JPH043978A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH043978A JPH043978A JP10605190A JP10605190A JPH043978A JP H043978 A JPH043978 A JP H043978A JP 10605190 A JP10605190 A JP 10605190A JP 10605190 A JP10605190 A JP 10605190A JP H043978 A JPH043978 A JP H043978A
- Authority
- JP
- Japan
- Prior art keywords
- film
- silicon film
- polysilicon
- polycrystalline silicon
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 32
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 10
- 229910021332 silicide Inorganic materials 0.000 claims abstract description 10
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 238000000059 patterning Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000007790 solid phase Substances 0.000 claims description 5
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 229920005591 polysilicon Polymers 0.000 abstract description 5
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 2
- 239000000463 material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- -1 arsenic ions Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
本発明は、半導体装置の製造過程における。ゲート材料
の成長方法に関し。DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a manufacturing process of a semiconductor device. Regarding the growth method of gate materials.
ゲートポリサイド電極を薄膜化しても、ゲート酸化膜耐
圧が劣化しない方法を得ることを目的とし。The purpose of this study is to obtain a method in which the gate oxide film breakdown voltage does not deteriorate even when the gate polycide electrode is made thinner.
半導体基板上に非晶質シリコン膜を形成する工程と、該
非晶質シリコン膜を熱処理により固相成長させての多結
晶シリコン膜に変換する工程と。A step of forming an amorphous silicon film on a semiconductor substrate, and a step of converting the amorphous silicon film into a polycrystalline silicon film by solid phase growth through heat treatment.
該多結晶シリコン膜上に金属シリサイド膜を積層する工
程と、該金属シリサイド膜及び該多結晶シリコン膜をパ
タニングして、ゲート電極とする工程とを含むように構
成する。The method is configured to include a step of stacking a metal silicide film on the polycrystalline silicon film, and a step of patterning the metal silicide film and the polycrystalline silicon film to form a gate electrode.
本発明は、半導体装置の製造過程における。ゲート材料
の成長方法に関する。The present invention relates to a manufacturing process of a semiconductor device. Relating to a method for growing gate materials.
近年のLSI半導体装置は高集積化に伴い、ゲート材料
の薄膜化が要求されている。As recent LSI semiconductor devices become more highly integrated, gate materials are required to be made thinner.
このため、ゲート材料として用いられている多結晶シリ
コン(ポリSi)と金属シリサイドからなるポリサイド
を薄<シようとしているが9ゲート酸化膜の耐圧が劣化
しないような方法を開発する必要がある。For this reason, it is necessary to develop a method that does not deteriorate the withstand voltage of the 9-gate oxide film, although attempts are being made to thin the polycide made of polycrystalline silicon (poly-Si) and metal silicide used as the gate material.
従来のLSI半導体装置の製造方法においては。 In a conventional method of manufacturing an LSI semiconductor device.
ゲート電極としてのポリサイドの下層ポリSi膜には、
減圧CVD法により、 600〜700°Cでシラン(
SiHi)の熱分解により、成膜したものを用いていた
。The lower polySi film of polycide as a gate electrode has
Silane (
A film formed by thermal decomposition of SiHi) was used.
ところが、このポリSi膜を600Å以下に薄膜化して
いくと、ゲート酸化膜の耐圧が劣化してしまうという問
題を生じていた。However, when this poly-Si film is made thinner to 600 Å or less, a problem arises in that the withstand voltage of the gate oxide film deteriorates.
本発明は、ゲートポリサイド電極を薄膜化しても、ゲー
ト酸化膜耐圧が劣化しない材料、或いは方法を得ること
を目的として提供されるものである。The present invention is provided for the purpose of obtaining a material or a method in which the gate oxide film breakdown voltage does not deteriorate even when the gate polycide electrode is made thin.
第1図は本発明の原理説明図、第2図はポリサイドゲー
ト電極下層ポリSi膜厚と耐圧良品率の関係を示す図で
ある。FIG. 1 is a diagram explaining the principle of the present invention, and FIG. 2 is a diagram showing the relationship between the polycide gate electrode lower layer poly-Si film thickness and the breakdown voltage non-defective product rate.
図において、1は半導体基板、2はフィールド酸化膜、
3はゲート酸化膜、4は非晶質シリコン膜、5は多結晶
シリコン膜、6は金属シリサイド膜である。In the figure, 1 is a semiconductor substrate, 2 is a field oxide film,
3 is a gate oxide film, 4 is an amorphous silicon film, 5 is a polycrystalline silicon film, and 6 is a metal silicide film.
本発明は、ゲートポリサイドの下層ポリSiに固相成長
したポリSiを使用する。The present invention uses poly-Si grown in solid phase as the lower poly-Si layer of the gate polyside.
即ち3本発明の目的は、第1図(a)に示すように、半
導体基板1上に非晶質シリコン膜4を形成する工程と。That is, the third object of the present invention is to provide a process for forming an amorphous silicon film 4 on a semiconductor substrate 1, as shown in FIG. 1(a).
第1図(b)に示すように、該非晶質シリコン膜4を熱
処理により固相成長させて、多結晶シリコン膜5に変換
する工程と。As shown in FIG. 1(b), the amorphous silicon film 4 is grown in a solid phase by heat treatment to convert it into a polycrystalline silicon film 5.
第1図(C)に示すように、該多結晶シリコン膜5上に
金属シリサイド膜6を積層する工程と。As shown in FIG. 1(C), a step of laminating a metal silicide film 6 on the polycrystalline silicon film 5.
第1図(d)に示すように、該金属シリサイド膜6及び
該多結晶シリコン膜5をパタニングしてゲート電極とす
る工程とを含むことにより達成される。As shown in FIG. 1(d), this is achieved by including the step of patterning the metal silicide film 6 and the polycrystalline silicon film 5 to form a gate electrode.
〔作用]
本発明では、第2図に、ポリサイドゲート電極の下層ポ
リSi膜の厚さに対して+ 8 MV/cm以上の耐
圧を有するものを良品としたときの良品率の割合を示す
ように、従来のポリSi膜がCVDによる比較的高温の
気相成長から成膜するため、良品率が500Å以下の膜
厚では低下するのに対して、比較的低温からアモルファ
スStの固相成長から成膜するために、ポリSi膜の密
度が高く、緻密な結晶格子を構成しているために、25
0人と薄膜化しても、 8 MV/cs+以上の耐圧
があり、耐圧の劣化が生じない利点がある。[Function] In the present invention, Fig. 2 shows the percentage of non-defective products when non-defective products have a breakdown voltage of +8 MV/cm or more with respect to the thickness of the lower poly-Si film of the polycide gate electrode. As conventional poly-Si films are formed by CVD using vapor phase growth at a relatively high temperature, the yield rate decreases for film thicknesses of 500 Å or less, whereas solid phase growth of amorphous St from a relatively low temperature Since the poly-Si film has a high density and forms a dense crystal lattice,
Even if the film is made as thin as 0 people, it has a withstand voltage of 8 MV/cs+ or more, and has the advantage that no deterioration of the withstand voltage occurs.
第3図は本発明の一実施例の工程順模式断面図である。 FIG. 3 is a schematic cross-sectional view of an embodiment of the present invention in the order of steps.
図において、8はフィールド5iOz膜、9はゲート5
iOz膜、10はアモルファスSi膜、11はポリSi
膜。In the figure, 8 is the field 5iOz film, 9 is the gate 5
iOz film, 10 is amorphous Si film, 11 is poly-Si
film.
12はWSiz膜、13はポリサイドゲート電極、14
はソース・ドレイン拡散層、15はカバー酸化膜、16
はへ!電極である。12 is a WSiz film, 13 is a polycide gate electrode, 14
15 is the source/drain diffusion layer, 15 is the cover oxide film, and 16 is the source/drain diffusion layer.
Hahe! It is an electrode.
第3図(a)に示すように、p型のSi基板7上に1図
示しない窒化シリコン(SiJ4)膜をマスクとして9
選択分離酸化(LOGO5)法によりフィールド5iO
z膜8を6,000人の厚さに形成し、続いてゲート5
iOz膜9を塩酸酸化により、200人の厚さに形成す
る。As shown in FIG. 3(a), a silicon nitride (SiJ4) film (not shown) is placed on a p-type Si substrate 7 as a mask.
Field 5iO by selective isolation oxidation (LOGO5) method
z film 8 is formed to a thickness of 6,000 nm, followed by gate 5.
An iOz film 9 is formed to a thickness of 200 mm by oxidation with hydrochloric acid.
第3図(b)に示すように、減圧CVD法により。As shown in FIG. 3(b), by low pressure CVD method.
シラン系ガスの低温熱分解により、550″Cで・μm
の厚さに非晶質(アモルファス)Si膜10を成長する
。・μm at 550″C by low-temperature pyrolysis of silane gas
An amorphous Si film 10 is grown to a thickness of .
第3図(c)に示すように、窒素(N2)ガス雰囲気中
、600°Cで180分間の熱処理を行い、アモルファ
スSi膜10をポリSi膜11に変換する。As shown in FIG. 3(c), heat treatment is performed at 600° C. for 180 minutes in a nitrogen (N2) gas atmosphere to convert the amorphous Si film 10 into a poly-Si film 11.
第3図(d)に示すように、 CVD法により、タング
ステンシリサイド(WSiz)膜12を2,000人の
厚さに、ポリSi膜11上に積層する。As shown in FIG. 3(d), a tungsten silicide (WSiz) film 12 is laminated to a thickness of 2,000 wafers on the poly-Si film 11 by the CVD method.
第3図(e)に示すように、レジストを用いてWSi2
膜12及びポリSi膜11をパターニングして、ポリサ
イドゲート電極13に形成する。As shown in FIG. 3(e), WSi2
The film 12 and poly-Si film 11 are patterned to form a polycide gate electrode 13.
第3図(f)に示すように、ポリサイトゲ−1・電極1
3をマスクとして、イオン注入法により、砒素イオン(
As ” )を加速電圧50 KeV、 ドーズ量4
xlO” /am”の条件で注入し、ソース・ドレイン
拡散層14を形成する。As shown in Figure 3(f), polycytoge 1/electrode 1
3 as a mask, arsenic ions (
As'') at an accelerating voltage of 50 KeV and a dose of 4
The source/drain diffusion layer 14 is formed by implantation under the condition of xlO''/am''.
その後、第3図(g)に示すように2通常の工程により
、カバー酸化膜15等を被覆し、ソース・ドレイン用の
へ!電極16等を形成して、素子を完成する。Thereafter, as shown in FIG. 3(g), a cover oxide film 15, etc. is coated by a normal step 2, and the film for the source and drain is covered. Electrodes 16 and the like are formed to complete the device.
C発明の効果〕
以上説明したように5本発明によれば、ポリサイド下層
のポリSi膜を非結晶シリコンの熱処理により形成する
ので、ポリSi膜の耐圧が高くなり。C. Effects of the Invention] As explained above, according to the present invention, the polySi film underlying the polycide layer is formed by heat treatment of amorphous silicon, so that the withstand voltage of the polySi film is increased.
素子の信軌性の向上にも寄与するところが大きい。It also greatly contributes to improving the reliability of the device.
第3図は本発明の一実施例の工程順模式断面図である。FIG. 3 is a schematic cross-sectional view of an embodiment of the present invention in the order of steps.
図において。In fig.
1は半導体基板、 2はフィールド酸化膜。1 is a semiconductor substrate, 2 is a field oxide film.
3はゲート酸化膜、 4は非晶質シリコン膜5は多結
晶シリコン膜。3 is a gate oxide film, 4 is an amorphous silicon film, and 5 is a polycrystalline silicon film.
6は金属シリサイド膜。6 is a metal silicide film.
7はSi基板、 8はフィールドSiO□膜。7 is a Si substrate, 8 is a field SiO□ film.
9はゲート5in2膜、10はアモルファスSi膜。9 is a gate 5in2 film, and 10 is an amorphous Si film.
11はポリSi膜、12は一5i2膜 13はポリサイドゲート電極。11 is a poly-Si film, 12 is a -5i2 film 13 is a polycide gate electrode.
14はソース・ドレイン拡散層。14 is a source/drain diffusion layer.
15はカバー酸化膜、16はl電極15 is a cover oxide film, 16 is an l electrode
第1図は本発明の原理説明図。
第2図はポリサイドゲート電極下層ポリSi膜厚と耐圧
良品率の関係を示す図。
招(図
250 500 ’750 +000ポリサ
イド′γ−ト辱楠(L層ポリシリ]ン岸り早Cバ)第2
図
本定明の一夫斧f′1の工程)頃模式断面図画 3 図FIG. 1 is a diagram explaining the principle of the present invention. FIG. 2 is a diagram showing the relationship between the polycide gate electrode lower layer poly-Si film thickness and the breakdown voltage good product rate. Invitation (Fig. 250 500 '750 +000 Polycide'γ-to Kusunoki (L-layer polysilicon) Kishirihaya C-ba) 2nd
Figure 3 Schematic cross-sectional drawing of Sadaaki Kazuo's ax f'1
Claims (1)
する工程と、 該非晶質シリコン膜(4)を熱処理により固相成長させ
ての多結晶シリコン膜(5)に変換する工程と、該多結
晶シリコン膜(5)上に金属シリサイド膜(6)を積層
する工程と、 該金属シリサイド膜及び該多結晶シリコン膜(4)をパ
タニングして、ゲート電極とする工程とを含むことを特
徴とする半導体装置の製造方法。[Claims] A step of forming an amorphous silicon film (4) on a semiconductor substrate (1), and growing a polycrystalline silicon film (5) by growing the amorphous silicon film (4) in a solid phase by heat treatment. ), a step of stacking a metal silicide film (6) on the polycrystalline silicon film (5), and a step of patterning the metal silicide film and the polycrystalline silicon film (4) to form a gate electrode. A method for manufacturing a semiconductor device, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10605190A JPH043978A (en) | 1990-04-20 | 1990-04-20 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10605190A JPH043978A (en) | 1990-04-20 | 1990-04-20 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH043978A true JPH043978A (en) | 1992-01-08 |
Family
ID=14423829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10605190A Pending JPH043978A (en) | 1990-04-20 | 1990-04-20 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH043978A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06326304A (en) * | 1993-05-13 | 1994-11-25 | Nec Corp | Manufacture of semiconductor device |
US5422311A (en) * | 1993-05-03 | 1995-06-06 | Hyundai Electronics Industries Co., Ltd. | Method for manufacturing a conductor layer in a semiconductor device |
US5932919A (en) * | 1993-12-07 | 1999-08-03 | Siemens Aktiengesellschaft | MOSFETs with improved short channel effects |
-
1990
- 1990-04-20 JP JP10605190A patent/JPH043978A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5422311A (en) * | 1993-05-03 | 1995-06-06 | Hyundai Electronics Industries Co., Ltd. | Method for manufacturing a conductor layer in a semiconductor device |
JPH06326304A (en) * | 1993-05-13 | 1994-11-25 | Nec Corp | Manufacture of semiconductor device |
JPH0810765B2 (en) * | 1993-05-13 | 1996-01-31 | 日本電気株式会社 | Method for manufacturing semiconductor device |
US5932919A (en) * | 1993-12-07 | 1999-08-03 | Siemens Aktiengesellschaft | MOSFETs with improved short channel effects |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61134055A (en) | Manufacture of semiconductor device | |
JPH0794731A (en) | Semiconductor device and its manufacturing method | |
JPH0556872B2 (en) | ||
JP2666293B2 (en) | Method for manufacturing MOS transistor | |
US7371681B2 (en) | Method of manufacturing a semiconductor device | |
JPH043978A (en) | Manufacture of semiconductor device | |
JPH08321612A (en) | Method of manufacturing semiconductor device | |
US8115263B2 (en) | Laminated silicon gate electrode | |
JP2001036078A5 (en) | ||
JP3185235B2 (en) | Method for manufacturing semiconductor device | |
JPS63119576A (en) | Thin film transistor | |
JP3127866B2 (en) | Method for manufacturing semiconductor device | |
JP3169309B2 (en) | Method for manufacturing thin film semiconductor device | |
JPS63117420A (en) | Manufacture of silicide layer | |
JPS60213032A (en) | Semiconductor device and manufacture thereof | |
JPH03108319A (en) | Manufacture of semiconductor device | |
JPH02181918A (en) | Manufacture of semiconductor device | |
JPH02290018A (en) | Manufacture of semiconductor device | |
JPH03276729A (en) | Mos-type semiconductor device and manufacture thereof | |
JPH04370956A (en) | Semiconductor device | |
JP3371414B2 (en) | Method of forming wiring | |
JPH11317521A (en) | Semiconductor device and manufacture thereof | |
JPH04283967A (en) | Semiconductor device and manufacture thereof | |
JPS63142681A (en) | Manufacture of field-effect transistor | |
JPH01171274A (en) | Manufacture of thin film transistor |