[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0437028B2 - - Google Patents

Info

Publication number
JPH0437028B2
JPH0437028B2 JP60293691A JP29369185A JPH0437028B2 JP H0437028 B2 JPH0437028 B2 JP H0437028B2 JP 60293691 A JP60293691 A JP 60293691A JP 29369185 A JP29369185 A JP 29369185A JP H0437028 B2 JPH0437028 B2 JP H0437028B2
Authority
JP
Japan
Prior art keywords
less
average particle
particle size
cordierite
talc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60293691A
Other languages
Japanese (ja)
Other versions
JPS62182158A (en
Inventor
Keiichiro Watanabe
Toshuki Hamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP60293691A priority Critical patent/JPS62182158A/en
Priority to EP86310130A priority patent/EP0227482B1/en
Priority to EP86310131A priority patent/EP0232621B1/en
Priority to DE8686310130T priority patent/DE3680496D1/en
Priority to DE8686310131T priority patent/DE3671390D1/en
Priority to US06/946,901 priority patent/US4877670A/en
Publication of JPS62182158A publication Critical patent/JPS62182158A/en
Priority to US07/320,629 priority patent/US5030398A/en
Publication of JPH0437028B2 publication Critical patent/JPH0437028B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はコージエライトハニカム構造体に関す
るもので、さらに詳しくは耐熱衝撃性、気密性及
び耐熱性にも優れた回転蓄熱式又は伝熱式熱交換
体用高気密性コージエライトハニカム構造体及び
その製造方法に関するものである。 (従来の技術) 近年工業技術の進歩に伴い、耐熱性、耐熱衝撃
性に優れた材料の要求が増加している。セラミツ
クスの耐熱衝撃性は、材料の熱膨張率、熱伝導
率、強度、弾性率、ボアソン比等の特性に影響さ
れると共に、製品の大きさや形状、さらに加熱、
冷却状態即ち熱移動速度にも影響される。 耐熱衝撃性に影響するこれらの諸因子のうち特
に熱膨張係数の寄与率が大であり、りわけ、熱移
動速度が大であるときには熱膨張係数のみに大き
く左右されることが知られおり、耐熱衝撃性に優
れた低膨張材料の開発が強く望まれている。 従来比較的低膨張なセラミツクス材料として、
コージエライトが知られているが、一般にコージ
エライトは、緻密焼結化が難しく、特に室温から
800℃までの熱膨張係数が2.0×10-6/℃以下とな
るような低膨張性を示すコージエライト素地で
は、カルシア、アルカリ、カリ、ソーダのような
融剤となるべき不純物量を極めて小量に限定する
必要があるためガラス相が非常に少なく多孔質に
なる。 従つてこのようなコージエライトセラミツクス
を例えば、ハニカム構造にして回転蓄熱式熱交換
体に応用した場合、その開気孔率が大きいためハ
ニカム構造体貫通孔を形成する隔壁表面の気孔、
特に連通気孔を通して加熱流体と熱回収側流体と
の相互間に流体のリークが発生し、熱交換効率及
び熱交換体が使用されるシステム全体の効率が低
下する重大な欠点を有している。 このようなことから耐熱衝撃性に優れた、低膨
張の高気密性コージエライトハニカム構造体が強
く望まれていた。 従来、コージエライトセラミツクスが低膨張性
を示すことは公知であり、例えば米国特許第
3885977号明細書(対応日本出願:特開昭50−
75611号公報)に開示されているように、25〜
1000℃の間での熱膨張係数が少なくとも一方向で
11×10-7/℃より小さい配向したコージエライト
セラミツクスが知られており、そこではこの配向
性を起させる原因として板状粘土、積層粘土に起
因する平面的配向を記述しているが、本発明と異
なつて10−20μmの粗いタルクを用い、粘土も0.1
〜10μmの広い範囲にわたり、しかも細孔に関す
る記載は一切ない。 さらに、米国特許第3950175号明細書(特開昭
50−75612号)には、原料中のタルク又は粘土の
一部又は全量を、パイロフエライト、カイアナイ
ト、石英、溶融シリカのようなシリカ又はシリカ
アルミナ源原料によつて置換することにより少な
くとも20%の10μmより大きな径の開孔を有する
コージエライト系多孔質セラミツクスが得られる
ことが開示されているが、本発明と異なり5μm
以上の細孔容積を平均粒径が7μm以下の微細タ
ルクにより、0.04c.c./g以下に抑制して気密性を
高めることに関する記載は一切ない。 さらに特開昭53−82822号には、タルク平均粒
径とコージエライトセラミツクスの平均細孔径の
正相関性について述べられてはいるものの、本発
明にて得られるような1.0×10-6/℃以下の熱膨
張係数にするためには、タルクの平均粒径を10〜
50μmの粗粒にする必要があり、本発明に示され
る低膨張で高気密性のコージエライトセラミツク
スを容易に類推することはできない。 さらに特開昭59−122899号には、気孔率が20〜
45%のコージエライトを主成分とするハニカム構
造体の貫通孔を形成する隔壁表面の開気孔を充填
物質にて封着することを特徴とする高気密性コー
ジエライト質回転蓄熱式熱交換体が開示されてい
るが、本発明のようにコージエライト原料に平均
粒径が7μm以下の微細タルクと2μm以下の微細
カオリンを用いることにより5μm以上の細孔容
積を0.04c.c./g以下に抑制し、気密性を高めるこ
とに関する記載はない。また、特開昭59−122899
号の製造方法では、焼成されたコージエライト質
ハニカムに充填物質を泥漿として担持し、さらに
再焼成する工程が必要なため、本発明に比較して
セルの目詰りを生じ易く、コスト高になる欠点が
ある。 (発明が解決しようとする問題点) 本発明は従来のコージエライトセラミツクスの
問題点である気密性と低膨張性を両立させた高気
密性コージエライトハニカム構造体を提供するこ
とを目的とする。 (問題点を解決するための手段) 本発明者等は、平均粒子径7μm以下のタルク
及び平均粒子径が2μm以下でかつタルク平均粒
子径の1/3以下の平均粒径のカオリンを用いるこ
とにより、直径が5μm以上の総細孔容積を0.04
c.c./g以下、気孔率を30%以下にして実質的に気
密質にし、40〜800℃の間の熱膨張係数を1.0×
10-6/℃以下としたものである。タルクの平均粒
径を7μm以下にすることは、細孔径を小さくす
ることに効果がある。また、2μm以下のカオリ
ンを用いることは、気孔率を抑制することに効果
がある。さらに、平均粒子径7μm以下のタルク
とタルク平均粒子径の1/3以下の平均粒子径のカ
オリンを組合せて用いることは、コージエライト
ハニカム構造体のセル壁部でのコージエライト結
晶の配向を促進させ、低膨張化を寄与するもので
ある。 なお、タルク、カオリンの粒径は生、仮焼品の
調合重量比による平均粒子径より求めた。 また、本発明者等は、該ハニカム構造体の化学
組成が、SiO2にて42〜56重量%好ましくは47〜
53重量%、Al2O5にて30〜45重量%好ましくは32
〜38重量%、MgOにて12〜16重量%好ましくは
12.5〜15重量%とすることが好適であることを見
出した。該ハニカム構造体は他に不可避的に混入
する成分例えば、TiO2,CaO,KNaO,Fe2O3
全体として2.5重量%以下含んでも良いが、P2O5
は0.1%未満であることが好ましい。これらの数
値を限定する理由は、結晶相の主成分をコージエ
ライト相とし、不純物から生成する高膨張のガラ
ス相を除去するためである。 さらに本発明者等は、ハニカム構造体素地の乾
燥物の焼成にあたつては、焼成温度に達する直前
の1100〜1350℃の温度領域では20〜60℃/hの平
均昇温速度で昇温した後、1350〜1440℃の焼成温
度で焼成することが好ましいことを見出した。昇
温速度が20℃/hより小さいと熱膨張係数が大と
なり、60℃/hより大きいと焼成時の細孔径が大
となり気密性が悪くなる。通常30〜50℃/hが好
適な範囲である。また、1350〜1440℃の温度にて
焼成することにより、結晶相の主成分をコージエ
ライト相とすることができる。 ハニカム構造体のセル密度を62セル/cm2(400
セル/in2)以上、リブ厚が203μm(8mil)以下
とするのは、該ハニカム構造体を熱交換体とし
て、高熱交換効率で低圧力損失のものにするため
である。セルの形状には特に限定はないが、通常
三角形、正方形、長方形、六角形、その他フイン
付のもの等種々のものとすることができる。 直径が5μm以上の細孔の総細孔容積を0.04c.c./
g以下好ましくは0.026c.c./g以下に限定するの
は、第1図に示すようにこのようなハニカム構造
体の薄壁を通じての流体の漏れが主に直径が5μ
m以上の細孔によるためである。この条件を満足
するためには気孔率を少なくとも30%以下にする
ことが好ましい。 本発明はタルク、カオリンの微粒子化に際し、
乾燥、焼成時での収縮等によるハニカム構造体亀
裂発生の抑制に効果的な仮焼タルク、仮焼カオリ
ンの使用をも包含する。タルク、カオリンの仮焼
温度の高温化は気孔率増加と熱膨張率増加を招く
ため仮焼物の使用する場合は、仮焼温度はできる
限り低い温度の方が好ましい。粒度は生原料と同
様の微粒物を使用しなければ本発明の効果を得る
ことはできない。 他のコージエライト化原料即ちアルミナ、水酸
化アルミニウム等のアルミナ源原料、シリカ、珪
砂等のシリカ源原料は従来より使用されているも
のを使用することができるが、化学組成における
アルカリ等不純物量の適正化及び製造するハニカ
ム構造体のリブ厚に応じて粗粒物のカツト等粒度
の適正化を図る必要がある。 従つて本発明は化学組成でSiO2が42〜56重量
%好ましくは47〜53重量%、Al2O3が30〜45重量
%好ましくは32〜38重量%、MgOが12〜16重量
%好ましくは12.5〜15重量%となるように平均粒
子径7μm以下のタルク及び平均粒子径2μm以下
でかつタルクの平均粒子径の1/3以下の平均粒子
径のカオリン及び他のコージエライト化原料を混
合し、この混合物に可塑剤及び粘結剤を加えて可
塑化した変形可能なバツチとし、この可塑化した
バツチを押出し成形法により成形後乾燥し、この
乾燥物を焼成温度に達する直前の1100〜1350℃の
温度領域では20〜60℃/時の平均昇温速度にて昇
温し、次いで1350〜1440℃の焼成温度にて焼成
し、結晶相の主成分が配向したコージエライト相
から成り、直径が5μm以上の細孔の総細孔容積
が0.04c.c./g以下、気孔率が30%、40〜800℃の間
の熱膨張係数が1.0×10-6/℃以下のコージエラ
イトハニカム構造体を製造するものである。 焼成は通常的0.5〜12時間行なう。ハニカム構
造体は結晶相の主成分が90重量%以上のコージエ
ライトから成つている。その他の結晶はムライ
ト、スピネル(サフイリンを含む)が主である
が、これらは夫々2.5重量%以下である。ハニカ
ム構造体は5μm以上の細孔の総細孔容積が0.04
c.c./g以下、特に0.026c.c./g以下のときに、圧力
1.4Kg/cm2のときのリーク量が100g/sec・m2以下特
に50g/sec・m2以下の実質的に気密性となり、熱
交換体用に好適のものとなる。 (作用) 本発明はハニカム構造体の5μm以上の細孔の
総細孔容積が0.04c.c./g以下で且つ気孔率が30%
以下と小さい為、リーク量が小さく、熱交換効率
が高い。また、熱膨張係数が40〜800℃で1.0×
10-6/℃以下と小さいため、耐熱衝撃性が高い。
またリブ厚を203μm(8mil)以下と薄壁にする
ことができるため圧力損失が小さく、高密度セル
化が達成できるため熱交換効率の高いセラミツク
ス熱交換体を得ることができる。また、細孔径が
小さく、気孔率も小さいためハニカム構造体の強
度は従来のハニカム構造体より高く、薄壁化が可
能である。 以下本発明を実施例と比較例につきさらに詳細
に説明する。 実施例 1 次の第1表に示す化学分析値及び粒度の原料を
第2表の調合割合、タルク粒度、カオリン粒度に
従つて第2表No.1〜No.30のバツチを調合し、原料
100重量部に対してメチルセルローズ4.5重量部及
び添加水を加え、混練し、押出成形可能な坏土と
した。ここでの使用原料はて篩目が63μmの篩を
通過したものを使用した。次いでそれぞれのバツ
チの坏土を公知の押出成形法によりリブ厚120μ
m、1平方センチ当りのセル数167ケ、短辺/長
辺=1/1.73の長方形セル構造を有する直径93mm高
さ100mmの円筒形ハニカム構造体を成形した。そ
れぞれのバツチによるハニカム構造体は乾燥後第
2表に示す焼成条件で焼成し、焼結体の特性とし
て40℃〜800℃での熱膨張係数、気孔率、5μm以
上の細孔の総細孔容積、リーク量、コージエライ
ト結晶量、耐熱衝撃性の評価を実施した。評価結
果も第3表に示す。なお、総てのバツチの焼結体
の化学組成でP2O5は0.1%未満であつた。 実施例 2 第2表No.4のバツチを実施例1と同様の方法に
よりセル構造の異つた口金により押出成形し、焼
成して、第3表に示すセル構造を有する直径93
mm、高さ100mmの円筒形ハニカム構造体No.31〜No.
40を製造した。それぞれのハニカム構造体の圧力
損失、リーク量、熱膨張係数(CTE)を評価し
た。評価結果も第3表に示す。
(Industrial Application Field) The present invention relates to a cordierite honeycomb structure, and more specifically, a highly airtight cordierite honeycomb structure for a rotating heat storage type or heat transfer type heat exchanger having excellent thermal shock resistance, airtightness, and heat resistance. The present invention relates to a cordierite honeycomb structure and a method for manufacturing the same. (Prior Art) With the progress of industrial technology in recent years, there has been an increasing demand for materials with excellent heat resistance and thermal shock resistance. The thermal shock resistance of ceramics is influenced by the material's properties such as coefficient of thermal expansion, thermal conductivity, strength, modulus of elasticity, and Boisson's ratio, as well as the size and shape of the product, as well as heating,
It is also influenced by the cooling state, ie the rate of heat transfer. Among these factors that affect thermal shock resistance, it is known that the coefficient of thermal expansion has a particularly large contribution rate, and in particular, when the rate of heat transfer is high, it is largely influenced only by the coefficient of thermal expansion. The development of low expansion materials with excellent thermal shock resistance is strongly desired. Conventionally, as a relatively low expansion ceramic material,
Cordierite is known, but in general, cordierite is difficult to sinter to a high density, especially from room temperature.
Cordierite base material exhibits low thermal expansion coefficient of 2.0×10 -6 /℃ or less up to 800℃, which contains extremely small amount of impurities such as calcia, alkali, potash, and soda that can act as fluxing agents. Since it is necessary to limit the glass phase to a very small amount, the glass phase becomes porous. Therefore, when such cordierite ceramics is applied to a rotating regenerative heat exchanger with a honeycomb structure, for example, the pores on the surface of the partition wall that form the through holes of the honeycomb structure due to its large open porosity.
In particular, fluid leakage occurs between the heating fluid and the heat recovery fluid through the communication holes, which has a serious disadvantage that the heat exchange efficiency and the efficiency of the entire system in which the heat exchanger is used are reduced. For these reasons, there has been a strong desire for a low-expansion, highly airtight cordierite honeycomb structure that has excellent thermal shock resistance. It has been known that cordierite ceramics exhibit low expansion properties, for example, as described in U.S. Patent No.
Specification No. 3885977 (corresponding Japanese application: Japanese Patent Application Laid-open No. 1989-
As disclosed in Publication No. 75611), 25~
Thermal expansion coefficient between 1000℃ in at least one direction
Cordierite ceramics with an orientation smaller than 11×10 -7 /°C are known, and the planar orientation caused by plate clay and laminated clay is described as the cause of this orientation. Unlike the present invention, coarse talc of 10-20μm was used, and clay was also used.
It covers a wide range of ~10 μm, and there is no mention of pores at all. Furthermore, U.S. Patent No. 3950175
No. 50-75612), at least 20% of the talc or clay in the raw material is replaced by a silica or silica-alumina source raw material such as pyroferite, kyanite, quartz, or fused silica. It has been disclosed that cordierite porous ceramics having pores with a diameter larger than 10 μm can be obtained, but unlike the present invention, pores with a diameter of 5 μm or more can be obtained.
There is no description of increasing airtightness by suppressing the pore volume to 0.04 cc/g or less using fine talc with an average particle size of 7 μm or less. Furthermore, although JP-A-53-82822 describes a positive correlation between the average talc particle size and the average pore size of cordierite ceramics, In order to have a coefficient of thermal expansion below ℃, the average particle size of talc must be 10~
It is necessary to make coarse grains of 50 μm, and it cannot be easily analogized to the low expansion and high airtight cordierite ceramics shown in the present invention. Furthermore, in JP-A No. 59-122899, the porosity is 20~20.
A highly airtight cordierite rotary regenerative heat exchanger is disclosed, which is characterized in that the open pores on the surface of the partition wall forming the through holes of a honeycomb structure mainly composed of 45% cordierite are sealed with a filling material. However, by using fine talc with an average particle size of 7 μm or less and fine kaolin with an average particle size of 2 μm or less in the cordierite raw material as in the present invention, the volume of pores with a diameter of 5 μm or more is suppressed to 0.04 cc/g or less, improving airtightness. There is no mention of increasing it. Also, JP-A-59-122899
The manufacturing method of No. 1 requires a step of supporting the filler material as a slurry on the fired cordierite honeycomb and then re-firing it, so compared to the present invention, it is more likely to cause cell clogging, resulting in higher costs. There is. (Problems to be Solved by the Invention) The purpose of the present invention is to provide a highly airtight cordierite honeycomb structure that achieves both airtightness and low expansion, which are the problems of conventional cordierite ceramics. do. (Means for solving the problem) The present inventors used talc with an average particle size of 7 μm or less and kaolin with an average particle size of 2 μm or less and 1/3 or less of the talc average particle size. The total pore volume with a diameter of 5 μm or more is 0.04
cc/g or less, porosity is 30% or less to make it substantially airtight, and the coefficient of thermal expansion between 40 and 800℃ is 1.0×
10 -6 /℃ or less. Setting the average particle size of talc to 7 μm or less is effective in reducing the pore size. Furthermore, using kaolin with a diameter of 2 μm or less is effective in suppressing porosity. Furthermore, the combination of talc with an average particle size of 7 μm or less and kaolin with an average particle size of 1/3 or less of the talc average particle size promotes the orientation of cordierite crystals in the cell walls of the cordierite honeycomb structure. This contributes to low expansion. The particle sizes of talc and kaolin were determined from the average particle size based on the blended weight ratio of raw and calcined products. The present inventors also found that the chemical composition of the honeycomb structure is 42 to 56% by weight of SiO2 , preferably 47 to 56% by weight.
53 wt%, 30-45 wt% in Al2O5 preferably 32
~38% by weight, preferably 12-16% by weight in MgO
It has been found that 12.5 to 15% by weight is suitable. The honeycomb structure may contain other unavoidable components such as TiO 2 , CaO, KNaO, Fe 2 O 3 in a total amount of 2.5% by weight or less, but P 2 O 5
is preferably less than 0.1%. The reason for limiting these values is to make the main component of the crystalline phase the cordierite phase and to remove the high expansion glass phase generated from impurities. Furthermore, the present inventors have determined that when firing a dried honeycomb structure body, the temperature is raised at an average rate of 20 to 60 °C/h in the temperature range of 1100 to 1350 °C just before reaching the firing temperature. After that, it was found that it is preferable to perform the firing at a firing temperature of 1350 to 1440°C. If the heating rate is less than 20°C/h, the coefficient of thermal expansion will be large, and if it is higher than 60°C/h, the pore diameter during firing will be large and the airtightness will be poor. A suitable range is usually 30 to 50°C/h. Moreover, by firing at a temperature of 1350 to 1440°C, the main component of the crystal phase can be made into a cordierite phase. The cell density of the honeycomb structure is 62 cells/cm 2 (400
The reason why the rib thickness is set to 203 μm (8 mil) or less is to make the honeycomb structure a heat exchanger with high heat exchange efficiency and low pressure loss. There is no particular limitation on the shape of the cells, but they can be of various shapes, such as triangular, square, rectangular, hexagonal, and other shapes with fins. The total pore volume of pores with a diameter of 5 μm or more is 0.04 cc/
The reason for limiting the amount to less than 0.026 cc/g is that, as shown in Figure 1, fluid leakage through the thin walls of such a honeycomb structure is mainly limited to 0.026 cc/g or less.
This is because the pores are larger than m. In order to satisfy this condition, the porosity is preferably at least 30% or less. In the present invention, when talc and kaolin are made into fine particles,
It also includes the use of calcined talc and calcined kaolin, which are effective in suppressing the occurrence of cracks in honeycomb structures due to shrinkage during drying and firing. If the calcining temperature of talc or kaolin is increased, it will increase the porosity and the coefficient of thermal expansion, so when using a calcined product, it is preferable to keep the calcining temperature as low as possible. The effects of the present invention cannot be obtained unless fine particles having a particle size similar to that of the raw raw material are used. Other cordierite forming raw materials, such as alumina source raw materials such as alumina and aluminum hydroxide, and silica source raw materials such as silica and silica sand, that have been conventionally used can be used, but the amount of impurities such as alkali in the chemical composition is appropriate. It is necessary to optimize the particle size, such as cutting of coarse particles, depending on the rib thickness of the honeycomb structure to be manufactured. Therefore, in the chemical composition of the present invention, SiO 2 is preferably 42 to 56% by weight, preferably 47 to 53% by weight, Al 2 O 3 is 30 to 45% by weight, preferably 32 to 38% by weight, and MgO is preferably 12 to 16% by weight. talc with an average particle size of 7 μm or less, kaolin with an average particle size of 2 μm or less and 1/3 of the average particle size of talc, and other cordierite forming raw materials are mixed so that the amount is 12.5 to 15% by weight. A plasticizer and a binder are added to this mixture to make a plasticized deformable batch, and this plasticized batch is molded by extrusion molding and then dried. In the temperature range of °C, the temperature is raised at an average heating rate of 20 to 60 °C/hour, and then fired at a firing temperature of 1350 to 1440 °C. A cordierite honeycomb structure with a total pore volume of 5 μm or more pores of 0.04 cc/g or less, a porosity of 30%, and a thermal expansion coefficient of 1.0 × 10 -6 /°C or less between 40 and 800°C. It is manufactured. Firing is usually carried out for 0.5 to 12 hours. The main component of the honeycomb structure is 90% by weight or more of cordierite. Other crystals are mainly mullite and spinel (including saphirin), each of which accounts for 2.5% by weight or less. The total pore volume of the honeycomb structure is 0.04 for pores larger than 5 μm.
When the pressure is below cc/g, especially below 0.026cc/g,
When the leakage rate is 1.4 Kg/cm 2 , the leakage rate is 100 g/sec·m 2 or less, especially 50 g/sec·m 2 or less, making it substantially airtight, making it suitable for use as a heat exchanger. (Function) The present invention has a honeycomb structure in which the total pore volume of pores of 5 μm or more is 0.04 cc/g or less and the porosity is 30%.
Since it is small, the amount of leakage is small and the heat exchange efficiency is high. Also, the thermal expansion coefficient is 1.0× at 40 to 800℃
It has high thermal shock resistance as it is small at less than 10 -6 /℃.
In addition, since the rib thickness can be made as thin as 203 μm (8 mil) or less, pressure loss is small, and high-density cells can be achieved, making it possible to obtain a ceramic heat exchanger with high heat exchange efficiency. Furthermore, since the pore diameter is small and the porosity is small, the strength of the honeycomb structure is higher than that of conventional honeycomb structures, and the walls can be made thinner. The present invention will be described in more detail below with reference to Examples and Comparative Examples. Example 1 The raw materials having the chemical analysis values and particle sizes shown in Table 1 below were mixed into batches No. 1 to No. 30 in Table 2 according to the mixing ratio, talc particle size, and kaolin particle size shown in Table 2.
4.5 parts by weight of methyl cellulose and added water were added to 100 parts by weight, and the mixture was kneaded to obtain an extrudable clay. The raw material used here was one that had passed through a sieve with a mesh size of 63 μm. Next, each batch of clay was molded into ribs with a thickness of 120μ by a known extrusion method.
A cylindrical honeycomb structure with a diameter of 93 mm and a height of 100 mm, having a rectangular cell structure with 167 cells per square centimeter and a short side/long side = 1/1.73 was molded. After drying, the honeycomb structures of each batch were fired under the firing conditions shown in Table 2, and the characteristics of the sintered bodies were the coefficient of thermal expansion at 40°C to 800°C, porosity, and total pore size of 5 μm or more. The volume, leakage amount, amount of cordierite crystals, and thermal shock resistance were evaluated. The evaluation results are also shown in Table 3. In addition, P 2 O 5 was less than 0.1% in the chemical composition of the sintered bodies of all batches. Example 2 The batch No. 4 in Table 2 was extruded using a die with a different cell structure in the same manner as in Example 1, and fired to form a batch with a diameter of 93 mm having the cell structure shown in Table 3.
mm, height 100mm cylindrical honeycomb structure No.31~No.
40 were manufactured. The pressure drop, leakage amount, and coefficient of thermal expansion (CTE) of each honeycomb structure were evaluated. The evaluation results are also shown in Table 3.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 *3 水銀圧入法
*4 加圧空気圧1.4Kg/cm2、テストピース形状75mm
φ×60mm外壁なしのハニカム構造体で測定。測定法は
、米国DOE/NASA/0008−12、NASACR−
165139“セラミツクリジエネレーターシステムデ
ベロツプメント〓プログラム−フアイナル〓レポート”
P213に準じた。
*5 X線回析ZnO内部標準による定量値
*6 電気炉へ投入、30分保持、室温取出しでの耐久
温度
*7 No.18焼成物にガラス粉末、コージエライト粉
末を担持量20%になるように開気孔付着処理を実施
[Table] *3 Mercury intrusion method *4 Pressurized air pressure 1.4Kg/cm 2 , test piece shape 75mm
Measured using a honeycomb structure with a diameter of 60 mm and no outer wall. The measurement method is US DOE/NASA/0008-12, NASACR-
165139 “Ceramic Regenerator System Development Program - Final Report”
According to P213.
*5 Quantitative value based on X-ray diffraction ZnO internal standard *6 Endurance temperature when placed in an electric furnace, held for 30 minutes, and taken out at room temperature *7 No. 18 fired product has glass powder and cordierite powder supported at 20% Open pore adhesion treatment is carried out on

【表】 実際の例として、第4図および第5図に複数個
のコージエライト質マトリツクスセグメントより
構成される回転蓄熱式熱交換体の一例を示す。 (発明の効果) 以上、第2表と第3表に示す通り、本発明によ
れば、5μm以上の細孔の総細孔容積が0.04c.c./g
以下で、熱膨張係数が1.0×10-6/℃以下の、耐
熱衝撃性に優れ、リーク量が極めて小さく、熱交
換効率に優れたハニカム構造体が得られる。従つ
て本発明は産業上極めて有用である。
[Table] As an actual example, FIGS. 4 and 5 show an example of a rotary regenerative heat exchanger composed of a plurality of cordierite matrix segments. (Effects of the Invention) As shown in Tables 2 and 3, according to the present invention, the total pore volume of pores of 5 μm or more is 0.04 cc/g.
In the following, a honeycomb structure having a coefficient of thermal expansion of 1.0×10 −6 /° C. or less, excellent thermal shock resistance, extremely small amount of leakage, and excellent heat exchange efficiency can be obtained. Therefore, the present invention is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2表のバツチを含みさらに他の実験
例を含めて5μmの細孔容積とテストピースリー
ク量の関係を示す図、第2図は第1表のタルクA
〜Eの粒度分布曲線を示す図、第3図は第1表の
カオリンA〜Eの粒度分布曲線を示す図、第4図
及び第5図は複数個のコージエライト質マトリツ
クスセグメントより構成される回転蓄熱式熱交換
体を示す図である。
Figure 1 is a diagram showing the relationship between 5μm pore volume and test piece leakage amount, including batches in Table 2 and other experimental examples, and Figure 2 is a diagram showing the relationship between talc A in Table 1.
Figure 3 is a diagram showing the particle size distribution curves of kaolins A to E in Table 1. Figures 4 and 5 are composed of a plurality of cordierite matrix segments. FIG. 2 is a diagram showing a rotating regenerative heat exchanger.

Claims (1)

【特許請求の範囲】 1 化学組成でSiO2が42〜56重量%、Al2O3が30
〜45重量%、MgOが12〜16重量%となるように
平均粒子径7μm以下のタルク、平均粒子径2μm
以下でかつタルク平均粒子径の1/3以下の平均粒
子径のカオリン及び他のコージエライト化原料を
混合し、この混合物に可塑剤及び粘結剤を加えて
可塑化した変形可能なバツチとし、この可塑化し
たバツチを押出し成形法により成形後乾燥し、こ
の乾操物を焼成温度に達する直前の1100〜1350℃
の温度領域では20〜60℃/時の平均昇温速度にて
昇温し、次いで1350〜1440℃の焼成温度にて焼成
することを特徴とするコージエライトハニカム構
造体の製造方法。 2 平均粒子径5μm以下のタルクを用いる特許
請求の範囲第1項記載の製造方法。 3 平均粒子径1μm以下のカオリンを用いる特
許請求の範囲第1項記載の製造方法。
[Claims] 1. Chemical composition: 42 to 56% by weight of SiO 2 and 30% by weight of Al 2 O 3
~45% by weight, talc with an average particle size of 7 μm or less, with an average particle size of 2 μm so that MgO is 12-16% by weight
Kaolin and other cordierite-forming raw materials having an average particle size of 1/3 or less of the average particle size of talc are mixed, and a plasticizer and a binder are added to this mixture to make a plasticized deformable batch. The plasticized batch is molded by extrusion and then dried, and the dried product is heated at 1100 to 1350℃ just before reaching the firing temperature.
A method for producing a cordierite honeycomb structure, characterized in that the temperature is raised at an average temperature increase rate of 20 to 60°C/hour in the temperature range of 20 to 60°C, and then fired at a firing temperature of 1350 to 1440°C. 2. The manufacturing method according to claim 1, using talc having an average particle diameter of 5 μm or less. 3. The manufacturing method according to claim 1, using kaolin having an average particle diameter of 1 μm or less.
JP60293691A 1985-12-27 1985-12-27 Cordierite honeycom structure and manufacture Granted JPS62182158A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP60293691A JPS62182158A (en) 1985-12-27 1985-12-27 Cordierite honeycom structure and manufacture
EP86310130A EP0227482B1 (en) 1985-12-27 1986-12-24 Cordierite honeycomb structural body and method of producing the same
EP86310131A EP0232621B1 (en) 1985-12-27 1986-12-24 Catalyst carrier of cordierite honeycomb structure and method of producing the same
DE8686310130T DE3680496D1 (en) 1985-12-27 1986-12-24 CORDIERITE ITEM WITH HONEYCOMB STRUCTURE AND METHOD FOR THEIR PRODUCTION.
DE8686310131T DE3671390D1 (en) 1985-12-27 1986-12-24 CATALYST SUPPORT WITH CORDIERITE HONEYCOMB STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF.
US06/946,901 US4877670A (en) 1985-12-27 1986-12-29 Cordierite honeycomb structural body and method of producing the same
US07/320,629 US5030398A (en) 1985-12-27 1989-03-08 Method of producing a cordierite honeycomb structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293691A JPS62182158A (en) 1985-12-27 1985-12-27 Cordierite honeycom structure and manufacture

Publications (2)

Publication Number Publication Date
JPS62182158A JPS62182158A (en) 1987-08-10
JPH0437028B2 true JPH0437028B2 (en) 1992-06-18

Family

ID=17797984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293691A Granted JPS62182158A (en) 1985-12-27 1985-12-27 Cordierite honeycom structure and manufacture

Country Status (1)

Country Link
JP (1) JPS62182158A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6461368A (en) * 1987-09-01 1989-03-08 Showa Kogyo Kk Porous ceramic for adsorption of oils
DE3808348C1 (en) * 1988-03-12 1989-09-07 Hoechst Ceramtec Ag, 8672 Selb, De
JP2553192B2 (en) * 1989-03-29 1996-11-13 日本碍子株式会社 Firing method of ceramic honeycomb structure
ATE427922T1 (en) * 1997-12-02 2009-04-15 Corning Inc METHOD FOR PRODUCING HONEYCOMB BODY FROM LOW EXPANSION CORDIERITE
EP1200369B1 (en) * 1999-06-11 2006-08-16 Corning Incorporated Low expansion, high porosity, high strength cordierite body and method
US7758688B2 (en) * 2003-03-19 2010-07-20 Imerys Kaolin, Inc. Unusually narrow particle size distribution calcined kaolins
JP2008119664A (en) * 2006-11-15 2008-05-29 Denso Corp Manufacturing method of exhaust gas purifying filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141667A (en) * 1983-12-28 1985-07-26 日本碍子株式会社 Material for ceramic honeycomb structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60141667A (en) * 1983-12-28 1985-07-26 日本碍子株式会社 Material for ceramic honeycomb structure

Also Published As

Publication number Publication date
JPS62182158A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
US4877670A (en) Cordierite honeycomb structural body and method of producing the same
US4001028A (en) Method of preparing crack-free monolithic polycrystalline cordierite substrates
US7071135B2 (en) Ceramic body based on aluminum titanate and including a glass phase
KR100931755B1 (en) Strontium Feldspa Aluminum Titanate for High Temperature
US7001861B2 (en) Aluminum titanate-based ceramic article
US4295892A (en) Cordierite ceramic honeycomb and a method for producing the same
US6942713B2 (en) Ceramic body based on aluminum titanate
US4772580A (en) Catalyst carrier of cordierite honeycomb structure and method of producing the same
EP1337495B1 (en) Lithium aluminosilicate ceramic
EP0227482B1 (en) Cordierite honeycomb structural body and method of producing the same
JPH0260630B2 (en)
US6770111B2 (en) Pollucite-based ceramic with low CTE
US6468325B1 (en) Method of making phosphate-based ceramic filters
JPH0582343B2 (en)
JPH013067A (en) Manufacturing method of cordierite honeycomb structure
US6933255B2 (en) Beta-spodumene ceramics for high temperature applications
JPH0437028B2 (en)
EP0992467B1 (en) Production of porous mullite bodies
JPH0470053B2 (en)
JPH0212898B2 (en)
JPH066506B2 (en) Low expansion ceramics manufacturing method
JP3928673B2 (en) Cordierite ceramic sintered body, composition therefor and production method therefor
JPS61256965A (en) Manufacture of cordierite ceramic
JPS61168563A (en) Manufacture of cordierite ceramic honeycomb
JPH0242787B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term