JPH0439334A - Production of thermoplastic polyester resin composition reinforced with long fiber - Google Patents
Production of thermoplastic polyester resin composition reinforced with long fiberInfo
- Publication number
- JPH0439334A JPH0439334A JP2148349A JP14834990A JPH0439334A JP H0439334 A JPH0439334 A JP H0439334A JP 2148349 A JP2148349 A JP 2148349A JP 14834990 A JP14834990 A JP 14834990A JP H0439334 A JPH0439334 A JP H0439334A
- Authority
- JP
- Japan
- Prior art keywords
- polyester resin
- thermoplastic polyester
- resin
- impregnated
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 42
- 229920006230 thermoplastic polyester resin Polymers 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000835 fiber Substances 0.000 title description 39
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 23
- 229920001225 polyester resin Polymers 0.000 claims abstract description 20
- 239000004645 polyester resin Substances 0.000 claims abstract description 20
- -1 polyethylene terephthalate Polymers 0.000 claims abstract description 19
- 238000005470 impregnation Methods 0.000 claims abstract description 17
- 238000002844 melting Methods 0.000 claims abstract description 11
- 230000008018 melting Effects 0.000 claims abstract description 11
- 239000007790 solid phase Substances 0.000 claims abstract description 11
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 10
- 229920001707 polybutylene terephthalate Polymers 0.000 claims abstract description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 8
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 8
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 239000012298 atmosphere Substances 0.000 claims abstract description 5
- 229920001431 Long-fiber-reinforced thermoplastic Polymers 0.000 claims description 10
- 229920005989 resin Polymers 0.000 abstract description 31
- 239000011347 resin Substances 0.000 abstract description 31
- 230000000694 effects Effects 0.000 abstract description 7
- 239000011521 glass Substances 0.000 abstract description 4
- 238000001816 cooling Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000155 melt Substances 0.000 description 11
- 229920005992 thermoplastic resin Polymers 0.000 description 8
- 239000011342 resin composition Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000004744 fabric Substances 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 239000007787 solid Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 238000009736 wetting Methods 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001463 antimony compounds Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、長繊維で強化され機械的強度等の著しく向上
した熱可塑性ポリエステル樹脂組成物の製造法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a thermoplastic polyester resin composition reinforced with long fibers and having significantly improved mechanical strength and the like.
ポリエチレンテレフタレート、ポリブチレンテレフタ【
く−ト等の熱可塑性ポリエステル樹脂の強度、剛性等を
向上させるための手段として、ガラス繊維等の強化用繊
維を配合することが知られており、一般には、熱可塑性
ポリエステル樹脂にチョツプドストランド等の短繊維を
混合し押出機で押し出すことにより、繊維強化された熱
可塑性ポリエステル樹脂組成物の製造が行われている。Polyethylene terephthalate, polybutylene terephthalate [
It is known that reinforcing fibers such as glass fibers are added to thermoplastic polyester resins as a means of improving the strength, rigidity, etc. of thermoplastic polyester resins. A fiber-reinforced thermoplastic polyester resin composition is produced by mixing short fibers such as strands and extruding the mixture using an extruder.
しかしながら、使用する繊維が短く、しかも押出機での
混練中に繊維の折損が避けられない上記の如き方法では
、機械的強度等の改善にも自ずと限界があり、より高度
の機械的強度等の要求に対しては応えることはできなか
った。However, in the above method, where the fibers used are short and breakage of the fibers is unavoidable during kneading in the extruder, there is a limit to the improvement of mechanical strength, etc. It was not possible to meet the request.
これに対し、繊維の折損を起こすことなく長繊維で強化
された熱可塑性樹脂組成物を製造する方法として、近年
、引き抜き成形が注目されている。中でも、熱可塑性樹
脂の溶融物で強化用繊維束を含浸する溶融引き抜き成形
法は、操作が容易でしかも組成物中の繊維含有量の制御
も容易であるという特徴を有するため、特に注目されて
いる。In contrast, pultrusion molding has recently attracted attention as a method for producing a thermoplastic resin composition reinforced with long fibers without causing fiber breakage. Among these, the melt pultrusion method, in which reinforcing fiber bundles are impregnated with a melt of thermoplastic resin, is attracting particular attention because it is easy to operate and allows easy control of the fiber content in the composition. There is.
しかしながら、従来の溶融引き抜き成形法では、長繊維
で強化されているにもかかわらず、これにより得られる
強化樹脂組成物の強度等の物性は予期される程には向上
しないという問題があった。この原因は、通常用いられ
ている高分子量の熱可塑性樹脂は粘度が高いため繊維に
対する樹脂の濡れが不十分なためと推定される。However, in the conventional melt pultrusion molding method, there has been a problem in that the physical properties such as strength of the reinforced resin composition obtained by this method do not improve as much as expected, despite being reinforced with long fibers. The reason for this is presumed to be that commonly used high molecular weight thermoplastic resins have a high viscosity and therefore do not sufficiently wet the fibers with the resin.
その改善策として、分子量が小さく溶融粘度が極めて低
い樹脂を用いれば、繊維に対する樹脂による濡れは改善
されるが、マトリックス樹脂が低分子量であるため充分
な物性向上は期待できない、又、高分子量の熱可塑性樹
脂を用いた場合でも、これを高温に加熱することにより
樹脂の溶融粘度を下げて含浸すれば含浸の程度は向上す
るが、高温下での樹脂の熱分解等のため、これ又充分な
物性向上は期待できない。As an improvement measure, if a resin with a small molecular weight and extremely low melt viscosity is used, the wetting of the fiber by the resin will be improved, but since the matrix resin has a low molecular weight, sufficient improvement in physical properties cannot be expected. Even when thermoplastic resin is used, the degree of impregnation can be improved by heating it to a high temperature to lower the melt viscosity of the resin. No significant improvement in physical properties can be expected.
また、高温での溶融引き抜き成形法により得られる強化
樹脂組成物では、組成物中に含まれる分解ガス等のため
成形性を損ねたり、成形品の変色、外観不良等を引き起
こす場合が多い。In addition, in reinforced resin compositions obtained by melt pultrusion molding at high temperatures, decomposition gases and the like contained in the composition often impair moldability and cause discoloration and poor appearance of molded products.
このように、連続繊維を引きながら熱可塑性樹脂組成物
の溶融物を含浸させる溶融引き抜き成形法は、長繊維強
化熱可塑性樹脂組成物の製造法として、操作性等の点で
優れた特徴を有するにもかかわらず、得られる組成物の
物性および成形加工性の面で課題を有するものであり、
これは熱可塑性樹脂の1つである熱可塑性ポリエステル
樹脂の長繊維強化においても同様の課題であり、その改
善が切望されていた。As described above, the melt pultrusion method, in which continuous fibers are drawn and impregnated with a melt of a thermoplastic resin composition, has excellent characteristics in terms of operability, etc., as a method for producing long fiber-reinforced thermoplastic resin compositions. Nevertheless, there are problems with the physical properties and moldability of the resulting composition,
This is a similar problem in the long fiber reinforced thermoplastic polyester resin, which is one of the thermoplastic resins, and an improvement has been desired.
本発明者は、溶融引き抜き成形による長繊維強化熱可塑
性ポリエステル樹脂組成物の製造におけるかかる課題を
解決するため鋭意検討した結果、強化用繊維束に比較的
分子量が低く溶融粘度の低い熱可塑性ポリエステル樹脂
を用いて含浸した後、これを冷却固化し、固相状態で加
熱処理して固相重合することにより含浸工程での繊維の
濡れが充分に行われ、しかも、その後の固相重合により
マトリックス樹脂の分子量が増加するため機械的強度等
の十分に向上した組成物が得られることを見出し、本発
明に到達した。As a result of intensive studies to solve this problem in the production of long-fiber reinforced thermoplastic polyester resin compositions by melt pultrusion, the inventors of the present invention found that thermoplastic polyester resins with a relatively low molecular weight and low melt viscosity are used for reinforcing fiber bundles. After impregnating the fibers with the fibers, the fibers are cooled and solidified, and then heat treated in the solid state to perform solid phase polymerization, which ensures sufficient wetting of the fibers during the impregnation process. It has been discovered that a composition with sufficiently improved mechanical strength etc. can be obtained due to an increase in the molecular weight of the compound, and the present invention has been achieved based on this finding.
即ち、本発明は連続した強化用繊維束を引きながら溶融
熱可塑性ポリエステル樹脂を含浸させる長繊維強化熱可
塑性ポリエステル樹脂組成物の製造法において、強化用
繊維束に溶融熱可塑性ポリエステル樹脂を含浸させたの
ち、該含浸混合物を一旦冷却固化し、不活性ガス雰囲気
下または減圧下、該ポリエステル樹脂の融点下100℃
から融点までの温度で、更に加熱処理して固相重合させ
ることを特徴とする長繊維強化熱可塑性ポリエステル樹
脂組成物の製造法に関するものである。That is, the present invention provides a method for producing a long fiber reinforced thermoplastic polyester resin composition in which a continuous reinforcing fiber bundle is impregnated with a molten thermoplastic polyester resin while being drawn, and the reinforcing fiber bundle is impregnated with a molten thermoplastic polyester resin. Thereafter, the impregnated mixture is once cooled and solidified, and heated to 100° C. below the melting point of the polyester resin in an inert gas atmosphere or under reduced pressure.
The present invention relates to a method for producing a long fiber-reinforced thermoplastic polyester resin composition, which is characterized by further heat treatment and solid phase polymerization at a temperature from
本発明において利用できる繊維に対する樹脂の含浸法と
しては特に限定されるものではな(、溶融樹脂槽を通し
て連続繊維を引く方法、クロスヘツドを通して繊維束を
引きながら、溶融樹脂で含浸する方法、一対の無端ベル
トまたはローラーに挾んで繊維束を引きながら溶融樹脂
で含浸する方法等、従来公知の方法がいずれも可能であ
る。The method of impregnating fibers with resin that can be used in the present invention is not particularly limited (e.g., a method of drawing continuous fibers through a molten resin tank, a method of impregnating fiber bundles with molten resin while drawing a fiber bundle through a crosshead, a method of impregnating fibers with molten resin while drawing a fiber bundle through a crosshead, Any conventionally known method can be used, such as a method of impregnating the fiber bundle with molten resin while pulling the fiber bundle between belts or rollers.
例えばクロスへラドダイを用いて強化用繊維を引きなが
ら熱可塑性ポリエステル樹脂を含浸させたのち冷却固化
し、必要に応じてペレット状等に切断したのち、これを
固相状態で加熱処理して更に重合させることによって本
発明は実施される。For example, a cloth is impregnated with thermoplastic polyester resin while drawing reinforcing fibers using a rad die, cooled and solidified, cut into pellets as necessary, and then heated in a solid state to further polymerize. The present invention is carried out by doing so.
即ち本発明においては、まず、強化用連続繊維に溶融し
た熱可塑性ポリエステル樹脂が含浸される0例えば、連
続した強化用繊維束がクロスへラドダイの繊維供給口に
供給され、−力積供給口から熱可塑性ポリエステル樹脂
の溶融物が供給され、強化用連続繊維がクロスへラドダ
イを通過する間に該熱可塑性ポリエステル樹脂の溶融物
が含浸される。このように、含浸操作をクロスヘツドを
用いて行うことは、操作性に優れているため特に好まし
い含浸方法である。That is, in the present invention, first, a continuous reinforcing fiber bundle is impregnated with a molten thermoplastic polyester resin.For example, a continuous reinforcing fiber bundle is supplied to a fiber supply port of a rad die to a cloth, and then - from an impulse supply port. A melt of thermoplastic polyester resin is supplied, and the reinforcing continuous fibers are impregnated with the melt of thermoplastic polyester resin while passing through a rad die into the cloth. As described above, performing the impregnation operation using a crosshead is a particularly preferred impregnation method because of its excellent operability.
ここで用いられる強化用繊維の種類としては特に制約は
なく、例えば、ガラス繊維、炭素繊維、金属繊維、芳香
族ポリアミド繊維等の高融点(高軟化点)繊維等がいず
れも使用でき、また、その形態としては、ロービング、
ヤーン等の連続した繊維であればいずれも使用できる。There are no particular restrictions on the type of reinforcing fiber used here; for example, any high melting point (high softening point) fiber such as glass fiber, carbon fiber, metal fiber, aromatic polyamide fiber, etc. can be used, and Its forms include roving,
Any continuous fiber such as yarn can be used.
特に、取扱いが容易な点でロービング状のものが好まし
い、また、目的によっては、ロービングクロス等の如き
織物状のものも使用できる。In particular, a roving-like material is preferable because it is easy to handle, and depending on the purpose, a woven material such as a roving cloth can also be used.
本発明において上記の如き繊維は、2種以上を組み合せ
て使用することも可能である。また、これらの繊維は、
樹脂との接着性をよくするため、公知の表面処理剤で処
理したものであってもよい、かかる強化用繊維束は、熱
可塑性ポリエステル樹脂の溶融物を含浸させるに先立ち
、テンションロール等により開繊しておくのが好ましい
。In the present invention, the above-mentioned fibers can also be used in combination of two or more types. In addition, these fibers are
The reinforcing fiber bundle, which may be treated with a known surface treatment agent to improve adhesion to the resin, is opened using a tension roll or the like before being impregnated with the melted thermoplastic polyester resin. It is preferable to keep it thin.
次に、強化用繊維束に含浸させる熱可塑性ポリエステル
樹脂としては、ジカルボン酸化合物またはそのエステル
形成性誘導体とジヒドロキシ化合物またはそのエステル
形成性誘導体との重縮合、オキシカルボン酸化合物また
はそのエステル形成性誘導体の重縮合或いはこれら3成
分混合物の重縮合等によって得られるホモポリエステル
、コポリエステルがいずれも使用可能であり、単独で、
又は、2種以上を混合して使用される。これらの熱可塑
性ポリエステルは、20モル%以内であれば上記以外の
共重合可能な成分を共重合したものであってもよく、ま
た、架橋、グラフト重合等の公知の方法により変性した
ものであってもよいが、後工程での固相重合を効率的に
行うためには、結晶性熱可塑性ポリエステルが好ましく
、更に好ましくはポリエチレンテレフタレートを主体と
するものおよびポリブチレンテレフタレートを主体とす
るものであり、これらの熱可塑性ポリエステルを用いた
場合、効果が特に顕著である。また、含浸のため用いら
れる熱可塑性ポリエステル樹脂は、分子量が大きく固有
粘度の高いものでは、前記の如く繊維に対する樹脂の含
浸性が劣るため好ましくない、しかし分子量が著しく小
さく固有粘度の極めて低いものでは、含浸操作における
溶融樹脂の取扱いが難しく、更には含浸後これを固相状
態で反応させて分子量の増加をもたらすのに長時間を要
し、好ましくない。Next, as the thermoplastic polyester resin to be impregnated into the reinforcing fiber bundle, polycondensation of a dicarboxylic acid compound or its ester-forming derivative and a dihydroxy compound or its ester-forming derivative, an oxycarboxylic acid compound or its ester-forming derivative Both homopolyesters and copolyesters obtained by polycondensation of or a mixture of these three components can be used, and alone,
Or a mixture of two or more types is used. These thermoplastic polyesters may be copolymerized with other copolymerizable components within 20 mol%, or may be modified by known methods such as crosslinking and graft polymerization. However, in order to efficiently carry out solid phase polymerization in the subsequent step, crystalline thermoplastic polyesters are preferred, and those mainly composed of polyethylene terephthalate and polybutylene terephthalate are more preferred. The effect is particularly remarkable when these thermoplastic polyesters are used. In addition, thermoplastic polyester resins used for impregnation are undesirable if they have a large molecular weight and high intrinsic viscosity, as the impregnating properties of the resin to the fibers will be poor as described above. However, handling of the molten resin during the impregnation operation is difficult, and furthermore, it takes a long time to cause the resin to react in the solid state after impregnation to increase the molecular weight, which is not preferable.
従って、本発明において含浸のため用いる熱可塑性ポリ
エステル樹脂としては、固有粘度が0.2〜0.8ツも
のが好ましく、特に好ましくは0.3〜0.7である。Therefore, the thermoplastic polyester resin used for impregnation in the present invention preferably has an intrinsic viscosity of 0.2 to 0.8, particularly preferably 0.3 to 0.7.
かかる固有粘度は、通常、射出成形、押出成形等の成形
に用いられるポリエステル樹脂の固有粘度より低目のも
のであり、このように低い固有粘度のポリエステル樹脂
を用いて強化用繊維に含浸させることは、樹脂による濡
れを充分行う上で必要である。ここで固有粘度とは、ポ
リエチレンテレフタレートの場合はフェノール/テトラ
クロルエタン= 50150(重量比)溶媒中、ポリブ
チレンテレフタレートの場合は0−クロロフェノール溶
媒中、25℃で測定した値である。また、他の熱可塑性
ポリエステル樹脂も適当な溶媒中で同様に測定できる。Such an intrinsic viscosity is usually lower than the intrinsic viscosity of polyester resin used for molding such as injection molding and extrusion molding, and it is difficult to impregnate reinforcing fibers using a polyester resin having such a low intrinsic viscosity. is necessary for sufficient wetting by the resin. Here, the intrinsic viscosity is a value measured at 25°C in a phenol/tetrachloroethane=50150 (weight ratio) solvent for polyethylene terephthalate, and in an 0-chlorophenol solvent for polybutylene terephthalate. Further, other thermoplastic polyester resins can be similarly measured in a suitable solvent.
本発明は、上記のようにして強化用繊維束を引きながら
熱可塑性ポリエステル樹脂の溶融物を含浸させたのち、
該含浸混合物を一旦、冷却固化した後、不活性ガス雰囲
気下または減圧下、固相状態で加熱処理し更に重合させ
ることを特徴とする。−船釣には、含浸混合物は冷却・
固化に先立ち賦形ダイを通すことにより所望の形状、例
えばストランド状、テープ状、シート状、あるいは特殊
形状に賦形され、また、冷却・固化後、これを適当な大
きさに切断したものが固相での反応に供される0本発明
において、かかる固相重合反応は、用いられるポリエス
テル樹脂の融点下100 ’Cから該樹脂の融点までの
温度で行われる。好ましい加熱処理温度は樹脂の融点下
80℃から樹脂の融点下10℃までの温度であり、より
好ましくは樹脂の融点下60℃から樹脂の融点下20℃
までの温度である。加熱処理温度がこの範囲以下では本
発明の効果が充分に発現しないか又は効果が発現するの
に極端な長時間を要する。必要な加熱処理時間は加熱温
度および含浸に用いた熱可塑性ポリエステル樹脂の固有
粘度によって異なり、固相重合温度が高い程、短時間で
よいが、−船釣には概ね1時間以上が好ましく、より好
ましくは3時間以上である。In the present invention, after the reinforcing fiber bundle is impregnated with a melt of thermoplastic polyester resin while being drawn as described above,
The impregnation mixture is once cooled and solidified, and then heat-treated in a solid state under an inert gas atmosphere or under reduced pressure to further polymerize. - For boat fishing, the impregnated mixture should be cooled and
Prior to solidification, it is passed through a shaping die to form it into a desired shape, such as a strand, tape, sheet, or special shape, and after cooling and solidification, it is cut into an appropriate size. In the present invention, the solid-state polymerization reaction is carried out at a temperature from 100'C below the melting point of the polyester resin used to the melting point of the resin. The preferred heat treatment temperature is from 80°C below the melting point of the resin to 10°C below the melting point of the resin, more preferably from 60°C below the melting point of the resin to 20°C below the melting point of the resin.
The temperature is up to. If the heat treatment temperature is below this range, the effects of the present invention will not be fully expressed or it will take an extremely long time for the effects to be expressed. The required heat treatment time varies depending on the heating temperature and the intrinsic viscosity of the thermoplastic polyester resin used for impregnation, and the higher the solid state polymerization temperature, the shorter the time required. Preferably it is 3 hours or more.
また、固相反応を不活性ガス雰囲気下で行う場合、不活
性ガスとしては、窒素、ヘリウム等が好ましく、減圧下
で行う場合には圧力は10Torr以下であるのが好ま
しい。加熱処理の方法は、通常ポリエステルの固相重合
で採用されている方法に準じて行えばよく、バッチ式、
連続式あるいはこれらの併用等、いずれも可能である。Further, when the solid phase reaction is carried out under an inert gas atmosphere, nitrogen, helium, etc. are preferable as the inert gas, and when carried out under reduced pressure, the pressure is preferably 10 Torr or less. The heat treatment method can be carried out in accordance with the method normally adopted for solid phase polymerization of polyester, and can be carried out by batch method,
Either a continuous type or a combination of these is possible.
かかる固相重合を行った後の本発明の繊維強化熱可塑性
ポリエステル樹脂組成物において、熱可塑性ポリエステ
ル樹脂は、含浸に用いた熱可塑性ポリエステル樹脂より
固有粘度が少なくとも0.05以上上昇し、加熱処理後
の固有粘度の絶対値としてはその目的、用途等により異
なるが一般に機械的物性等の点で0.7以上であるのが
好ましい、これらの条件を満足する場合には、特に、繊
維に対する樹脂の含浸性が良く、また、最終的に得られ
る樹脂の分子量が充分向上しているため優れた物性を有
する組成物が得られる。In the fiber-reinforced thermoplastic polyester resin composition of the present invention after such solid phase polymerization, the thermoplastic polyester resin has an intrinsic viscosity that is at least 0.05 higher than the thermoplastic polyester resin used for impregnation, and the heat treatment The absolute value of the intrinsic viscosity will vary depending on the purpose, use, etc., but is generally preferably 0.7 or more in terms of mechanical properties, etc. If these conditions are satisfied, the resin Since the impregnating properties of the resin are good and the molecular weight of the resin finally obtained is sufficiently improved, a composition having excellent physical properties can be obtained.
本発明において、上記の如き固相での反応を促進するた
めには触媒が存在しているのが好ましく、触媒としては
、例えば、チタン化合物、スズ化合物、アンチモン化合
物、亜鉛化合物、鉛化合物等が挙げられる。これらの触
媒は、含浸に用いられる熱可塑性ポリエステルの製造段
階で加えられたものであってもよく、含浸時に加えても
よい。In the present invention, a catalyst is preferably present in order to promote the reaction in the solid phase as described above, and examples of the catalyst include titanium compounds, tin compounds, antimony compounds, zinc compounds, lead compounds, etc. Can be mentioned. These catalysts may be added at the production stage of the thermoplastic polyester used for impregnation, or may be added at the time of impregnation.
本発明は、上記の如く、長繊維強化樹脂組成物の製造法
に特徴を有するものであり、その組成、例えば、強化用
繊維の含有量については特に制約はないが、得られる組
成物の諸物性の面から、強化用繊維の配合量としては2
0〜80重量%(組成物中)が好ましく、特に好ましい
のは30〜70重量%(組成物中)である、高濃度の強
化用繊維を配合する場合には、特に繊維とポリエステル
樹脂の濡れが不充分になり昌いが、本発明の方法は、こ
のような高濃度の繊維の配合における繊維と樹脂の密着
性改善に対し特に有効であり、その結果、優れた機械的
強度等を有する組成物が得られる。As described above, the present invention is characterized by a method for producing a long fiber-reinforced resin composition, and although there are no particular restrictions on the composition, for example, the content of reinforcing fibers, various aspects of the resulting composition In terms of physical properties, the amount of reinforcing fiber added is 2.
When blending a high concentration of reinforcing fibers, preferably 0 to 80% by weight (in the composition), particularly preferably 30 to 70% by weight (in the composition), wetting of the fibers and polyester resin is particularly important. However, the method of the present invention is particularly effective for improving the adhesion between fibers and resin in such high-concentration fiber formulations, and as a result, it has excellent mechanical strength etc. A composition is obtained.
また、本発明によって得られる樹脂組成物には、その目
的、効果を大きく阻害しない範囲で、熱可塑性ポリエス
テル以外に他の熱可塑性樹脂の1種または2種以上を補
助的に少量併用することも可能である。また、目的、用
途に応じて、一般に熱可塑性樹脂に添加される各種の物
質、例えば酸化防止剤、耐熱安定剤、紫外線吸収側等の
安定剤、帯電防止剤、潤滑剤、可塑剤、離型剤、難燃剤
、難燃助剤、結晶化促進剤、染料や顔料等の着色剤等を
配合したり、ガラスフレーク、マイカ、ガラス粉、ガラ
スピーズ、タルク、クレー、アルミナ、カーボンブラッ
ク、ウオラストナイト等の板状、粉粒状の無機化合物、
ウィスカー等を併用することも可能である。これらの添
加物は、含浸に用いられる熱可塑性ポリエステル樹脂に
予め配合された形で加えられても良い。In addition, in the resin composition obtained by the present invention, one or more thermoplastic resins other than the thermoplastic polyester may be used in small amounts as an auxiliary combination within a range that does not significantly impede the purpose and effects. It is possible. In addition, depending on the purpose and use, various substances that are generally added to thermoplastic resins, such as antioxidants, heat stabilizers, stabilizers for ultraviolet absorption side, antistatic agents, lubricants, plasticizers, mold release agents, etc. additives, flame retardants, flame retardant aids, crystallization accelerators, coloring agents such as dyes and pigments, etc. are blended, glass flakes, mica, glass powder, glass peas, talc, clay, alumina, carbon black, wolast. Plate-like, powder-like inorganic compounds such as night,
It is also possible to use whiskers and the like. These additives may be added in pre-blended form to the thermoplastic polyester resin used for impregnation.
以下、実施例により本発明をさらに具体的に説明するが
、本発明はこれに限定されるものではない。EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.
実施例1および比較例1〜2
溶融樹脂を供給するための押出機を備えたクロスへラド
ダイを用い、ガラス繊維のロービングをクロスへラドダ
イの繊維供給口から供給し、クロスヘツドを通して連続
的に引きながら、押自機よりポリブチレンテレフタレー
ト(固有粘度0.50)の溶融物をクロスへラドダイに
供給して250℃で含浸させた後、ノズル径3鵡の賦形
ダイで賦形してストランドとして引取り、切断し、ガラ
ス繊維含有量40重量%(組成物中)で長さ12mのベ
レット状組成物を得た8次にこのペレットを、窒素気流
下、200″Cで10時間加熱処理した。加熱処理した
後の組成物において、ポリブチレンテレフタレートは固
有粘度0.75であった。Example 1 and Comparative Examples 1 to 2 Using a Rad die equipped with an extruder for supplying molten resin, glass fiber rovings were supplied to the cloth from the fiber supply port of the Rad die, and were continuously drawn through the cross head. A molten material of polybutylene terephthalate (intrinsic viscosity 0.50) was supplied from a pressing machine to a RAD die to impregnate the cloth at 250°C, and then it was shaped with a shaping die with a nozzle diameter of 3 mm and drawn as a strand. The pellets were taken and cut to obtain a pellet-like composition having a length of 12 m and having a glass fiber content of 40% by weight (in the composition).Next, the pellets were heat-treated at 200''C for 10 hours under a nitrogen stream. In the composition after heat treatment, polybutylene terephthalate had an intrinsic viscosity of 0.75.
一方、上記方法において加熱処理を行わなかったものを
比較例1とした。また、比較例2として、予め固有粘度
0.75に調製されたポリブチレンテレフタレートの熔
融物を用いて含浸して、ベレット状組成物を調製し、ベ
レットの加熱処理は行わなかったものを用意した。On the other hand, Comparative Example 1 was obtained in which no heat treatment was performed in the above method. In addition, as Comparative Example 2, a pellet-like composition was prepared by impregnation with a polybutylene terephthalate melt prepared in advance to have an intrinsic viscosity of 0.75, but the pellet was not heat-treated. .
これらのベレット状組成物を用いて試験片を射出成形し
、下記の測定法で評価した。Test pieces were injection molded using these pellet-like compositions, and evaluated by the following measurement method.
引張強度:^STM ll−638に準拠曲げ強度:
ASTM D−790に準拠衝撃強度: ASTM D
−256に準拠し、ノツチ付きアイゾツト衝撃強度を測
定(試験
片の厚さ6.3閣)
また、繊維と樹脂の界面における密着性の評価のため、
ストランドを特にl0CIIの長さに切断したサンプル
を各々10本作成しく実施例1では上記と同様の加熱処
理を行い)1.その一端をインクに浸し垂直に立てた状
態で10分分間−た時のインク上昇高さを測定すると共
に、インクに浸したストランド端面におけるインクの分
散状況の顕微鏡観察を行った。Tensile strength: Based on STM ll-638 Bending strength:
Impact strength according to ASTM D-790: ASTM D
-256, measured the notched izot impact strength (test piece thickness: 6.3 mm) In addition, to evaluate the adhesion at the interface between fiber and resin,
In Example 1, 10 samples were prepared by cutting the strands to a length of 10 CII, and the heat treatment was performed in the same manner as described above.)1. One end of the strand was immersed in ink and stood vertically for 10 minutes, and the height of ink rise was measured, and the state of ink dispersion on the end surface of the strand dipped in ink was observed using a microscope.
結果を第1表に示す。The results are shown in Table 1.
実施例2および比較例3〜4
熱可塑性ポリエステル樹脂としてポリエチレンテレフタ
レート(固有粘度0.55)の溶融物(260℃)を用
い、実施例1と同様にしてベレット状組成物を調製した
後、窒素気流下、210℃で12時間加熱処理した。こ
れにより得られた組成物において、ポリエチレンテレフ
タレートの固有粘度は0.80であった。Example 2 and Comparative Examples 3 to 4 A pellet-like composition was prepared in the same manner as in Example 1 using a melt (260°C) of polyethylene terephthalate (intrinsic viscosity 0.55) as a thermoplastic polyester resin, and then nitrogen Heat treatment was performed at 210° C. for 12 hours under air flow. In the composition thus obtained, the intrinsic viscosity of polyethylene terephthalate was 0.80.
一方、上記方法において加熱処理を行わなかったものを
比較例3とした。また、固有粘度0.80のポリエチレ
ンテレフタレートの溶融物で含浸し、固相での加熱処理
を行わなかったものを比較例4とした。これらの評価結
果を第2表に示す。On the other hand, Comparative Example 3 was obtained in which no heat treatment was performed in the above method. Further, Comparative Example 4 was prepared by impregnating with a melt of polyethylene terephthalate having an intrinsic viscosity of 0.80 and not subjecting it to solid phase heat treatment. These evaluation results are shown in Table 2.
以上の説明並びに実施例により明らかなように、連続し
た強化用繊維束を引きながら溶融熱可塑性ポリエステル
樹脂を含浸させる長繊維強化熱可塑性ポリエステル樹脂
組成物の製造方法において、強化用繊維束に熱可塑性ポ
リエステル樹脂の溶融物を含浸させたのち、該含浸混合
物を一旦、冷却固化し、固相状態で更に加熱処理して重
合させる本発明の方法によれば、繊維に対する樹脂の含
浸性、濡れが著しく改善され、しかも、マトリックスと
なるポリエステル樹脂は充分に高い分子量を有するため
、高度の引張強度、曲げ強度、衝撃強度等の機械的性質
を有し、工業的利用価値の高いものである。As is clear from the above explanation and examples, in the method for producing a long fiber reinforced thermoplastic polyester resin composition in which continuous reinforcing fiber bundles are impregnated with molten thermoplastic polyester resin while being drawn, thermoplastic polyester resin is added to the reinforcing fiber bundles. According to the method of the present invention, in which the impregnated mixture is impregnated with a melt of polyester resin, the impregnated mixture is once cooled and solidified, and further heat-treated and polymerized in the solid phase state, the impregnating property and wetting of the resin to the fibers are significantly improved. Moreover, since the polyester resin serving as the matrix has a sufficiently high molecular weight, it has high mechanical properties such as tensile strength, bending strength, and impact strength, and has high industrial utility value.
Claims (1)
リエステル樹脂を含浸させる長繊維強化熱可塑性ポリエ
ステル樹脂組成物の製造法において、強化用繊維束に溶
融熱可塑性ポリエステル樹脂を含浸させたのち、該含浸
混合物を一旦冷却固化し、不活性ガス雰囲気下または減
圧下、該ポリエステル樹脂の融点下100℃から融点ま
での温度で、更に加熱処理して固相重合させることを特
徴とする長繊維強化熱可塑性ポリエステル樹脂組成物の
製造法。 2 熱可塑性ポリエステル樹脂が、ポリエチレンテレフ
タレートまたはポリブチレンテレフタレートを主体とす
るものである請求項1記載の長繊維強化熱可塑性ポリエ
ステル樹脂組成物の製造法。 3 含浸に用いる熱可塑性ポリエステル樹脂が、固有粘
度0.2〜0.8のものである請求項1または2記載の
長繊維強化熱可塑性ポリエステル樹脂組成物の製造法。[Scope of Claims] 1. A method for producing a long fiber-reinforced thermoplastic polyester resin composition in which a continuous reinforcing fiber bundle is impregnated with a molten thermoplastic polyester resin while being drawn, wherein the reinforcing fiber bundle is impregnated with a molten thermoplastic polyester resin. After that, the impregnated mixture is once cooled and solidified, and further heat-treated at a temperature from 100° C. below the melting point of the polyester resin to the melting point of the polyester resin for solid phase polymerization in an inert gas atmosphere or under reduced pressure. A method for producing a long fiber reinforced thermoplastic polyester resin composition. 2. The method for producing a long fiber reinforced thermoplastic polyester resin composition according to claim 1, wherein the thermoplastic polyester resin is mainly composed of polyethylene terephthalate or polybutylene terephthalate. 3. The method for producing a long fiber reinforced thermoplastic polyester resin composition according to claim 1 or 2, wherein the thermoplastic polyester resin used for impregnation has an intrinsic viscosity of 0.2 to 0.8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2148349A JPH0439334A (en) | 1990-06-06 | 1990-06-06 | Production of thermoplastic polyester resin composition reinforced with long fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2148349A JPH0439334A (en) | 1990-06-06 | 1990-06-06 | Production of thermoplastic polyester resin composition reinforced with long fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0439334A true JPH0439334A (en) | 1992-02-10 |
Family
ID=15450777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2148349A Pending JPH0439334A (en) | 1990-06-06 | 1990-06-06 | Production of thermoplastic polyester resin composition reinforced with long fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0439334A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994007668A1 (en) * | 1992-10-05 | 1994-04-14 | Polyplastics Co., Ltd. | Structure of fiber-reinforced thermoplastic resin and method of manufacturing the same |
WO1994007669A1 (en) * | 1992-10-05 | 1994-04-14 | Polyplastics Co., Ltd. | Structure of fiber-reinforced thermoplastic resin and method of manufacturing the same |
JP2005239926A (en) * | 2004-02-27 | 2005-09-08 | Toyo Ink Mfg Co Ltd | Thermoplastic resin containing filler and its use |
WO2009072424A1 (en) * | 2007-12-06 | 2009-06-11 | Ube-Nitto Kasei Co., Ltd. | Fiber-reinforced synthetic-fiber-made wire-like material, gabion basket mat for civil engineering works and corf made by using the material, and process for production of fiber reinforced synthetic-fiber-made wire-like material |
WO2015046290A1 (en) * | 2013-09-26 | 2015-04-02 | 東レ株式会社 | Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article |
-
1990
- 1990-06-06 JP JP2148349A patent/JPH0439334A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994007668A1 (en) * | 1992-10-05 | 1994-04-14 | Polyplastics Co., Ltd. | Structure of fiber-reinforced thermoplastic resin and method of manufacturing the same |
WO1994007669A1 (en) * | 1992-10-05 | 1994-04-14 | Polyplastics Co., Ltd. | Structure of fiber-reinforced thermoplastic resin and method of manufacturing the same |
JP2005239926A (en) * | 2004-02-27 | 2005-09-08 | Toyo Ink Mfg Co Ltd | Thermoplastic resin containing filler and its use |
WO2009072424A1 (en) * | 2007-12-06 | 2009-06-11 | Ube-Nitto Kasei Co., Ltd. | Fiber-reinforced synthetic-fiber-made wire-like material, gabion basket mat for civil engineering works and corf made by using the material, and process for production of fiber reinforced synthetic-fiber-made wire-like material |
JP2009138299A (en) * | 2007-12-06 | 2009-06-25 | Ube Nitto Kasei Co Ltd | Fiber-reinforced synthetic-fiber-made wire-like material, gabion basket mat for civil engineering work using the same, corf and method for producing fiber-reinforced synthetic-fiber-made wire-like material |
WO2015046290A1 (en) * | 2013-09-26 | 2015-04-02 | 東レ株式会社 | Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0102158B1 (en) | Method of producing fibre-reinforced composition | |
US4713283A (en) | Reinforced composite structures | |
JP3073988B1 (en) | Manufacturing method of organic fiber reinforced resin pellets | |
JP3343381B2 (en) | Molded product made of long fiber reinforced polyolefin resin structure | |
US5227238A (en) | Carbon fiber chopped strands and method of production thereof | |
JP2983569B2 (en) | Method for producing long fiber reinforced thermoplastic polyester resin and molded article made of the resin | |
EP0156488B1 (en) | Process for making reinforced fibre products | |
DE69309442T2 (en) | MOLDS BASED ON POLY (1,4-CYCLOHEXANE DIMETHYLENE TEREPHTALATE) CONTAINING A HIGH MOLECULAR ALIPHATIC POLYESTER | |
JPH0583044B2 (en) | ||
JPH0439334A (en) | Production of thermoplastic polyester resin composition reinforced with long fiber | |
JPH01198635A (en) | Highly thermostable polyarylene thioether ketone prepreg and molded product thereof | |
CN115109407A (en) | Fiber reinforced nylon composite material and preparation method thereof | |
JP5118094B2 (en) | Fiber-reinforced resin composition and molded body comprising the same | |
US5641572A (en) | Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition | |
JPH0365311A (en) | Carbon fiber chop | |
JP3040865B2 (en) | Long fiber reinforced thermoplastic resin pellets | |
JP3352121B2 (en) | Long fiber reinforced polyamide resin composition and molded article thereof | |
US5834560A (en) | Liquid crystalline polymer-reinforced thermoplastic fibers | |
JP3303074B2 (en) | Molded article of long fiber reinforced polyamide resin composition | |
JPH031907A (en) | Production of fiber reinforced composite material | |
JPH03230943A (en) | Production of long-fiber reinforced thermoplastic resin composition and producing equipment therefor | |
JPS5920339A (en) | Production of master pellet of glass fiber-reinforced polyester resin | |
JP2564559B2 (en) | Aromatic polysulfone resin composition | |
JPH07310287A (en) | Production of fiber-reinforced thermoplastic resin | |
JPH0427507A (en) | Manufacture of long-fiber-reinforced thermoplastic resin composition |