JPH0438881A - Light emitting element and light emitting element array - Google Patents
Light emitting element and light emitting element arrayInfo
- Publication number
- JPH0438881A JPH0438881A JP2145337A JP14533790A JPH0438881A JP H0438881 A JPH0438881 A JP H0438881A JP 2145337 A JP2145337 A JP 2145337A JP 14533790 A JP14533790 A JP 14533790A JP H0438881 A JPH0438881 A JP H0438881A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- transparent conductive
- emitting element
- conductive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000605 extraction Methods 0.000 claims description 18
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 abstract description 32
- 230000003287 optical effect Effects 0.000 abstract description 18
- 238000012216 screening Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 17
- 238000009826 distribution Methods 0.000 description 11
- 239000010931 gold Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 7
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 238000002161 passivation Methods 0.000 description 6
- 238000005530 etching Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04042—Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05552—Shape in top view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0555—Shape
- H01L2224/05556—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Dot-Matrix Printers And Others (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野)
本発明は名神の光源として用いられている発光素子およ
び発光素子アレーに係り、特に発光部の全面から均一輝
度の光を放射することのできる発光素子および発光素子
アレーに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a light emitting element and a light emitting element array used as a light source of Meishin, and in particular, to a light emitting element and a light emitting element array that are capable of emitting light of uniform brightness from the entire surface of the light emitting part. The present invention relates to a light emitting element and a light emitting element array.
(従来の技術)
第3図はこの種の発光素子アレーの一例を示すもので、
電子写真装置において感光体へ光書込みを行なう光書込
みヘッド1の構成要素とされている。(Prior art) Figure 3 shows an example of this type of light emitting element array.
It is a component of an optical writing head 1 that performs optical writing on a photoreceptor in an electrophotographic apparatus.
この光書込みヘッド1は、アルミニウム製の放熱板2上
に絶縁材料たるセラミック製の基板3を積層し、この基
板3上に、第4図および第5図に示すような、複数の発
光部5,5・・・が整列して形成されている発光素子ア
レー4を導電性接着剤6を介して接着するとともに、基
板3上に導体パターン7を搭載し、前記発光素子アレー
4の表面に形成された通電用電極8と導体パターン7と
をボンディングワイヤ9,9・・・で接続したものであ
る。This optical writing head 1 has a ceramic substrate 3 made of an insulating material laminated on a heat sink 2 made of aluminum, and a plurality of light emitting parts 5 as shown in FIGS. 4 and 5 on this substrate 3. , 5 . The current-carrying electrode 8 and the conductive pattern 7 are connected by bonding wires 9, 9, . . . .
そして、前記基板3の外周部上には、前記発光素子アレ
ー4、導体パターン7、ボンディングワイヤ9などを保
護するためのガラス製の透明カバー10が接着されてい
る。A transparent cover 10 made of glass is adhered onto the outer periphery of the substrate 3 to protect the light emitting element array 4, the conductor pattern 7, the bonding wires 9, and the like.
このように構成されている光書込みヘッド1は、11m
信号に基いて特定の導体パターン7に通電されることに
より特定の発光部が発光し、この発光部からの光が透明
カバー10を介して外部へ出力され、光書込みに供され
る。The optical writing head 1 configured in this way has a length of 11 m.
By energizing a specific conductor pattern 7 based on a signal, a specific light emitting section emits light, and light from this light emitting section is output to the outside via the transparent cover 10 and is used for optical writing.
前記発光素子アレー4を、第4図および第5図によって
更に説明すると、Ga Asからなる基板12の上にG
a As Pをエピタキシャル成長させてN型エピタキ
シャル層13を形成し、このN型エピタキシャル層13
上に5102からなる拡散マスク14を形成し、この拡
散マスク14の各発光部5を形成する部分にエツチング
等によりそれぞれ開孔部14aを形成し、各開孔部14
aよりZllをN型エピタキシャル層13内へ拡散させ
て発光部5となるP型拡散部15を形成する。その後、
拡散マスク14およびP型拡散部15上にS + 02
等からなるパシベーション層16を形成し、その後通電
用電極8とP型拡散部15とを接続するためにこのパシ
ベーション層16の各P型拡数部15上の一部分にそれ
ぞれエツチング等により開孔部16aを形成する。その
後通電用電極8となるAjをパシベーション層16上の
全体に形成し、不要部分をエツチング等によって除去し
て各通電用電極8を形成する。各通電用電極8とP型拡
散部15とは、それぞれ界面に電圧が発生しないように
して通電時のII壁を除去したオーミックコンタクトを
もって接続されている。次に、基板12の反対側の面に
Au等を蒸着することにより背面電極11を形成する。To further explain the light emitting element array 4 with reference to FIGS. 4 and 5, G is placed on a substrate 12 made of GaAs.
aAsP is epitaxially grown to form an N-type epitaxial layer 13, and this N-type epitaxial layer 13 is
A diffusion mask 14 made of 5102 is formed on the diffusion mask 14, and openings 14a are formed by etching or the like in the portions of this diffusion mask 14 where each light emitting section 5 is to be formed.
From step a, Zll is diffused into the N-type epitaxial layer 13 to form a P-type diffusion section 15 that will become the light emitting section 5. after that,
S + 02 on the diffusion mask 14 and the P-type diffusion part 15
After that, in order to connect the current-carrying electrode 8 and the P-type diffusion part 15, an opening is formed in a portion of the passivation layer 16 on each P-type expanded part 15 by etching or the like. 16a is formed. Thereafter, Aj, which will become the current-carrying electrode 8, is formed entirely on the passivation layer 16, and unnecessary portions are removed by etching or the like, to form each current-carrying electrode 8. Each current-carrying electrode 8 and the P-type diffusion portion 15 are connected to each other through an ohmic contact in which the II wall during current-carrying is removed so that no voltage is generated at the interface. Next, the back electrode 11 is formed by depositing Au or the like on the opposite surface of the substrate 12.
このようにして形成されている発光素子アレー4は、各
通電用電極8と背面電極11とをもって通電することに
より、各発光部5のP型拡散部15とN型エピタキシャ
ル層13との間のpn接合部において発光され、その光
がパシベーション1116および透明カバー10を通し
て外部へ出光される。The light-emitting element array 4 formed in this manner is constructed by energizing each current-carrying electrode 8 and the back electrode 11 to connect the P-type diffusion part 15 and the N-type epitaxial layer 13 of each light-emitting part 5. Light is emitted at the pn junction, and the light is emitted to the outside through the passivation 1116 and the transparent cover 10.
(発明が解決しようとする課題)
しかしながら、従来の発光素子アレー4においてはP型
拡散部15内を流れる電流の分布が均一でないため、次
のような種々の問題点が発生していた。(Problems to be Solved by the Invention) However, in the conventional light emitting element array 4, the distribution of the current flowing through the P-type diffusion portion 15 is not uniform, and various problems as described below have occurred.
発光部5となるP型拡散部15内における電流分布が不
均一となるのは、電気工ネル1′の供給&1となるP型
拡散部15と通電用電極8との接続部がパシベーション
層16の開孔部16aに限られており、この開孔部16
aは発光部5となるP型拡散部15と比較して非常に小
さいためである。The reason why the current distribution in the P-type diffusion part 15 which becomes the light emitting part 5 becomes non-uniform is because the connection part between the P-type diffusion part 15 which becomes the supply &1 of the electrical circuit 1' and the current-carrying electrode 8 is formed by the passivation layer 16. The opening 16a is limited to the opening 16a.
This is because a is very small compared to the P-type diffusion section 15 which becomes the light emitting section 5.
すなわち、この開孔部16a部分において、Pt拡散部
15と通電用電極8とはオーミックコンタクトとされて
いるが、P型拡散部15とN型エピタキシャル層13と
の間のPN接合部に流れる電流密度はf!4図中に矢印
で示すように、オーミックコンタクト部に対向する部分
、すなわち第4図における開孔部16aの真下に位置す
る部分で、そこから離れるに従って小さくなるために電
流分布が不均一となってしまう。That is, although the Pt diffusion portion 15 and the current-carrying electrode 8 are in ohmic contact in this opening portion 16a, the current flowing through the PN junction between the P-type diffusion portion 15 and the N-type epitaxial layer 13 The density is f! As shown by the arrow in Fig. 4, the current distribution becomes non-uniform in the part facing the ohmic contact part, that is, the part located directly below the opening part 16a in Fig. 4, because it becomes smaller as it moves away from there. It ends up.
そして、発光部5における発光の輝度は電流が大き(ブ
れば大きい程^くなる傾向を示すため、発光部5におけ
る輝度分布も前記オーミックコンタクトに対向する部分
が1人輝度となり、A−ミンクコンタクト部分から餡れ
るに従って小さくなる。The brightness of the light emitted by the light emitting part 5 tends to increase as the current increases (the larger the current), so the brightness distribution in the light emitting part 5 also has a single brightness in the part facing the ohmic contact, and the A-mink It becomes smaller as it fills from the contact area.
この輝度分布を第6図(a)(b)(clにより説明す
ると、P型に敷部15内の輝度分布は同N<b>に示す
ようにA−ミックコンタクトに対向する部分で最大とな
り、平面的には同図(C)に示すようにオーミックコン
タクト部を中心として同一輝度分布が波紋状に広がって
いる。To explain this brightness distribution using FIGS. 6(a), (b) (cl), the brightness distribution in the P-type pad 15 is maximum at the part facing the A-mic contact, as shown in N<b> of the same figure. In plan view, the same luminance distribution spreads out in the form of ripples around the ohmic contact portion, as shown in FIG.
このように従来の発光素子アレー4において1.工、発
光部5となるP型拡散部15における発光の輝度分布が
均一でないため、輝度の低い部分は光源として役立たな
くなり、切角形成したP型拡散部15が有効に利用され
ないこととなる。電流密度および輝度密度が最大となる
のはパシベーション層16の開孔部168部分における
オーミックコンタクトに対向する部分であるが、この部
分は透光性が零のAN製の通電用電極8の下側となり、
出光可能な部分は第6図(C)に示すように通電用電極
8に覆われていない部分のP型拡散部15となり、通電
用電VM8の下側で発光した最大輝度の光が光源として
利用されず、利用効率が悪いものであった。また、通電
用電極8とP型拡散部15とのパターン形成時の位置ず
れを考顧して、P型拡散部15の通電用電極8の直下位
置となる部分の形状を小さく抑えることは困難であった
。In this way, in the conventional light emitting element array 4, 1. Since the luminance distribution of light emission in the P-type diffuser 15 that becomes the light-emitting section 5 is not uniform, the low-luminance part becomes useless as a light source, and the truncated P-type diffuser 15 is not effectively utilized. The current density and brightness density are maximum in the part of the passivation layer 16 facing the ohmic contact in the opening 168 part, but this part is below the current-carrying electrode 8 made of AN and having zero translucency. Then,
The part that can emit light becomes the P-type diffusion part 15 that is not covered by the current-carrying electrode 8, as shown in FIG. It was not utilized and its utilization efficiency was poor. Furthermore, considering the positional deviation between the current-carrying electrode 8 and the P-type diffusion section 15 during pattern formation, it is difficult to keep the shape of the portion of the P-type diffusion section 15 directly below the current-carrying electrode 8 small. Met.
例えば、300DPrの光書込みヘッド1においては、
P型拡散部15の面積の20〜30%が通電用電極8の
直下部分となってしまい、光出力の損失は30〜50%
にも達するという不都合があった。For example, in the optical writing head 1 of 300DPr,
20 to 30% of the area of the P-type diffusion section 15 is directly under the current-carrying electrode 8, resulting in a loss of optical output of 30 to 50%.
There was the inconvenience that it reached .
また、P型拡散部15とN型エピタキシャル層13との
界面のPN接合部で発光された光の光学的中心は通電用
電極8の近傍の最^輝度部であるが、Pτ!拡散部15
の対角線の交点からなる幾何学的中心と一致しないため
、第5図に示すように各発光部5の通電用電極8を、発
光部5の配列方向に順に反対側にして設けた場合には、
各発光部5を1直線状に配設しても、各発光部5の光学
的中心は実質的に千鳥状に配設されたこととなり、印字
品位を低下させてしまう。特にa解像の場合に印字品位
の低下が顕著となる。Furthermore, the optical center of the light emitted at the PN junction at the interface between the P-type diffusion part 15 and the N-type epitaxial layer 13 is the brightest part near the current-carrying electrode 8, but Pτ! Diffusion part 15
does not coincide with the geometric center formed by the intersection of the diagonal lines, so if the current-carrying electrodes 8 of each light-emitting section 5 are provided on opposite sides in the direction in which the light-emitting sections 5 are arranged, as shown in FIG. ,
Even if the light emitting sections 5 are arranged in a straight line, the optical centers of the light emitting sections 5 are substantially arranged in a staggered manner, which degrades printing quality. Particularly in the case of A-resolution, the deterioration in printing quality becomes remarkable.
これを防止するために、第7図に示すように、各発光部
5に対して通電用電極8を同方向から接続して光学的中
心を一直線状にすることも提案されているが、前述した
ようにエネルギの利用効率が悪く、また、通電用電極8
を交互に反対側に設ける場合に比較して通電用電極8の
ボンディングワイヤ9との接続部の幅を小さくしなけれ
ばならず、この接合部が小さくなる分だけボンディング
ワイヤ9の接続が8密度化してむずかしくなり、その分
歩留りが低下してコスト高となってしまう。In order to prevent this, it has been proposed to connect the current-carrying electrodes 8 to each light emitting part 5 from the same direction, as shown in FIG. 7, so that the optical centers are aligned in a straight line. As shown above, the energy usage efficiency is poor, and the current-carrying electrode 8
Compared to the case where electrodes 8 and bonding wires 9 are provided alternately on opposite sides, the width of the connection between the current-carrying electrode 8 and the bonding wire 9 must be made smaller. The process becomes difficult and the yield decreases accordingly, resulting in high costs.
また、接続部の幅も一定以上小さくすることはできない
ので、それに基づいて発光部5の配列密度にも限界があ
り、^解像の発光素子アレイを得ることかて゛きない。Further, since the width of the connecting portion cannot be made smaller than a certain level, there is a limit to the arrangement density of the light emitting portions 5 based on this, and it is impossible to obtain a light emitting element array with high resolution.
本発明はこれらの点に鑑みてなされたものであり、発光
郡全体から均一輝度の光を外部へ出光させることができ
、エネルギの利用効率が8く、しかも複数の発光部を有
する発光素子アレーにおいては、各発光部の特性が同一
となり、幾何学的中心と光学的中心が一致し、轟解像で
、が一つ、^い印字品位を得ることのできる発光素子お
よび発光素子アレーを提供することを目的とする。The present invention has been made in view of these points, and provides a light emitting element array that can emit light with uniform brightness from the entire light emitting group to the outside, has high energy utilization efficiency, and has a plurality of light emitting parts. provides a light-emitting element and a light-emitting element array in which the characteristics of each light-emitting part are the same, the geometrical center and the optical center coincide, and high resolution and high printing quality can be obtained. The purpose is to
前記目的を達成するため、請求項第1項の本発明の発光
素子は、電気エネルギによって発光される発光部と、こ
の発光部へ電気エネルギを供給する通電用電極とをイj
する発光素子において、前記発光部の光取出し面側へ電
気エネルギを供給する通電用74極が、少なくとも前記
発光部の光取出し面の全面を覆うとともに光取出し面と
オーミックコンタクトされている透明導電膜と、前記光
取出し面を外れた位置において前記透明導N膜に接続さ
れている金j!膜とによって形成されていることを特徴
とする
請求項第2項の発光素子アレーは、電気エネルギによっ
て発光される複数の発光部を所定位置に配設し、各発光
部へそれぞれ電気エネルギを供給する通電用電極を設け
ている発光素子アレーにおいて、前記各発光部の光取出
し面倒へ電気エネルギを供給する通電用電極が、それぞ
れ少なくとも前記発光部の光取出し面の全面を覆うとと
もに光取出し面とオーミックコンタクトされている透明
導電膜と、前記光取出し面を外れた位置において前記透
明導電膜に接続されている金属膜とによって形成されて
いることを特徴とする。In order to achieve the above object, the light emitting element of the present invention according to claim 1 has a light emitting part that emits light using electrical energy, and a current-carrying electrode that supplies electrical energy to the light emitting part.
In the light emitting element, the transparent conductive film has 74 current-carrying poles that supply electrical energy to the light extraction surface of the light emitting section, which covers at least the entire surface of the light extraction surface of the light emitting section and is in ohmic contact with the light extraction surface. And gold j! is connected to the transparent N-conducting film at a position away from the light extraction surface. The light emitting element array according to claim 2, characterized in that it is formed of a film, has a plurality of light emitting parts that emit light using electrical energy, arranged at predetermined positions, and supplies electrical energy to each light emitting part. In the light-emitting element array, the current-carrying electrode is provided with a current-carrying electrode for supplying electrical energy to the light-extracting surface of each of the light-emitting parts, and the current-carrying electrode covers at least the entire surface of the light-extracting surface of the light-emitting part. It is characterized in that it is formed by a transparent conductive film that is in ohmic contact and a metal film that is connected to the transparent conductive film at a position away from the light extraction surface.
請求項第1項の単体の発光素子および請求項第2項にお
ける各発光素子においては、透明導電膜を介して発光部
の光取出し面の全面に均等な電流密度をもって電気エネ
ルギが供給され、発光郡全体より均一輝度の光が発光さ
れ、全部の光が前記透明導電膜を通して外部へ出光され
る。また、金j[膜は発光部以外の所に設けられている
ため、透明導電膜を通過した光は遮光されることなく全
部外部へ出光されることとなり、従来のような遮光によ
る光量損失は全く発生せず、エネルギの利用効率が極め
て轟くなる。In the single light emitting element of claim 1 and each of the light emitting elements of claim 2, electrical energy is supplied with a uniform current density to the entire light extraction surface of the light emitting part via the transparent conductive film, and the light emitting element is emitted. Light of uniform brightness is emitted from the entire group, and all the light is emitted to the outside through the transparent conductive film. In addition, since the gold film is provided in a place other than the light emitting part, all of the light that passes through the transparent conductive film is emitted to the outside without being blocked, and the loss of light amount due to light blocking as in the conventional method is eliminated. No energy is generated at all, and the energy usage efficiency is extremely high.
また、請求項第2項の発光素子アレーにおいては、各発
光部の形状や面積も同一のものとなり、全体の特性が安
定し、また、各発光部の幾何学的中心と光学的中心とが
一致し、印字品位が極めて高いものとなる。Furthermore, in the light emitting element array of claim 2, the shape and area of each light emitting part are the same, the overall characteristics are stable, and the geometric center and optical center of each light emitting part are the same. The print quality is extremely high.
〔実施例)
以下、本発明の実施例を第1図および第2図について説
明する。[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 and 2.
第1図および第2図は本発明の発光素子アレーの一実施
例を示している。1 and 2 show an embodiment of the light emitting element array of the present invention.
本実施例の発光素子アレー20は、第1図に示す断面形
状に形成されている。すなわち、GaASからなる基板
22上にN型のGa As Pを1ビタキシヤル成長さ
せてN型エピタキシセル層23を形成する。このN型エ
ピタキシャル層23上の全面にSiO2からなる拡散マ
スク24を形成した後、複数の発光部25を1列状に配
設するために、複数の開口部24a、24a・・・をエ
ツチング等により開設する。次に、発光部25を形成す
るために、開口部24aよりZnをN型エピタキシャル
823内へ拡散させてPP!:!拡散部26を約3μ瓦
の深さに形成する。この場合P9拡敷部26の表面より
数100人の表層部分はオーミックコンタクトを安定化
させるために、P型の濃度を他の部分よりaくしておく
とよい。次に、拡散マスク24およびP型拡散部26の
上面全体に透明導電膜27を形成する。この場合、透明
′S電膜27とP型拡散部26の上面とはオーミックコ
ンタクトとさせる。この透明導電膜27の材質としては
インジュウムと1ずどの酸化物等を用いるとよい。その
後、透明導電膜27の不要な部分をエツチング等で除去
して、各透明導N膜27は発光部25すなわちP型拡散
部26の光取出し而(第1図において上面)の全体を覆
うとともにこのP型拡敢部26を外れた位置に金属膜2
8を形成できる形状とさせる。また、各透明S電膜27
は発光部25の列方向に順番に反対側に金Iil膜28
を形成できるような形状とされている。The light emitting element array 20 of this example is formed in the cross-sectional shape shown in FIG. That is, an N-type epitaxial cell layer 23 is formed by growing N-type GaAsP one bitaxially on a substrate 22 made of GaAS. After forming a diffusion mask 24 made of SiO2 on the entire surface of the N-type epitaxial layer 23, a plurality of openings 24a, 24a, . Established by. Next, in order to form the light emitting section 25, Zn is diffused into the N-type epitaxial layer 823 through the opening 24a to form the PP! :! The diffusion portion 26 is formed to a depth of approximately 3 μm. In this case, in order to stabilize the ohmic contact, it is preferable that the P-type concentration in the surface layer of several hundreds of layers from the surface of the P9 extension part 26 be set to be a higher than that in other parts. Next, a transparent conductive film 27 is formed on the entire upper surface of the diffusion mask 24 and the P-type diffusion section 26. In this case, the transparent 'S' electric film 27 and the upper surface of the P-type diffusion section 26 are in ohmic contact. As the material of this transparent conductive film 27, it is preferable to use an oxide of indium and 1/2. Thereafter, unnecessary portions of the transparent conductive film 27 are removed by etching or the like, and each transparent conductive N film 27 covers the entire light extraction part (top surface in FIG. 1) of the light emitting part 25, that is, the P-type diffusion part 26. A metal film 2 is placed at a position away from this P-type expanded portion 26.
8. In addition, each transparent S electric film 27
The gold Iil film 28 is placed on the opposite side in order in the column direction of the light emitting section 25.
The shape is such that it can be formed.
次に、透明導電膜27上のP型拡散部26を外れた位W
Iにそれぞれ外部との接続用の金属膜28を形成する。Next, W
A metal film 28 for connection with the outside is formed on each of I.
この金属1!128は透明導電jII27の電気抵抗を
下げる役目も果す。この金属膜28としては、金属膜2
8にボンディングワイヤ9を接合する場合には、その接
続を安定させるためにAjまたはAUを用い、フリップ
チップ方式で寅装する場合には、金lag!28がハン
ダバンブを保持するとともにハンダのバリヤ層となるよ
うにするためにN1等を用いるとよい。This metal 1!128 also serves to lower the electrical resistance of the transparent conductive jII27. As this metal film 28, metal film 2
When bonding wire 9 is bonded to bonding wire 8, Aj or AU is used to stabilize the connection, and gold lag! is used when bonding by flip-chip method. It is preferable to use N1 or the like so that 28 holds the solder bump and serves as a solder barrier layer.
最後に、基板22の反対側の面にAu等を黒石すること
により背面電極21を形成することにより発光素子アレ
イ20が完成する。Finally, the back electrode 21 is formed by depositing Au or the like on the opposite surface of the substrate 22, thereby completing the light emitting element array 20.
次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.
本実施例の発光素子アレー20によれば、各発光部25
において、透明導電膜27を介してPヤ拡散部26の光
取出し而(第1図における上面)の仝而に均等な電流密
度をもって電気エネルギが供給され、P型拡散部26と
N型エピタキシャル層23の間のPN接合部の全体より
均一輝度の光が発光され、全部の光が前記透明導電膜2
7を通して外部へ出光される。また、金属R2Bは発光
部25以外の所に設けられているため、透明導電膜27
を通過した光は遮光されることなく全部外部へ出光され
ることと/、iす、従来のような遮光による九1損失は
全く発生ぜず、エネルギの利用効率が極めて高くなる。According to the light emitting element array 20 of this embodiment, each light emitting section 25
In this case, electric energy is supplied with uniform current density to the light extraction area (top surface in FIG. 1) of the P-type diffusion part 26 through the transparent conductive film 27, and the P-type diffusion part 26 and the N-type epitaxial layer are connected to each other. Light of uniform brightness is emitted from the entire PN junction between the transparent conductive film 2
The light is emitted to the outside through 7. Further, since the metal R2B is provided in a place other than the light emitting part 25, the transparent conductive film 27
All of the light that has passed through is emitted to the outside without being blocked, and the loss caused by blocking of light as in the conventional case does not occur at all, resulting in extremely high energy utilization efficiency.
従って、各発光部25の形状や面積も同一のbのとなり
、全体の特性が安定し、また、各発光部25の幾何学的
中心と光学的中心とが完全に一致することとなり、印字
装置の光書込みヘッドとして使用すれば、印字品位が極
めて高いものとなる。Therefore, the shape and area of each light emitting part 25 are the same b, and the overall characteristics are stable. Also, the geometrical center and optical center of each light emitting part 25 completely match, so that the printing device If used as an optical writing head, the printing quality will be extremely high.
よって、本実施例によれば、背面電極並びに金底膜28
を通じて所望の発光部25へ通電することによって、光
書込みヘッドとして使用した場合、印字指令に適正に対
応した高解像の極めて印字品位の高い印字が施される。Therefore, according to this embodiment, the back electrode and the gold bottom film 28
When used as an optical writing head, by energizing a desired light emitting section 25 through the printhead, high-resolution and extremely high-quality printing that appropriately corresponds to a printing command can be performed.
また、本実施例においては、拡散マスク24の上に透明
導電膜27を直に形成すればよく、従来のパシベーショ
ン層16を省略することができ、製造も容易でコストも
低廉なものとなる。Furthermore, in this embodiment, the transparent conductive film 27 can be formed directly on the diffusion mask 24, and the conventional passivation layer 16 can be omitted, making manufacturing easy and inexpensive.
なお、前記実施例は複数の発光部25を一直線状に配列
させているが、その配列方法は必要に応じて変更しても
よい。In addition, although the plurality of light emitting parts 25 are arranged in a straight line in the above embodiment, the arrangement method may be changed as necessary.
また、単体の発光部25のみを設けて発光素子を形成し
て単光源として用いるようにしてもよい。Alternatively, only a single light emitting section 25 may be provided to form a light emitting element and used as a single light source.
また、本発明は前記実施例に限定されるものではなく、
必要に応じて変更することができる。Furthermore, the present invention is not limited to the above embodiments,
It can be changed as necessary.
以上説明したように本発明の発光素子および発光素子ア
レーは構成され作用するものであるから、発光郡全体か
ら均一輝度の光を外部へ出光させることができ、エネル
ギの利用効率が高く、しかも複数の発光部を有する発光
素子アレーにおいでは、各発光部の特性が同一となり、
幾何学的中心と光学的中心が一致し、高解像で、かつ、
呂い印字品位を得ることのできるなどの効果を奏する。As explained above, the light-emitting element and light-emitting element array of the present invention are configured and operate, so that light with uniform brightness can be emitted from the entire light-emitting group to the outside, and energy utilization efficiency is high. In a light emitting element array having light emitting parts, the characteristics of each light emitting part are the same,
The geometric center and optical center match, high resolution, and
This has the effect of achieving high printing quality.
第1図および第2図は本発明の発光素子アレーの一実施
例を示し、第1図は縦断側面図、第2図は平面図、第3
図は従来の発光素子アレーを搭載した光書込みヘッドの
縦断側面図、第4図は従来の発光素子アレーの縦断側面
図、第5図は第4図の平面図、第6図(a)は発光部の
縦断側面図、第6図(b)は発光部の縦断側面における
輝度分布を示す特性図、第6図(C)は発光部の平面に
おける輝度分布を示す特性図、第7図は他の従来例を示
す平面図である。
20・・・発光素子アレー 25・・・発光部、26・
・・P9拡敷部、27・・・透明導電膜、28・・・金
lll膜。
ぐ
の
Qフ1 and 2 show an embodiment of the light emitting element array of the present invention, in which FIG. 1 is a vertical side view, FIG. 2 is a plan view, and FIG.
The figure is a vertical side view of an optical writing head equipped with a conventional light emitting element array, Figure 4 is a vertical side view of a conventional light emitting element array, Figure 5 is a plan view of Figure 4, and Figure 6 (a) is FIG. 6(b) is a characteristic diagram showing the luminance distribution on the longitudinal side surface of the light emitting section, FIG. 6(C) is a characteristic diagram showing the luminance distribution on the plane of the light emitting section, and FIG. 7 is a characteristic diagram showing the luminance distribution on the plane of the light emitting section. FIG. 7 is a plan view showing another conventional example. 20... Light emitting element array 25... Light emitting section, 26.
...P9 expansion part, 27...transparent conductive film, 28...gold lll film. Guno Qfu
Claims (1)
光部へ電気エネルギを供給する通電用電極とを有する発
光素子において、前記発光部の光取出し面側へ電気エネ
ルギを供給する通電用電極が、少なくとも前記発光部の
光取出し面の全面を覆うとともに光取出し面とオーミッ
クコンタクトされている透明導電膜と、前記光取出し面
を外れた位置において前記透明導電膜に接続されている
金属膜とによって形成されていることを特徴とする発光
素子。 2)電気エネルギによって発光される複数の発光部を所
定位置に配設し、各発光部へそれぞれ電気エネルギを供
給する通電用電極を設けている発光素子アレーにおいて
、前記各発光部の光取出し面側へ電気エネルギを供給す
る通電用電極が、それぞれ少なくとも前記発光部の光取
出し面の全面を覆うとともに光取出し面とオーミックコ
ンタクトされている透明導電膜と、前記光取出し面を外
れた位置において前記透明導電膜に接続されている金属
膜とによって形成されていることを特徴とする発光素子
アレー。[Scope of Claims] 1) In a light-emitting element having a light-emitting part that emits light using electrical energy and a current-carrying electrode that supplies electrical energy to the light-emitting part, electric energy is transferred to the light extraction surface side of the light-emitting part. a transparent conductive film that covers at least the entire surface of the light extraction surface of the light emitting section and is in ohmic contact with the light extraction surface, and is connected to the transparent conductive film at a position away from the light extraction surface. A light emitting element characterized in that it is formed of a metal film. 2) In a light-emitting element array in which a plurality of light-emitting parts that emit light by electrical energy are arranged at predetermined positions and a current-carrying electrode is provided for supplying electric energy to each light-emitting part, the light extraction surface of each light-emitting part A current-carrying electrode for supplying electrical energy to the transparent conductive film covers at least the entire surface of the light extraction surface of the light emitting section and is in ohmic contact with the light extraction surface, and a transparent conductive film that covers at least the entire surface of the light extraction surface of the light emitting section, and a transparent conductive film that supplies electrical energy to the light extraction surface at a position away from the light extraction surface. A light emitting element array comprising a transparent conductive film and a metal film connected to the transparent conductive film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2145337A JPH0438881A (en) | 1990-06-05 | 1990-06-05 | Light emitting element and light emitting element array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2145337A JPH0438881A (en) | 1990-06-05 | 1990-06-05 | Light emitting element and light emitting element array |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0438881A true JPH0438881A (en) | 1992-02-10 |
Family
ID=15382843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2145337A Pending JPH0438881A (en) | 1990-06-05 | 1990-06-05 | Light emitting element and light emitting element array |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0438881A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999014810A1 (en) * | 1997-09-16 | 1999-03-25 | Polaroid Corporation | Light-emitting diode |
JP2006253361A (en) * | 2005-03-10 | 2006-09-21 | Oki Data Corp | Semiconductor apparatus, led head and image forming apparatus employing it |
-
1990
- 1990-06-05 JP JP2145337A patent/JPH0438881A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999014810A1 (en) * | 1997-09-16 | 1999-03-25 | Polaroid Corporation | Light-emitting diode |
US5990498A (en) * | 1997-09-16 | 1999-11-23 | Polaroid Corporation | Light-emitting diode having uniform irradiance distribution |
JP2006253361A (en) * | 2005-03-10 | 2006-09-21 | Oki Data Corp | Semiconductor apparatus, led head and image forming apparatus employing it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7285801B2 (en) | LED with series-connected monolithically integrated mesas | |
US10090450B2 (en) | Light emitting device | |
US7723736B2 (en) | Light emitting device having a plurality of light emitting cells and package mounting the same | |
EP1398839B1 (en) | Light emitting device comprising light emitting diode chip | |
CN100362671C (en) | Solid-state element and solid-state element device | |
US9577171B2 (en) | Light emitting device package having improved heat dissipation efficiency | |
US9318529B2 (en) | Wafer level light-emitting diode array | |
EP3454372A1 (en) | Light emitting diode | |
US11587972B2 (en) | Wafer level light-emitting diode array | |
US8350276B2 (en) | Alternating current light emitting device | |
US20010032985A1 (en) | Multi-chip semiconductor LED assembly | |
US11139338B2 (en) | Wafer level light-emitting diode array | |
US9847456B2 (en) | Light emitting diode and method of fabricating the same | |
US20150349232A1 (en) | Light emitting diode and light emitting device including the same | |
JP2004502307A (en) | Photoelectric element | |
US20210351332A1 (en) | Optoelectronic semiconductor component | |
JP3878715B2 (en) | Light emitting element | |
JPH0438881A (en) | Light emitting element and light emitting element array | |
JP3571477B2 (en) | Semiconductor light emitting device | |
JPS6214480A (en) | Light-emitting diode array | |
CN115763663A (en) | Flip-chip light-emitting component and light-emitting device | |
JPH0799344A (en) | Manufacture of semiconductor light emitting device | |
KR920000329B1 (en) | Light emitting device array | |
CN101101952A (en) | Solid-state component and solid-state component device | |
JPH09174921A (en) | Light emitting diode array |