arc generation, and reduces the occurrence of spatter. It is to be. Summary of the Invention This is a consumable electrode type arc welding method in which a short circuit and arc generation are repeated between a consumable electrode and a base metal, and when the consumable electrode and the base metal are short-circuited, the welding current is a process of holding the welding current at a current value, then a process of holding the welding current at a relatively high level second current value, and a process of holding the welding current at the second current value between the consumable electrode and the base metal. When a constriction occurs in the welded part, the welding current is reduced to a third low-level current value, and then the welding current is increased at the timing when an arc is generated between the consumable electrode and the base metal. holding the welding current at a fourth current value at a relatively high level; and then holding the welding current at a fifth current value at a relatively low level until the consumable electrode and the base metal are short-circuited; The series of steps described above is repeated until the first current value is held at a relatively lower level than the fifth current value. Example An example of the present invention will be described below. In the present invention, the welding wire is fed to the base metal through a nozzle at a predetermined speed, while shielding gas is injected from the nozzle to surround the arc generated between the welding wire and the base metal. In addition, the welding current is controlled in the consumable electrode arc welding method in which welding is performed by repeatedly shorting and generating an arc between the welding wire and the base metal. The present inventors conducted various studies on the output waveform of the welding current in a consumable electrode type arc welding method in which short circuits and arc generation are alternately repeated, and as a result, it was found that the waveform shown in FIG. 3 is optimal. FIG. 3 shows the waveforms of welding current and welding voltage, and processes a to g on the waveforms correspond to processes a to g of droplet formation and transfer shown in FIG. 1 above, respectively. In steps a to b immediately after the short circuit between the welding wire 1 and the molten pool 4, the welding current is maintained at a low level of the current ID to prevent the contact between the droplet 2 and the molten pool 4 from becoming stronger. The pinch force of the welding current is prevented from acting on the contact area A between the droplet 2 and the molten pool 4. The period T D during which this low level current I D is maintained is 1 to
4 msec, optimally 1.5 to 2.5 msec. The current ID is preferably as small as possible in order to prevent current pinching force from acting on the contact area A between the droplet 2 and the molten pool 4, and is generally 100 A or less.
When the welding wire feeding speed is small, the current I D
It was confirmed that even lower values are better. In process b, where the bond between the droplet 2 and the molten pool 4 becomes strong, an appropriate high current I SP is applied to provide pulse energy and pinch force in order to promote the transition of the droplet 2 to the molten pool 4. do. This high current I SP moves the droplet 2 to the molten pool 4 before the unmelted part of the welding wire 1 plunges into the molten pool 4, and
This high current is applied to create a constriction in the droplet 2 after the transfer, and if this high current I SP is not applied, the welding process will be extremely unstable.
The period during which I SP is applied is until the process c when the droplet 2 becomes constricted, but since this period usually varies between 1 and 5 msec, it is impossible to set it in advance. However, the constriction of the droplet is detected by changes in resistance, voltage, or current between the welding wire and the base metal, and the application of high current I SP is terminated when constriction occurs, depending on the short circuit situation. , need to be automatically controlled. Specifically, the constriction of the droplet is detected when, for example, the time change (differential value dV/dt) of the voltage V between the welding wire and the base metal exceeds a certain value. In process c when the droplet 2 is constricted, the welding current is rapidly reduced to a low level current IRA . Then, an arc occurs in process d following process c. The reason for rapidly reducing the current in step c is to prevent part of the droplet 2 from scattering when the constriction part B of the droplet 2 breaks and an arc occurs, and also to prevent the droplet 2 from melting at the moment the arc occurs. This is to reduce the pressure exerted on the pond by the arc. If this pressure is strong, the molten pool 4 is pushed against the outer periphery of the bead, which not only impairs the uniformity of the bead appearance, but also sometimes causes part of the molten pool to scatter, resulting in spatter. In process c, if the current is reduced,
There is a suspicion that the droplet will not break and the arc will not occur again, but if the droplet becomes constricted, the constriction will break due to surface tension. Therefore, in step b, the high current I SP may be applied until the droplet 2 is constricted enough to break due to surface tension and gravity. Also, the low level current I RA is
Although it depends on the welding wire feeding speed, etc., 20 to 200 A is desirable. When the current I RA is less than 20 A, there is an increased possibility that an arc breakage occurs in which the arc disappears when the arc is regenerated, and when it is more than 200 A, the amount of spatter will increase. Ideally, this current IRA should be as small as possible without causing arc breakage, and is not limited to 20A. At the timing when an arc occurs in step d, the welding current is increased to a high level current I AP , and this high current I AP is stored for a predetermined period until step e. Period from process d to process e
T AP is a period during which droplets are formed at the tip of the welding wire to be transferred to the molten pool 4 in the next short circuit.
The period T AP and the current value I AP are determined so that the droplet has a desired size during this period T AP . If a short circuit occurs between the welding wire and the molten pool during this period T AP , the necessary droplets will not be formed and the short circuit will occur.
The unmelted portion of the welding wire enters the molten pool, which takes time to regenerate the arc and significantly impairs welding stability. Therefore, the current I AP during the period T AP uses a high level current that is sufficient to prevent the occurrence of a short circuit. The current I AP sufficient to prevent a short circuit during this period T AP varies depending on the welding wire feeding speed. For example, when the wire feeding speed is 5.2 m/min (average welding current 180 A), the current I AP is 260 A. It is about
Wire feeding speed is 8.4 m/min (average welding current
240A), it is about 340A. This current I AP
must be at a level higher than the average welding current. Also, one way to prevent short circuits during this period T AP is to make the current sufficiently high as described above, but as the arc length becomes shorter, the current increases and short circuits become less likely to occur. It is also effective to have constant voltage characteristics. in this case,
As the current increases, the arc force becomes stronger, and
Increases the amount of burnout of the welding wire and increases the gap between the droplet and the molten pool. Process e after droplet formation during period T AP
~f, the welding current is kept at a low level of current I AB in order to short-circuit the droplet 2 to the weld pool 4 as quickly as possible. In this case, with the constant voltage characteristic in which the current increases as the arc length becomes shorter, as the short circuit approaches, the current increases and the arc force increases, and this arc force presses the molten pool, so the droplets and molten This creates a situation where short circuits are less likely to occur by maintaining a gap with the pond. Therefore, in steps e to f, it is desirable to have substantially constant current characteristics in which the current value remains unchanged even if the arc length becomes short. Also, if the current I AB is too high,
Short circuits are less likely to occur and the droplets become larger than necessary, and not only the period of short circuits is not constant, but also the generation of large spatters is promoted. This low level current I AB at the time of arcing is maintained until the process g when a short circuit occurs. The above five-stage states are continuous, and this series of five-stage states is repeated. The respective stages have a correlation with each other, and even if any one stage is excluded, the three conditions of reduced spatter, good bead appearance, and good arc stability cannot be satisfied. Experimental Examples Experimental examples of the present invention will be described below. The three types of experimental examples 1, 2, and 3 are as described above.
When the welding wire 1 and the molten pool 4 are short-circuited, there is a first process in which the welding current is maintained at a relatively low first current value ID , and following this first process, the welding current is maintained at a relatively high level. If a constriction occurs in the molten part between the welding wire 1 and the molten pool 4 during the second process of holding the current value I SP at the second level, and while holding the second current value I SP , A third process of reducing the welding current to a third low level current value I RA , and following this third process, reducing the welding current at the timing when an arc is generated between the weld 1 and the molten pool 4. increase,
A fourth process in which the welding current is held at a fourth current value I AP at a relatively high level, and a second process in which the welding current is maintained at a relatively low level until the molten wire 1 and the molten pool 4 are short-circuited. a fifth process of holding the first current value I D at the fifth current value I AB ;
I AB was lowered and the series of steps 1 to 5 above were repeated. Furthermore, specifically, the welding conditions commonly used in each of Experimental Examples 1, 2, and 3 are as follows. Welding wire: YCW-2, 1.2φ Shielding gas: CO 2 , 20/min Welding base material: SS41, plate thickness 12mm Welding method: The welding torch was held on a trolley, and bead-on-plate welding was performed for 10 minutes. Welding conditions other than those mentioned above, such as wire feeding speed, period T D , T AP , current I D , I SP , I RA , and I AP , were set in Experimental Example 1.
2 and 3 are shown in Table 1. Also, the first
The table shows the welding conditions, wire feeding speed and average current, for three conventional examples 1, 2, and 3.
【表】
評価の方法は、スパツタの発生量については10
分間にノズルに付着したスパツタの重量を測定
し、アークの安定性についてはオシロスコープに
より溶接電流波形の安定性を観察した。さらに、
ビード外観を観察した。この評価の結果を第2表
に示す。第2表にはまた従来例1,2,3につい
て実験例と同じ方法で評価を行なつた結果を示
す。[Table] The evaluation method is 10 for the amount of spatter.
The weight of spatter adhering to the nozzle per minute was measured, and the stability of the welding current waveform was observed using an oscilloscope to determine the stability of the arc. moreover,
The appearance of the bead was observed. The results of this evaluation are shown in Table 2. Table 2 also shows the results of evaluating Conventional Examples 1, 2, and 3 using the same method as the experimental example.
【表】【table】
【表】
第4図と第5図はオシロスコープにより観察し
た実験例2における溶接電流と溶接電圧の波形を
示しており、第5図は第4図より時間軸のスケー
ルを小さくしたときの波形を示す。また、第6図
と第7図はオシロスコープにより観察した従来例
2における溶接電流と溶接電圧の波形を示してお
り、第7図は第6図より時間軸のスケールを小さ
くしたときの波形を示す。
第2表から明らかなように、本発明による溶接
方法の実験例1,2,3のいずれにおいても、従
来の方法に較べてスパツタの発生量を1/5ないし
1/6に減少させることができる。
また、第4図に示すように、本発明の方法によ
る溶接電流の波形の周期や波高値が規則的でほぼ
一定であることは、短絡とアーク発生とが規則正
しく繰り返され、アーク力、アーク長、溶滴径、
短絡状態並びに溶融池の状態がいずれも安定して
いることを示している。これは、本発明による方
法を用いると、スパツタの発生量を少なくすると
ともに、均一で美しいビード外観が得られ、後処
理工程を必要としない所謂作業性が良好な溶接が
行なえることの証明である。一方、第6図に示す
従来の方法による溶接電流の波形が周期や波高値
が不規則であることは、短絡とアーク発生とが規
則正しく行なわれず、アーク力、アーク長、溶滴
径などが変動することを示している。すなわち、
従来の方法では、アークの不安定と溶融池の乱れ
などが生じ、スパツタの発生量が多くなるととも
に、時として非常に大きなアーク力が働いて溶融
池を飛散させ、ビード端部にヒゲ状の突出部が生
じ、ビード外観を損なうことなどにより作業性を
悪くする。
なお、実際には溶接状態の目視、アーク音など
からも、本発明の溶接方法においてはアークが安
定していることが確認され、第4図の溶接電流波
形の状態と一致している。
発明の効果
以上説明したように、本発明においては、溶接
ワイヤが母材と短絡すると溶接電流を比較的低レ
ベルな電流とし、続いて溶接電流を比較的高レベ
ルな電流とし、溶滴にくびれが生じると溶接電流
を低レベルな電流へ低下させ、アークが生じたタ
イミングで溶接電流を増大させて、比較的高レベ
ルな電流とし、続いて溶接ワイヤと母材とが短絡
するまで溶接電流を比較的低レベルな電流とする
上記一連の過程を繰り返すようにしたから、スパ
ツタの発生量が少なく且つアークが安定したビー
ド外観が良好な溶接を行なうことができる。この
結果、ノズルに付着したスパツタの除去作業のた
めに溶接を中断する回数が減少し、長時間の連続
溶接が可能となる。これはロボツトなどによる自
動溶接に対して有効である。また、スパツタの発
生量が少ないので溶接加工を終了した後の製品に
付着したスパツタの除去作業に時間がかからず、
さらに、ビード外観の不良部に対するグラインダ
による整形作業が不要になることなどから、経済
上の直接効果があるばかりでなく、溶接作業者の
安全上にも寄与するなどの効果がある。[Table] Figures 4 and 5 show the waveforms of welding current and welding voltage in Experimental Example 2 observed with an oscilloscope, and Figure 5 shows the waveforms when the time axis scale is made smaller than in Figure 4. show. In addition, Figures 6 and 7 show the waveforms of welding current and welding voltage in Conventional Example 2 observed with an oscilloscope, and Figure 7 shows the waveforms when the time axis scale is made smaller than in Figure 6. . As is clear from Table 2, in all of Experimental Examples 1, 2, and 3 of the welding method according to the present invention, the amount of spatter generated can be reduced to 1/5 to 1/6 compared to the conventional method. can. Furthermore, as shown in Fig. 4, the period and peak value of the welding current waveform by the method of the present invention are regular and almost constant, which means that short circuits and arc generation are regularly repeated, resulting in arc force and arc length. , droplet diameter,
This shows that both the short-circuit condition and the molten pool condition are stable. This proves that by using the method of the present invention, the amount of spatter generated can be reduced, a uniform and beautiful bead appearance can be obtained, and welding can be performed with good workability without the need for post-processing steps. be. On the other hand, the waveform of the welding current obtained by the conventional method shown in Figure 6 has irregular periods and peak values, which means that short circuits and arc generation are not performed regularly, and arc force, arc length, droplet diameter, etc. fluctuate. It shows that. That is,
In the conventional method, the arc becomes unstable and the molten pool becomes turbulent, resulting in a large amount of spatter, and sometimes a very large arc force acts, causing the molten pool to scatter, resulting in whiskers at the bead end. Protrusions occur, impairing the appearance of the bead and impairing workability. In fact, it was confirmed from visual observation of the welding state, arc sound, etc. that the arc is stable in the welding method of the present invention, and the welding current waveform corresponds to the state of the welding current waveform shown in FIG. Effects of the Invention As explained above, in the present invention, when the welding wire short-circuits with the base metal, the welding current is set to a relatively low level, and then the welding current is set to a relatively high level, so that the droplet is constricted. When arcing occurs, the welding current is reduced to a low level, and when an arc occurs, the welding current is increased to a relatively high level, and then the welding current is increased until the welding wire and the base metal short-circuit. Since the above-described series of processes using a relatively low level of current is repeated, it is possible to perform welding with a small amount of spatter, a stable arc, and a good bead appearance. As a result, the number of times welding is interrupted to remove spatter adhering to the nozzle is reduced, and continuous welding can be performed for a long time. This is effective for automatic welding by robots and the like. In addition, since the amount of spatter generated is small, it does not take much time to remove spatter from the product after the welding process is completed.
Furthermore, since there is no need to use a grinder to reshape defects in the appearance of the bead, there is not only a direct economic effect, but also an effect that contributes to the safety of welding workers.
第1図は消耗電極式アーク溶接法の溶滴の形成
と移行の過程を示す図、第2図は従来の消耗電極
式アーク溶接法における溶接電流と溶接電圧の波
形を示す図、第3図は本発明の方法に適用した消
耗電極式アーク溶接法における溶接電流と溶接電
圧の波形を示す図、第4図と第5図はオシロスコ
ープにより観測した実験例2における溶接電流と
溶接電圧の波形を示す図、第6図と第7図はオシ
ロスコープにより観測した従来例2における溶接
電流と溶接電圧の波形を示す図である。
1…溶接ワイヤ、2…溶滴、3…アーク、4…
溶融池。
Figure 1 shows the process of droplet formation and migration in consumable electrode arc welding, Figure 2 shows the waveforms of welding current and welding voltage in conventional consumable electrode arc welding, and Figure 3 Figures 4 and 5 show the waveforms of the welding current and welding voltage in Experimental Example 2 observed with an oscilloscope. 6 and 7 are diagrams showing waveforms of welding current and welding voltage in Conventional Example 2 observed with an oscilloscope. 1... Welding wire, 2... Droplet, 3... Arc, 4...
melt pool.
Claims (1)
一方、ノズルからシールドガスを噴射しつつ、消
耗電極と母材との間で発生するアーク部分を包囲
するとともに、消耗電極と母材との間で短絡とア
ーク発生とを繰り返して溶接を行う消耗電極式ア
ーク溶接法であつて、 消耗電極と母材とが短絡すると、溶接電流を比
較的低レベルの第1の電流値に保持する第1の過
程と、この第1の過程に続いて溶接電流を比較的
高レベルの第2の電流値に保持する第2の過程
と、この第2の電流値を保持する間に消耗電極と
母材との間の溶融部にくびれが生じると、溶接電
流を低レベルの第3の電流値に低下させる第3の
過程と、この第3の過程に続いて、消耗電極と母
材との間にアークが発生したタイミングで溶接電
流を増大させて、比較的高レベルの第4の電流値
に保持する第4の過程と、この第4の過程に続い
て消耗電極と母材とが短絡するまで溶接電流を比
較的低レベルの第5の電流値に保持する第5の過
程とを有し、かつ第1の電流値を第5の電流値よ
りも低くし、上記第1ないし第5の一連の過程を
繰り返すことを特徴とする消耗電極式アーク溶接
方法。[Claims] 1. While feeding the consumable electrode to the base material at a predetermined speed, shielding gas is injected from the nozzle to surround the arc generated between the consumable electrode and the base material, This is a consumable electrode type arc welding method in which welding is performed by repeatedly shorting and generating an arc between the consumable electrode and the base metal.If the consumable electrode and the base metal are short-circuited, the welding current is reduced to a relatively low level. a first process of holding the welding current at a current value of , following this first process, holding the welding current at a second current value of a relatively high level; If a constriction occurs in the molten zone between the consumable electrode and the base metal during this process, a third process in which the welding current is reduced to a lower third current value, and this third process is followed by a consumable A fourth process in which the welding current is increased at the timing when an arc occurs between the electrode and the base metal and held at a relatively high fourth current value, and following this fourth process, the consumable electrode is and a fifth step of maintaining the welding current at a relatively low level fifth current value until the base metal and the welding current are short-circuited, and the first current value is lower than the fifth current value, A consumable electrode type arc welding method characterized by repeating the series of steps 1 to 5 above.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21728883A JPS60108179A (en) | 1983-11-17 | 1983-11-17 | Consumable electrode type arc welding method |
US06/596,686 US4546234A (en) | 1983-08-11 | 1984-04-04 | Output control of short circuit welding power source |
DE8484104601T DE3479303D1 (en) | 1983-08-11 | 1984-04-24 | Output control of short circuit welding power source |
EP84104601A EP0133448B1 (en) | 1983-08-11 | 1984-04-24 | Output control of short circuit welding power source |
US06/896,104 USRE33330E (en) | 1983-08-11 | 1986-08-13 | Output control of short circuit welding power source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21728883A JPS60108179A (en) | 1983-11-17 | 1983-11-17 | Consumable electrode type arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60108179A JPS60108179A (en) | 1985-06-13 |
JPH044074B2 true JPH044074B2 (en) | 1992-01-27 |
Family
ID=16701784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21728883A Granted JPS60108179A (en) | 1983-08-11 | 1983-11-17 | Consumable electrode type arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60108179A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013043213A (en) * | 2011-08-25 | 2013-03-04 | Daihen Corp | Welding device |
JP2013059793A (en) * | 2011-09-14 | 2013-04-04 | Daihen Corp | Welding equipment |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4875311B2 (en) | 2005-03-11 | 2012-02-15 | 株式会社ダイヘン | Current control method for constriction detection in consumable electrode arc welding |
US8373093B2 (en) * | 2008-06-27 | 2013-02-12 | Lincoln Global, Inc. | Method and system to increase heat input to a weld during a short-circuit arc welding process |
JP5801058B2 (en) | 2011-02-07 | 2015-10-28 | 株式会社ダイヘン | Welding apparatus and carbon dioxide arc welding method |
WO2015122144A1 (en) | 2014-02-14 | 2015-08-20 | パナソニックIpマネジメント株式会社 | Arc welding method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4944952A (en) * | 1972-09-05 | 1974-04-27 |
-
1983
- 1983-11-17 JP JP21728883A patent/JPS60108179A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4944952A (en) * | 1972-09-05 | 1974-04-27 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013043213A (en) * | 2011-08-25 | 2013-03-04 | Daihen Corp | Welding device |
JP2013059793A (en) * | 2011-09-14 | 2013-04-04 | Daihen Corp | Welding equipment |
Also Published As
Publication number | Publication date |
---|---|
JPS60108179A (en) | 1985-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0133448B1 (en) | Output control of short circuit welding power source | |
US8283598B2 (en) | Pulse welder and method utilizing a plasma boost | |
CA2695215C (en) | Method and device to clad, or hard-face for minimizing admixture | |
EP2464489B1 (en) | A method and apparatus for gmaw short circuit high deposition arc welding | |
JP4234105B2 (en) | Electric arc pulse welder with short circuit control | |
WO2017125989A1 (en) | Pulse arc welding control method and pulse arc welding device | |
JPH044074B2 (en) | ||
WO2017038060A1 (en) | Arc welding method and arc welding device | |
JP3300157B2 (en) | CO2 pulse arc welding method | |
JPH01299768A (en) | Consumable electrode type rectangular wave ac arc welding method | |
JPH01254385A (en) | Pulse welding equipment | |
JP3195513B2 (en) | Power control method of power supply for consumable electrode type gas shield pulse arc welding | |
JPS6064774A (en) | Method for controlling current of welding accompanying short-circuit transfer | |
JPH0231630B2 (en) | ||
JPH03281063A (en) | Method for controlling output of welding power source | |
JPH0570549B2 (en) | ||
JPH0160355B2 (en) | ||
JPS59202173A (en) | Controlling method of current for welding accompanying short circuit | |
JPH0377029B2 (en) | ||
JPH0751859A (en) | Method for welding galvanized steel sheet | |
SU1708559A1 (en) | Arc welding technique | |
JPS60106668A (en) | Method for controlling output of power source for welding | |
JPS60180669A (en) | Pulse arc welding method | |
JPH02290674A (en) | Mig and mag pulse arc welding method | |
JPS59199174A (en) | Controlling method of welding current accompanying short-circuit transfer |