[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0437658A - Combined material and its production - Google Patents

Combined material and its production

Info

Publication number
JPH0437658A
JPH0437658A JP13918290A JP13918290A JPH0437658A JP H0437658 A JPH0437658 A JP H0437658A JP 13918290 A JP13918290 A JP 13918290A JP 13918290 A JP13918290 A JP 13918290A JP H0437658 A JPH0437658 A JP H0437658A
Authority
JP
Japan
Prior art keywords
intermetallic compound
insert
insert material
heat treatment
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13918290A
Other languages
Japanese (ja)
Other versions
JP3259959B2 (en
Inventor
Kohei Taguchi
功平 田口
Shigemi Sato
繁美 佐藤
Tomohiko Ayada
倫彦 綾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP13918290A priority Critical patent/JP3259959B2/en
Publication of JPH0437658A publication Critical patent/JPH0437658A/en
Application granted granted Critical
Publication of JP3259959B2 publication Critical patent/JP3259959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To join a heat resistant member of an intermetallic compd. or a high m.p. metal and a functional member such as a superconducting member with high quality at a low cost by joining first and second members with an insert forming an intermetallic compd. in-between. CONSTITUTION:When first and second members are joined to each other with an insert in-between to produce a combined material, a mixture contg. plural kinds of elements mixed in such a ratio as to enable the formation of an intermetallic compd. is used as the material of the insert. This insert is positioned between the members and they are heat-treated at a temp. at which the intermetallic compd. is formed. The members are joined to each other with heat generated during the formation of the intermetallic compd.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、インサート材として金属間化合物を利用する
複合材とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a composite material using an intermetallic compound as an insert material and a method for manufacturing the same.

[従来の技術] 金属間化合物は耐熱性1耐酸化性、耐摩耗性等に優れし
かも軽量に構成でき、また、超電導等の機能性を有する
などの優れた性質をもつため、各種用途に使われる素材
としてきわめて有望視されている。
[Conventional technology] Intermetallic compounds have excellent properties such as excellent heat resistance, oxidation resistance, wear resistance, etc., can be constructed lightweight, and have functionality such as superconductivity, so they are used in various applications. It is seen as an extremely promising material.

金属間化合物の例として、Ti−Al系、 Ni−Al
系。
Examples of intermetallic compounds include Ti-Al system, Ni-Al
system.

N1−Tl系、 Co−Tl系、 Pc−Al系、 N
o−Al系。
N1-Tl system, Co-Tl system, Pc-Al system, N
o-Al system.

No−8j系、1−b−^1系、 Ti−3t系等の2
元系や、Fe−A I −3i系、 Al−Ga−As
系等の多元系が知られている。具体的には、構造材とし
て、Ti^l、 Tii At。
2 such as No-8j series, 1-b-^1 series, Ti-3t series, etc.
elemental system, Fe-A I-3i system, Al-Ga-As
Multidimensional systems such as the system are known. Specifically, Ti^l, Tii At are used as structural materials.

^L Ti、 Co3 Ti、 Nii^l、 Ni^
l、 Fe^3803 A18 。
^L Ti, Co3 Ti, Nii^l, Ni^
l, Fe^3803 A18.

MO3I2 、 Nb3 Al、 Ti、S]3等か知
られている。また形状記憶効果を有するT1Ni、 C
uZn等や、超電導材料としてNba Sn、  V3
 Ga、  Nbi Ga、 Nbx Ge等、磁性材
料としてFe、  (Al5i) 、5IIICo、 
、、半導体及びその他の機能性材料として1nsb、 
GaAs。
MO3I2, Nb3Al, Ti, S]3, etc. are known. In addition, T1Ni, which has a shape memory effect, C
uZn etc., Nba Sn, V3 as a superconducting material
Ga, Nbi Ga, Nbx Ge, etc., as magnetic materials Fe, (Al5i), 5IIICo,
, 1nsb as semiconductor and other functional materials,
GaAs.

B1□Te+ 、 Zn5e等、その他にも多くのもの
がある。
There are many others, such as B1□Te+ and Zn5e.

金属間化合物を利用する製品例としては、高温で使用さ
れる外壁材や、タービン部材、ピストンやバルブシステ
ム等のエンジン部品、弾性部材、あるいは超電導等の各
種金属間化合物に固有の優れた性質を生かした機能部品
などが考えられる。
Examples of products that utilize intermetallic compounds include external wall materials that are used at high temperatures, turbine components, engine parts such as pistons and valve systems, elastic components, and superconductors that exhibit the unique properties of various intermetallic compounds. Functional parts that take advantage of this can be considered.

[発明が解決しようとする課題] 金属間化合物は上記のように優れた性質を有する反面、
接合に困難を伴う。例えば、電子ビーム溶接法によって
接合を行なう場合、溶接部において結晶粒の粗大化を生
じたり、実用上無視できない程大きな欠陥か生じること
がある。ろう付けや接着剤による接合も考えられるが、
接合部の耐熱性や機械的性質や固有の機能性等が母材よ
りも劣る。
[Problems to be solved by the invention] Although intermetallic compounds have excellent properties as described above,
Difficult to join. For example, when joining is performed by electron beam welding, crystal grains may become coarse in the welded portion, or defects may occur that are too large to be ignored in practical terms. Bonding using brazing or adhesives is also possible, but
The heat resistance, mechanical properties, and inherent functionality of the joint are inferior to those of the base material.

また、接合部を加圧しつつ加熱することによって高温下
で接合させることも考えられるか、接合部が軟化する温
度まで加熱されると所定の形状を維持することが困難と
なる。
It is also conceivable to join at a high temperature by heating the joint while applying pressure, or if the joint is heated to a temperature at which it softens, it becomes difficult to maintain a predetermined shape.

従って本発明の目的は、金属間化合物や高融点金属のよ
うに耐熱性を有する部材同志または!!3電導等の機能
部品を高品質かつ安価に接合でき、接合時の加熱温度か
比較的低くてすみ、接合部か母材に劣らない性能を発揮
できるような接合部の組織、欠陥等の制御がなされた複
合材とその製造方法を提供することにある。
Therefore, the object of the present invention is to combine members having heat resistance such as intermetallic compounds and high melting point metals or! ! Control of structure, defects, etc. of the joint so that functional parts such as 3-conductors can be joined at high quality and at low cost, the heating temperature during joining can be relatively low, and the joint can perform as well as the base material. The object of the present invention is to provide a composite material and a manufacturing method thereof.

口課題を解決するための手段〕 上記目的を果たすために開発された本発明の複合材は、
例えば金属間化合物や合金あるいは高融点金属、半導体
、セラミックスのように耐熱性や機能性を有する第1の
部材と第2の部材とがインサート材を介して互いに接合
された複合材であって、上記インサート材に金属間化合
物を用いたものである。
[Means for Solving the Problems] The composite material of the present invention developed to achieve the above objectives is as follows:
A composite material in which a first member and a second member having heat resistance and functionality, such as intermetallic compounds, alloys, high melting point metals, semiconductors, and ceramics, are joined to each other via an insert material, An intermetallic compound is used for the insert material.

上記複合材を得るための本発明方法は、第1の部材と第
2の部材とをインサート材を介して互いに接合する場合
に、上記インサート材の材料に金属間化合物を形成可能
な刊成比で混合された複数元素を含有する混合体を用い
、このインサート材を第1の部材と第2の部材とにわた
って位置させかつ金属間化合物が形成される温度で熱処
理することにより、金属間化合物形成時の発熱によって
上記第1の部材と第2の部材を互いに接合させることを
特徴とする。
The method of the present invention for obtaining the above-mentioned composite material is characterized in that when a first member and a second member are joined to each other via an insert material, the material of the insert material has a specific composition ratio that allows the formation of an intermetallic compound. Forming an intermetallic compound by positioning the insert material across the first member and the second member and heat-treating it at a temperature at which the intermetallic compound is formed. The first member and the second member are bonded to each other by heat generated at the time.

第1図に本発明方法による複合材製造工程の概略を示し
ている。
FIG. 1 shows an outline of the composite material manufacturing process according to the method of the present invention.

上記熱処理において、HP、HIP等の適宜の方法で加
圧するとよい場合がある。その際に一部ブレスあるいは
二輪プレス等によって接合部を特定の方向から部材の自
重以上に加圧することにより、金属間化合物形成時のイ
ンサート材に剪断応力を伴う流動を生じさせると、更に
好ましい結果が得られることがある。
In the above heat treatment, it may be advantageous to apply pressure by an appropriate method such as HP or HIP. At this time, it is possible to create a flow accompanied by shear stress in the insert material during the formation of the intermetallic compound by applying pressure to the joint from a specific direction using a partial press or a two-wheel press, etc. to a degree that is greater than the weight of the member itself, resulting in even more favorable results. may be obtained.

上記インサート材に使われる混合体の原料は、少なくと
も一部が金属間化合物形成前の金属材料から構成されて
いる必要があるが、一部に金属間化合物を含んでいても
よい。また、接合後の複合材の諸特性を改善する目的、
あるいは所望の部品形状への成形の容易化を図る目的で
、適宜の元素や酸化物、窒化物、炭化物等の化合物が含
まれていてもよい。上記原料は純金属の塊である必要は
なく、固溶体であってもよいし、めっき等によってつく
られた複合体であってもよい。混合前の原料の形態の例
は、粉末1 フレーク状、線材、箔等である。
The raw material of the mixture used for the insert material needs to be at least partially composed of a metal material before the formation of an intermetallic compound, but it may partially contain an intermetallic compound. In addition, the purpose of improving various properties of composite materials after joining,
Alternatively, appropriate elements and compounds such as oxides, nitrides, and carbides may be included for the purpose of facilitating molding into a desired part shape. The raw material does not need to be a pure metal lump, and may be a solid solution or a composite made by plating or the like. Examples of the form of the raw materials before mixing are powder 1 flake, wire, foil, etc.

上記混合体を構成する原料の混合方法ないし圧着方法は
、j5;1料か粉末あるいはフレーク状である場合、■
型混合機、ボールミル、ミキサ等によって混合したもの
を押出すか、金型プレスあるいはホットプレスまたはC
AP (冷間等方圧プレス成形)もしくはHIPによっ
て圧着させる。また、混合された上記力;ミ料を金属バ
イブに詰めるなとして、スェージングマシンによって所
定の外径にデよるまで鍛造するようにしてもよい。
The method of mixing or pressing the raw materials constituting the above mixture is j5; If the raw materials are in the form of powder or flakes,
Extrude the mixture using a mold mixer, ball mill, mixer, etc., or press with a mold press, hot press, or C.
Pressure bonding is performed by AP (cold isostatic pressing) or HIP. Alternatively, instead of filling the metal vibrator with the mixed force/mixture, the metal vibrator may be forged using a swaging machine until it has a predetermined outer diameter.

線状原料の場合には、原料の線を束ねるかまたは撚り合
わせたのち、伸線機あるいはスェージングマシン、押出
し機等を使って線同志を圧着させる。箔状原料の場合に
は、箔を厚み方向に積層するかあるいは積層後に巻いた
状態で、圧延装置あるいはスェージングマシン、押出し
機により圧着させる。
In the case of linear raw materials, the raw material wires are bundled or twisted together, and then the wires are crimped together using a wire drawing machine, swaging machine, extruder, or the like. In the case of foil-like raw materials, the foils are laminated in the thickness direction or rolled up after being laminated and then pressed together using a rolling device, swaging machine, or extruder.

上記混合圧着体の成形工程は冷間で行ってもよいか、成
形時の変形抵抗を減少させるために温間て行ってもよい
。温間で成形する場合、金属間化合物か形成される温度
以下であることが好ましいか、組織の一部に金属間化合
物を生じる程度の短時間で成形か終了するなら、金属間
化合物が形成される温度以上の温間て成形を行ってもよ
い。
The molding process of the above-mentioned mixed press-bonded body may be performed coldly or warmly in order to reduce the deformation resistance during molding. In the case of warm forming, it is preferable that the temperature is below the temperature at which intermetallic compounds are formed, or if forming is completed in a short enough time to form intermetallic compounds in a part of the structure, intermetallic compounds will not be formed. The molding may also be carried out at a temperature higher than the temperature.

また上記成形工程は、適宜の方法により、大気中もしく
は真空中、不活性ガスあるいは酸化還元雰囲気ガス等、
あるいはこれら雰囲気を組合わせて行われてもよい。
In addition, the above-mentioned molding process may be performed in the air or vacuum, inert gas, redox atmosphere gas, etc. by an appropriate method.
Alternatively, a combination of these atmospheres may be used.

なお上記混合体は、第1の部材あるいは第2の部材のい
ずれか一方の接合予定部に、めっきゃ溶射、蒸着等によ
って被着させてもよい。あるいは、第1の部材と第2の
部材の双方の接合予定部に、それぞれ上記混合体を構成
する異種原料の被膜を形成しておき、これらを互いに密
接させることによって、実質的に混合体からなるインサ
ート材がつくり出されるようにしてもよい。
Note that the above-mentioned mixture may be applied to the joint portion of either the first member or the second member by thermal spraying, vapor deposition, or the like. Alternatively, coatings of different raw materials constituting the mixture are formed on the joint portions of both the first member and the second member, and by bringing them into close contact with each other, the mixture is substantially removed. Alternatively, an insert material may be created.

[作用] 所望の形状に加工された金属間化合物形成前のインサー
ト材は、第1の部材と第2の部材とにわたって設けられ
、金属間化合物が形成される温度まで加熱される。この
熱処理によって拡散または自己燃焼焼結を生し、金属間
化合物が形成されると同時に、金属間化合物形成時の発
熱もしくは自己燃焼反応熱により、第1の部材と第2の
部材とが接合される。自己発熱による温度は加熱温度よ
りも高くなる。なお、熱処理時の変形を小さくする上で
は、加熱温度を金属間化合物の同相線以下の温度域にす
るとよい。金属間化合物の形成を終わらせるには、上記
温度を一定時間維持する必要のある場合がある。温度が
低いと時間が長くかかる。
[Operation] The insert material, which has been processed into a desired shape and has not yet formed an intermetallic compound, is provided across the first member and the second member, and heated to a temperature at which the intermetallic compound is formed. This heat treatment causes diffusion or self-combustion sintering to form an intermetallic compound, and at the same time, the first member and the second member are joined due to the heat generated during the formation of the intermetallic compound or the heat of the self-combustion reaction. Ru. The temperature due to self-heating becomes higher than the heating temperature. In addition, in order to reduce deformation during heat treatment, it is preferable to set the heating temperature to a temperature range below the common phase line of the intermetallic compound. It may be necessary to maintain the temperature for a certain period of time to terminate the formation of intermetallic compounds. The lower the temperature, the longer it takes.

本発明によるインサート材を用いた接合のメカニズムは
、金属間化合物形成時の上記自己発熱によって不純物の
除去・拡散、あるいは接合部界面の酸化被膜が破壊され
ることや接合部界面が軟化もしくは一部か溶融して界面
の微細な凹凸が潰れ、双方か完全に密着することによる
分子間力ないし金属結合的な力、そして拡散によると考
えられる。
The bonding mechanism using the insert material according to the present invention is that the self-heating generated during the formation of an intermetallic compound removes and diffuses impurities, destroys the oxide film at the interface of the bond, or softens or partially softens the interface of the bond. This is thought to be due to the intermolecular force or metallic bonding force due to the melting of the two, crushing the fine irregularities at the interface, and the complete contact between the two, and diffusion.

従って、接合部に溶融・凝固組織か形成されることの防
止ないし軽減などの接合部の組織や欠陥の制御か容易に
なる。
Therefore, it becomes easy to control the structure and defects of the joint, such as preventing or reducing the formation of melted/solidified structures at the joint.

[実施例] 以下に本発明の実施例について、第2図ないし第5図を
参照して説明する。第3図に示された複合材Aの一例は
、金属間化合物(TiAl+T13Al)からなる第1
の部材]]と、同しく金属間化合物(Ti式1+Ti、
 AI)からなる第2の部材12とを、金属間化合物(
TiAl+Ti3^1)からなるイノサト材13によっ
て接合したものである。
[Example] Examples of the present invention will be described below with reference to FIGS. 2 to 5. An example of composite material A shown in FIG.
[Members]] and similarly intermetallic compounds (Ti formula 1+Ti,
and the second member 12 made of intermetallic compound (AI).
They are joined using Inosato material 13 made of TiAl+Ti3^1).

第2図に示す製造工程の一例は、上記インサト材13の
材料である混合圧着体の原料を混合する工程20と、混
合された原料を圧着して形状を付与する必要に応して行
われる混合圧管体製造工程21と、成形前熱処理工程2
2と、成形工程23と、第1の部材11を製造する工程
25と、第2の部材12を製造する工程26と、第1の
部材11および第2の部材12にインサート材13を仮
止めする工程30と、金属間化合物の形成温度まで加熱
する熱処理工程31と、必要に応じて実施される熱処理
後の加工工程32と、金属間化合物形成後の熱処理工程
33および仕上げ工程34を含んでいる。
An example of the manufacturing process shown in FIG. 2 includes a step 20 of mixing raw materials for the mixed press-bonded body, which is the material of the insert material 13, and a step 20 of mixing the raw materials of the mixed press-bonded body, which is performed as necessary to press the mixed raw materials to give a shape. Mixing pressure tube manufacturing process 21 and pre-forming heat treatment process 2
2, a molding step 23, a step 25 of manufacturing the first member 11, a step 26 of manufacturing the second member 12, and temporarily fixing the insert material 13 to the first member 11 and the second member 12. a heat treatment step 31 of heating to the formation temperature of the intermetallic compound, a processing step 32 after the heat treatment performed as necessary, a heat treatment step 33 after the formation of the intermetallic compound, and a finishing step 34. There is.

インサート材13の原料を混合する工程20においては
、−例としてガスアトマイズ法により作製した 350
メツシユ以FのAI粉末と、 350メツシユ以Fのス
ポンジT1粉末を重量分率でTi : Al −G49
o : 3B96の割合で、A「ガス置換された乾式ボ
ールミルを用いて混合する。この混合圧着体は、後述す
る熱処理工程3〕を経て、TiAl+Ti、+^1の金
属間化合物となる。
In the step 20 of mixing raw materials for the insert material 13, for example, 350
Ti: Al-G49 by weight fraction of AI powder with a mesh size of F or more and sponge T1 powder with a mesh size of more than 350 mesh F
o: 3B96, A is mixed using a gas-substituted dry ball mill. This mixed pressed body undergoes heat treatment step 3 to be described later, and becomes an intermetallic compound of TiAl+Ti, +^1.

なお、この混合圧着体にTi : Al−37,179
o :62.83%の割合で混合したものを用いた場合
には、下記熱処理工程3]を経ることにより、Al3T
jの金属間化合物からなるインサート材]3が得られる
Note that Ti: Al-37,179 was added to this mixed crimped body.
o: When using a mixture at a ratio of 62.83%, Al3T can be
An insert material made of the intermetallic compound of j] 3 is obtained.

また、この混合圧着体にTi : AI”= 68.4
26 : 31.6%の割合で混合したものを用いた場
合には、下記熱処理工程31を経ることにより、TiA
l+Tii Alの金属間化合物からなるインサート材
13か得られる。
In addition, Ti: AI”=68.4 for this mixed crimped body
26: When using a mixture at a ratio of 31.6%, the TiA
An insert material 13 made of an intermetallic compound of l+Tii Al is obtained.

必要に応じて行われる混合圧着体の製造工程21におい
ては、金型プレスを用いて、所望形状の混合圧着体(こ
の場合、圧粉体)を得る。なお、金型プレスの代りに、
上記混合原料をパイプに詰め、ロータリスェージング等
によって各種形状に圧着させるようにしてもよい。
In the manufacturing process 21 of the mixed pressed body, which is carried out as necessary, a mold press is used to obtain a mixed pressed body (in this case, a green compact) having a desired shape. In addition, instead of a mold press,
The mixed raw material may be packed into a pipe and pressed into various shapes by rotary swaging or the like.

上記工程21が終了したのち、必要に応じて例えば真空
中で行われる焼鈍等の成形前熱処理工程22を実施する
ことにより、前記工程21て混合圧着体を製造した時の
加工歪を除去し、変形抵抗を減少させる。また、混合圧
着体の圧着面を拡散によって強固なものとし、強度を向
上させる。
After the above step 21 is completed, if necessary, a pre-forming heat treatment step 22 such as annealing performed in a vacuum is performed to remove the processing strain when the mixed pressed body is manufactured in the above step 21, Reduce deformation resistance. Further, the pressure bonding surface of the mixed pressure bonded body is made stronger by diffusion, and the strength is improved.

成形前熱処理工程22は、混合体もしくは混合圧着体の
不純物成分を拡散または除去する効果もある。この熱処
理工程22は、大気中もしくは真空中、不活性ガスある
いは酸化還元界12I]気カス等、あるいはこれら雰囲
気を絹合わせて行われてもよい。処理温度は金属間化合
物が形成される温度以下か一般的であるか、圧着面の一
部に金属間化合物かできる程度の短時間の加熱であるな
ら金属間化合物が形成される温度以上であってもかまわ
ない。特にTi−Al系の場合は200℃〜600℃の
範囲がよい。
The pre-forming heat treatment step 22 also has the effect of diffusing or removing impurity components in the mixture or mixed pressed body. This heat treatment step 22 may be carried out in the air or vacuum, in an inert gas, a redox field, etc., or a combination of these atmospheres. The processing temperature is generally below the temperature at which intermetallic compounds are formed, or, if the heating is short enough to form an intermetallic compound on a part of the bonded surface, it is above the temperature at which an intermetallic compound is formed. It doesn't matter. In particular, in the case of Ti-Al system, the temperature range is preferably from 200°C to 600°C.

上記工程21によって得られた混合圧着体に、成形工程
23によって鍛造あるいは機械加工等を行ってもよい。
The mixed pressed body obtained in step 21 may be forged or machined in forming step 23.

但し、前記工程21によって所望の形状か得られる場合
は、上記熱処理工程22および成形工程23を省略して
もよい。
However, if the desired shape can be obtained by the step 21, the heat treatment step 22 and the molding step 23 may be omitted.

第1の部材11の製造工程25においては、例としてガ
スアトマイズ法により作製した350メツシユ以下のA
1粉末と 350メツシユ以下のスポンジTi粉末を、
型皿分率てTi : AI−68,4% : 31.6
°0ノ割合で、Arガス置換された乾式ボールミルを用
いて混合する。そののち、金型プレスあるいはパイプに
詰めてスェージング加工するなとして、所望形状の混合
圧着体を得る。なお、この混合圧着体をインサート材1
3の場合と同様の工程によって成形するようにしてもよ
い。この混合圧着体を熱処理することによって、金属間
化合物(TiAl +T13Al)からなる第1の部材
11か得られる。
In the manufacturing process 25 of the first member 11, for example, an A of 350 mesh or less produced by a gas atomization method is used.
1 powder and sponge Ti powder of 350 mesh or less,
Mold plate fraction Ti: AI-68,4%: 31.6
Mixing is performed at a ratio of 0° using a dry ball mill purged with Ar gas. Thereafter, a pressed mixed body having a desired shape is obtained without performing swaging processing by filling it into a mold press or pipe. Note that this mixed crimped body is used as insert material 1
The molding may be performed using the same steps as in case 3. The first member 11 made of an intermetallic compound (TiAl + T13Al) is obtained by heat-treating this mixed pressed body.

第2の部材12の製造工程26においても、第1の部材
11の製造工程25と同様のプロセスを経ることにより
、金属間化合物(TiAI+T13Al)からなる第2
の部材12を得る。
In the manufacturing process 26 of the second member 12 as well, by going through the same process as the manufacturing process 25 of the first member 11, a second
A member 12 is obtained.

なお製造工程25.26における製造方法は、上記方法
以外に、粉末焼結、鋳造、鍛造1機械加工等やこれらを
組合わせた方法のいずれてもよく、製造方法は限定され
ない。
In addition to the above-mentioned methods, the manufacturing method in manufacturing steps 25 and 26 may be powder sintering, casting, forging and machining, or a combination thereof, and the manufacturing method is not limited.

上記工程を経て得られた金属間化合物からなる第1の部
材11と第2の部材12との間に、金属間化合物形成前
のインサート材(混合圧着体)13を位置させ、互いに
密接させた状態で仮止めするとよい場合がある。仮+h
め方法としては、線材で縛ったり、凹凸嵌合、圧接、摩
擦圧接、接着剤、ろう付け、ボルト止め笠か採用される
An insert material (mixed crimped body) 13 before the formation of the intermetallic compound was placed between the first member 11 and the second member 12 made of the intermetallic compound obtained through the above steps, and brought into close contact with each other. In some cases, it may be better to temporarily fix it. Temporary + h
Methods of attachment include tying with wire, concave-convex fitting, pressure welding, friction welding, adhesives, brazing, and bolting.

上記部材11.12とインサート材13は、図示しない
加熱装置によって、例えば真空雰囲気中で金属間化合物
か形成される温度まで加熱されるとともに、例えば図示
矢印方向に700kgr/cm2の圧力で加圧する。
The members 11, 12 and the insert material 13 are heated, for example, in a vacuum atmosphere to a temperature at which an intermetallic compound is formed by a heating device (not shown), and are pressurized, for example, at a pressure of 700 kgr/cm2 in the direction of the arrow in the figure.

この熱処理工程31において、インサート材13として
の前記混合圧着体は自己燃焼焼結により金属間化合物を
形成すると同時に発熱し、第1の部材】1と第2の部材
]2との接合界面において拡散結合することなとにより
一体化する。
In this heat treatment step 31, the pressed mixed body as the insert material 13 forms an intermetallic compound by self-combustion sintering and generates heat at the same time, causing diffusion at the bonding interface between the first member 1 and the second member 2. To become one by combining.

熱処理工程31において、インサート材13がTi−A
l系の場合は、50kgf /’ cm 2以上に加圧
するとよい。これ以下の圧力では、複合材の強度が極端
に低下する。さらに高強度な複合材を得るためには、2
00 kgf / cm 2以上に加圧するとよい。
In the heat treatment step 31, the insert material 13 is made of Ti-A.
In the case of 1 type, it is preferable to pressurize to 50 kgf/'cm 2 or more. If the pressure is lower than this, the strength of the composite material will be extremely reduced. In order to obtain a composite material with even higher strength, 2
It is preferable to pressurize to 00 kgf/cm2 or more.

Ti−Al系の場合の熱処理上程3]における熱処理温
度は400℃以上かよい。400℃以下では、処理時間
か長くかかる。また、Tj−Al系の場合の雰囲気は、
高強度な複合材をjllるt:めには、真空中で行なう
のか特によい。大気中で行なうと酸化か進行し、強度か
低下する場合がある。
In the case of Ti-Al system, the heat treatment temperature in the heat treatment step 3] may be 400° C. or higher. If the temperature is below 400°C, the processing time will be longer. In addition, the atmosphere in the case of Tj-Al system is
For high-strength composite materials, it is especially good to carry out the process in a vacuum. If done in the atmosphere, oxidation may progress and strength may decrease.

TiAlの標準生成熱はΔH298=  75KJ/ 
molであり、金属間化合物形成時に発生する熱量か外
部に逃げない場合の複合体の温度は、TiAlの融点以
上になり、十分な発熱か得られる。なおΔH298は一
40KJ/mol以下であると効果か大きい。
The standard heat of formation of TiAl is ΔH298 = 75KJ/
mol, and if the amount of heat generated during the formation of the intermetallic compound does not escape to the outside, the temperature of the composite will be equal to or higher than the melting point of TiAl, and sufficient heat generation can be obtained. Note that the effect is great when ΔH298 is -40 KJ/mol or less.

またTi−Al系の場合は、上記熱処理温度までの昇温
スピードを10℃/min以上にするとよい。この昇温
スピードでは、急激な反応が起こるので、複合体の温度
上昇か十分なものとなる。
Moreover, in the case of Ti-Al system, it is preferable that the temperature increase speed to the above-mentioned heat treatment temperature is 10° C./min or more. At this temperature increase speed, a rapid reaction occurs, so the temperature increase of the composite is sufficient.

加熱は、炉を用いて全体を加熱してもよいが、接合部を
局部的に加熱する方が簡便であり、部材11.12の変
形を抑制する上でも有利である。
Although the whole may be heated using a furnace, it is easier to locally heat the joint portion, and it is also advantageous in suppressing deformation of the members 11 and 12.

局部的な加熱方法としては、燃焼ガスあるいはヒータ等
による外部の熱源を用いる方法や、アク、電気抵抗加熱
、高周波誘導加熱、摩擦発熱等のように部材自身を発熱
させる方法もある。金属間化合物を形成する前記混合体
は、その端部を加熱するたけて自己燃焼焼結か伝播する
場合があるので、その時の自己発熱を利用することもて
きる。
Local heating methods include methods using an external heat source such as combustion gas or a heater, and methods in which the member itself generates heat, such as by heating, electric resistance heating, high-frequency induction heating, and frictional heating. Since the mixture forming the intermetallic compound may undergo self-combustion sintering as its end portions are heated, it is also possible to utilize the self-heating generated at that time.

この熱処理工程31は、大気中で行ってもよいか、不活
性ガスあるいは真空雰囲気や酸化還元雰囲気等のガス中
で行えば更に好ましい結果が得られることがある。また
、これらの雰囲気を組合わせてもよい。特に局部的に加
熱する場合は、ガスアーク1金属被覆アーク溶接等の通
常の溶接に用いられる雰囲気制御が有効である。また、
ろう付は等に用いられる溶剤やフラックス等を用いても
よい。
This heat treatment step 31 may be performed in the air, or more preferable results may be obtained if it is performed in an inert gas, vacuum atmosphere, redox atmosphere, or other gas. Furthermore, these atmospheres may be combined. Particularly when heating locally, atmosphere control used in normal welding such as gas arc 1 metal coating arc welding is effective. Also,
Solvents, fluxes, etc. used for brazing may be used.

なお、材料によっては加圧しない状態でこの熱処理工程
31を実施してもよい。
Note that depending on the material, this heat treatment step 31 may be performed without applying pressure.

複合材Aの接合部の接触面積は、熱処理工程31におい
て加圧を伴う場合、複合材への形状を保持したり良好な
接合強度を得るためには0.001 mm2以上が望ま
しく、更には0.01mm2以上が望ましい。またこの
接触面積の上限は、部材11と部材12の端部から熱処
理工程3]を連続して行うことにより、制限を受けない
When pressure is applied in the heat treatment step 31, the contact area of the joint of composite material A is desirably 0.001 mm2 or more in order to maintain the shape of the composite material and obtain good joint strength, and more preferably 0.001 mm2 or more. .01 mm2 or more is desirable. Moreover, the upper limit of this contact area is not limited by performing the heat treatment step 3 continuously from the ends of the members 11 and 12.

なお、必要があれば上記熱処理工程31の終了後に、鍛
造等の適宜の加工工程32を実施することにより、f′
f祠と接合部の欠陥、偏析の改善、不純物の分散等を図
ってもよい。
If necessary, f'
It may be possible to improve defects and segregation between the f-shape and the joint, and to disperse impurities.

また、上記熱処理工程31によって金属間化合物の形成
と接合かなされた後、必要に応じて上記圧力と真空雰囲
気を維持した状態で複合材Aを例えば1100℃に保持
し、3時間の熱処理工程33を行う。処理温度は、金属
間化合物の同相線以下の温度域か望ましい。特に、イン
サート材]3がTi−Al系の場合は700℃以上が望
ましい。これ以下のa度では、十分な拡散か進行しない
。この熱処理工程33は、人気中で行ってもよいか、不
活性ガスあるいは酸化還元雰囲気等のガス中で行えば史
に好ましい結果か得られることがある。また、材料によ
っては加圧しない状態でこの熱処理工程3Bを実施して
もよい。
Further, after the intermetallic compound is formed and bonded in the heat treatment step 31, the composite material A is held at, for example, 1100° C. while maintaining the pressure and vacuum atmosphere as necessary, and the heat treatment step 33 is performed for 3 hours. I do. The treatment temperature is preferably in a temperature range below the common phase line of the intermetallic compound. In particular, when the insert material [3] is Ti-Al based, the temperature is preferably 700°C or higher. At a degree lower than this, sufficient diffusion will not proceed. This heat treatment step 33 may be carried out under normal conditions, or better results may be obtained if it is carried out in an inert gas or a redox atmosphere. Further, depending on the material, this heat treatment step 3B may be performed without applying pressure.

金属間化ご物形成後の熱処理工程3Bを行うことによっ
て、慢コ材Aに含まれる空孔を更に減少させることがで
きるとともに、組織の゛均一化が促進され、接合歪の除
去、更には不純物の拡散もしくは不純物の除去か図れる
。この熱処理工程33の実施によって、結晶粒の大きさ
や金属間化合物組織または析出物の調整をすることも可
能である。
By carrying out the heat treatment step 3B after the formation of the intermetallic compound, it is possible to further reduce the pores contained in the long steel material A, promote uniformity of the structure, eliminate bonding strain, and further improve Diffusion of impurities or removal of impurities can be achieved. By implementing this heat treatment step 33, it is also possible to adjust the size of crystal grains, intermetallic compound structure, or precipitates.

上記一連の工程によって、インサート材13を介して第
1の部材11と第2の部材]2が一体化された複合材A
か得られた。この複合材Aは、母材および接合部がいず
れも金属間化合物(TjAI+Th Al)からなる。
A composite material A in which the first member 11 and the second member [2] are integrated through the insert material 13 through the above series of steps.
or obtained. In this composite material A, both the base material and the joint portion are made of an intermetallic compound (TjAI+Th Al).

第4図および第5図は上記複合材Aの接合部を示す顕微
鏡写真である。第4図において中央部、第5図において
右十分がインサート材1Bである。
FIGS. 4 and 5 are micrographs showing the joints of the composite material A. The insert material 1B is located at the center in FIG. 4 and far to the right in FIG.

インサート材13を含む接合部に欠陥か局在することが
なく、実質的に11材と連続であり、母材および接合部
はJljに優れた耐熱性と耐酸化性を発揮し、しかも接
合強度がきわめて大きい。前記インサート材13を含む
接合部に見られた空孔や割れ等の欠陥は100μm以下
であり、10μm以下のものや 1μm以下のものもあ
った。また、気孔率は3%以下のものか8晶に得られ、
特に−軸プレスを用い、インサート材にせん断力を加え
たものは、欠陥が1μm以下で気孔率が1%以下のもの
が得られた。
There are no localized defects in the joint including insert material 13, and it is virtually continuous with material 11, and the base material and joint have excellent heat resistance and oxidation resistance at Jlj, and have high joint strength. is extremely large. Defects such as holes and cracks found in the joints including the insert material 13 were 100 μm or less, and some were 10 μm or less and some were 1 μm or less. In addition, the porosity is 3% or less or 8 crystals are obtained,
In particular, when a shearing force was applied to the insert material using a -axis press, a material with defects of 1 μm or less and a porosity of 1% or less was obtained.

実用上は欠陥が1000μm以下で、気孔率か1096
以下であればよい場合が多いから、本実施例によって得
られた前記インサート材13を含む接合部には実用上問
題になるような欠陥か存在せず、接合欠陥が制御され、
良好な接合強度を有している。
In practice, defects are less than 1000 μm and porosity is 1096.
In many cases, the following is sufficient, so that the bonded portion including the insert material 13 obtained in this example does not have any defects that would pose a practical problem, and the bonding defects are controlled.
It has good bonding strength.

また前記接合部の結晶粒は母材の結晶粒に対して最大で
も 5倍以下であり、母相の結晶粒よりも細かいものも
多数認められた。実用上は前記インサート材13を含む
接合部の結晶粒か母材の結晶粒の10倍以下であればよ
いから、本実施例によって得られる前記インサート材1
3を含む接合部には実用上問題になるような粗大な結晶
粒は存在せず、接合部組織が制御された良質な接合部組
織が得られている。
In addition, the crystal grains in the joint were at most five times the size of the crystal grains in the base material, and many were found to be finer than the crystal grains in the matrix. In practice, the crystal grains of the joint portion including the insert material 13 may be 10 times or less the crystal grains of the base material, so the insert material 1 obtained by this example
There are no coarse crystal grains that would pose a practical problem in the joint containing No. 3, and a high-quality joint structure with a controlled joint structure is obtained.

上記熱処理工程33の終了後に仕上げ工程34を行って
もよい。例えばバレル加工等によって複合材Aの表面を
滑らかなものにする。あるいは機械加工等によって表面
の研磨を行うとが、表面傷。
A finishing step 34 may be performed after the heat treatment step 33 is completed. For example, the surface of the composite material A is made smooth by barrel processing or the like. Alternatively, if the surface is polished by machining, etc., surface scratches may occur.

表面層等の除去あるいは切断、1]削加工等により形状
の修正、追加を行ったり、前記インサート材のはみ出し
た箇所を除去する。また、ショットピニング等を行うこ
とにより、複合材Aの表層部に圧縮残留応力を生じさせ
れば、複合材Aの耐久性を更に高めることができる。
Removal or cutting of surface layer, etc., 1) Modification or addition of shape by machining or the like, or removal of protruding portions of the insert material. Moreover, if compressive residual stress is generated in the surface layer portion of the composite material A by performing shot pinning or the like, the durability of the composite material A can be further improved.

なお、第6図と第7図の顕微鏡写真はインサト材13に
T! : AI= 64?o: 3690の混合圧着体
を用いた場合の接合部を示している。同図において、右
半分がインサート部材13である。この実施例における
第1の部材11と第2の部材12は、前記実施例と同様
にそれぞれ金属間化合物(Ti + AI= 64% 
63%)を用い 前記実施例と同様の製造工程を経て接
合を行なった。但し、第6図は熱処理工程31における
圧力を500kg f /Cm2、加熱を900℃×1
時間としたもの。第7図は金属間化合物形成後の熱処理
工程3Bにおいて、500kg f / Cm2て90
0℃×1時間の熱処理を行なった後、必要に応じて行う
1100℃で3時間の熱処理を行なったものである。こ
の実施例においても、金属間化合物(TiAl+Tj3
AI)からなるインサト材13を介して第1の部材11
と第2の部材12(いずれもTjAI+Ti、 AI)
か接合された複合材が得られた。特に第7図に示された
例では、インサート材の組成・組織が母材と同一で、接
合部に欠陥か局在することなく、全く均一な複合材が得
られた。
In addition, the micrographs shown in FIGS. 6 and 7 show T! : AI=64? o: Shows a joint when using a 3690 mixed crimped body. In the figure, the right half is the insert member 13. The first member 11 and the second member 12 in this example are each made of an intermetallic compound (Ti + AI = 64%) as in the previous example.
63%), and the bonding was performed through the same manufacturing process as in the previous example. However, in Fig. 6, the pressure in the heat treatment step 31 is 500 kg f / Cm2, and the heating is 900°C x 1.
Something that took time. Figure 7 shows the heat treatment step 3B after the formation of the intermetallic compound, at 500 kg f/Cm2 and 90
After heat treatment was performed at 0° C. for 1 hour, heat treatment was performed at 1100° C. for 3 hours as necessary. In this example as well, the intermetallic compound (TiAl+Tj3
The first member 11 via the insert material 13 made of
and second member 12 (both TjAI+Ti, AI)
A bonded composite material was obtained. In particular, in the example shown in FIG. 7, the insert material had the same composition and structure as the base material, and a completely uniform composite material was obtained with no localized defects at the joint.

なお、上記各実施例では第1の部材11と第2の部材1
2かいずれも接合前に既に金属間化合物を形成している
が、これら両部材11.12は、インサート材13と同
様、接合時に金属間化合物が形成されるように、金属間
化合物形成前の混合圧着体を重合させた状態て熱処理工
程31を行なってもよい。
Note that in each of the above embodiments, the first member 11 and the second member 1
Both members 11 and 12 have already formed an intermetallic compound before joining, but like the insert material 13, these two members 11 and 12 have an intermetallic compound formed before the intermetallic compound is formed so that an intermetallic compound is formed during joining. The heat treatment step 31 may be performed in a state where the mixed pressed body is polymerized.

また、本発明における第1の部材11と第2の部材12
は、いずれも、Ni、 Ni合金、インコネル等のNi
基耐熱合金、 Ti、 Ti合金1^1.^1合金、N
b、 Ta等の高融点金属、Si等の半金属、あるいは
前記実施例以外の金属間化合物(Ah Ti等) アル
ミナ、窒化けい素5炭化けい素等のセラミックス等の無
機材料でもよいし、耐熱プラスチック等の有機材料でも
適用できる場合かある。第1の部材11と第2の部材1
2およびインサート材13に、1つ以上の」19通元素
か含まれていればなおよい。
Moreover, the first member 11 and the second member 12 in the present invention
are all Ni, Ni alloy, Inconel, etc.
Base heat-resistant alloy, Ti, Ti alloy 1^1. ^1 Alloy, N
b. High-melting point metals such as Ta, semi-metals such as Si, or intermetallic compounds other than the above examples (Ah Ti, etc.) Inorganic materials such as alumina, ceramics such as silicon nitride 5 silicon carbide, etc., or heat-resistant In some cases, it may also be applicable to organic materials such as plastics. First member 11 and second member 1
It is even better if 2 and the insert material 13 contain one or more elements.

第8図ないし第19図に、複合材の種々の、態様をンJ
< している。
Figures 8 to 19 show various aspects of composite materials.
<I am doing it.

第8図に示された複合材は、インサート材]3の厚み方
向両面に凸部40を設け、この凸部40を第1の部材]
]と第2の部材〕2の凹部4]に嵌合させた状態て接合
している。
The composite material shown in FIG. 8 has protrusions 40 on both sides of the insert material 3 in the thickness direction, and the protrusions 40 are used as the first member.
] and the second member [2] are fitted in the recess 4] of the second member [2].

第9図に示される例は、互いに凹凸嵌合可能な形状の第
コの部材〕]と第2の部材12を、粉末圧延により作製
したシート状のインサート材]3を間に挟んで、図示矢
印方向に加圧した状態で加熱することにより、第10図
にゴくず複合材を得るようにしている。
In the example shown in FIG. 9, a sheet-like insert material made by powder rolling is sandwiched between the second member 12 and the second member 12, which are shaped so that they can fit into each other in a convex-concave manner. By heating in a pressurized state in the direction of the arrow, a refuse composite material as shown in FIG. 10 is obtained.

第11図および第12図にボされた複a祠においては、
第1の部材1]と第2の部子」]2に貫通孔44.45
を設け、これら貫通孔44.45にノヘソト状のインサ
ート材13を挿通させたのち、第12図に示されるよう
に型50,5]によってプレスするとともに、熱処理を
行なうことによって、塑性加工と金属間化合物形成およ
び拡散接合を同時に行なうようにしている。
In the compound A shrine shown in Figures 11 and 12,
Through holes 44, 45 in the first member 1] and the second member 2
After inserting the insert material 13 into the through-holes 44 and 45, the insert material 13 is pressed with a mold 50, 5] as shown in FIG. Intermediate compound formation and diffusion bonding are performed simultaneously.

第13図に示された複合材は、第1の部材1]と第2の
部材12に導通する電極55.56を介して、インサー
ト材13の通電加熱を行なう。
In the composite material shown in FIG. 13, the insert material 13 is electrically heated via electrodes 55 and 56 that are electrically connected to the first member 1 and the second member 12.

第14図に示された例は、インサート材13の端部を発
火手段60によって直接着火させ、金属間化合物の自己
燃焼焼結と拡散による接合を伝播させるようにしている
In the example shown in FIG. 14, the end of the insert material 13 is directly ignited by the ignition means 60, so that the bonding by self-combustion sintering and diffusion of the intermetallic compound is propagated.

第15図および第16図に示された複合材は、対のイン
サート+4’13,13を介して、第1の部材11と第
2の部+312をプレス型61.62等により2軸方向
から加圧しつつ加熱して、金属間化合物の形成と接合を
同時に行なうようにした例である。
In the composite material shown in FIGS. 15 and 16, the first member 11 and the second part +312 are biaxially separated using a press mold 61, 62, etc. via a pair of inserts +4'13, 13. This is an example in which formation of an intermetallic compound and bonding are performed simultaneously by applying pressure and heating.

第17図に示された複合材は、円板状の第1の部材]1
を、ピストンヘット状の第2の部材12の端面にインサ
ート材13を介して接合した例である。
The composite material shown in FIG. 17 has a disk-shaped first member]1
This is an example in which the piston head-shaped second member 12 is joined to the end surface of the piston head-shaped second member 12 via an insert material 13.

第18図は、2種類のインサート材13a。FIG. 18 shows two types of insert materials 13a.

13bを厚み方向に重ねた状態で、 (TjAl+Ti3AI)からなる第1の部材11とA
1. Tiを主体とする第2の部材12を接合した例で
ある。
13b stacked in the thickness direction, the first member 11 made of (TjAl+Ti3AI) and A
1. This is an example in which a second member 12 mainly made of Ti is joined.

一方のインサート材13aは、ガスアトマイズ法により
作製した350メツシユ以下のAI粉末と、350メツ
シユ以下のスポンジTi粉末を重量分率てTi : A
l=’64% : 3B%の割合で、Arガス置換され
た乾式ホールミルを用いて混合し、所定の形状に圧着し
たのち、必要に応して更に成形される。この混合圧着体
は、前記熱処理工程31によって、(TiAI+T13
Al)の金属間化合物になる。
One insert material 13a is composed of AI powder of 350 mesh or less produced by gas atomization method and sponge Ti powder of 350 mesh or less in a weight fraction of Ti:A.
l='64%: 3B% is mixed using a dry hole mill purged with Ar gas, and after being pressed into a predetermined shape, it is further molded if necessary. This mixed pressed body is obtained by the heat treatment step 31 (TiAI+T13
Al) becomes an intermetallic compound.

他方のインサート材13bは、ガスアトマイズ法により
作製した350メツシユ以下のA1粉末と、350メツ
シユ以下のスポンジT1粉末を重量分率でTi : A
l−37,179o : 62.83%の割合で、Ar
ガス置換された乾式ボールミルを用いて混合し、所定の
形状に圧着したのち、必要に応して更に成形される。こ
の混合圧着体は、前記熱処理工程31によってAlq 
Tiの金属間化合物になる。
The other insert material 13b is made of A1 powder of 350 mesh or less produced by gas atomization method and sponge T1 powder of 350 mesh or less in a weight fraction of Ti:A.
l-37,179o: Ar at a rate of 62.83%
After mixing using a gas-substituted dry ball mill and pressing into a predetermined shape, the mixture is further molded if necessary. This mixed press-bonded body is made of Alq by the heat treatment step 31.
It becomes an intermetallic compound of Ti.

第19図に示した複音材のように、第1の部キイ]1と
第2の部材12を」二記2種類のインサート材13a、
13bを介して接合するとともに、インサート月1′3
bと同種の混合圧着体13 cを重合して金属間化劇物
を形成させるようにしてもよい。またこの際に、第1も
しくは第2の部材とインサート材との間、またはインサ
ート材13a1”3b間に、無機繊維を位置させて接合
部ないし複音材の強度を向上させるようにしてもよい。
Like the double-tone material shown in FIG.
13b, and the insert month 1'3
The mixed pressed body 13 c of the same type as b may be polymerized to form a deleterious intermetallic substance. Further, at this time, inorganic fibers may be placed between the first or second member and the insert material or between the insert materials 13a1''3b to improve the strength of the joint or the multitone material.

また本発明は、前記夫施例で示したちのに限らす、TI
−A!系の他の組成についても適用できる。
Further, the present invention is limited to that shown in the above embodiments,
-A! It is also applicable to other compositions of the system.

特に、インサート材13に用いる前記混合原料の組成比
を、型皿?oて八lか14−[139a、 Tiか86
〜370゜の範囲にしたインサート材かTi−Al系金
属間化合物からなる複合材においては、金属間化合物形
成時の大きな発熱により、インサート材を含む接合部の
気孔率か300以下で最大欠陥が100μm以下である
高強度な複合材が得られた。また本発明は、他の金属間
化合物を形成する系についても適用できる。
In particular, the composition ratio of the mixed raw materials used for the insert material 13 should be determined from the mold plate. ote8lka14-[139a, Tika86
In composite materials made of insert materials or Ti-Al intermetallic compounds whose angle is in the range of ~370°, the maximum defect occurs when the porosity of the joint including the insert material is less than 300 due to the large heat generated during the formation of the intermetallic compounds. A high-strength composite material with a thickness of 100 μm or less was obtained. The present invention can also be applied to systems that form other intermetallic compounds.

[発明の効果] 本発明によれば、金属間化合物形成時に発生する大きな
自己発熱を、インサート材と第1の部材および第2の部
材の接合部に作用させることにより、接合界面における
欠陥発生の防止および接合に8廿な拡散を進行させる効
果かあり、加熱温度か比較的低くても自己発熱によって
良好な接合部か短時間で容易に得られる。
[Effects of the Invention] According to the present invention, by applying large self-heating generated during the formation of an intermetallic compound to the joints between the insert material, the first member, and the second member, defects at the joint interface can be prevented. It has the effect of promoting diffusion in prevention and bonding, and even if the heating temperature is relatively low, a good bond can be easily obtained in a short time due to self-heating.

また、金属間化合物の融点に比べてかなり低い温度で金
属間化ご物の)1〕成と接合かなされるため、接合温度
か低いにもかかわらすそのインサート材を含む接合部は
母材と同等以上の耐熱性や機能性を発揮できる。
In addition, since the intermetallic compound (1) formation and bonding are performed at a temperature considerably lower than the melting point of the intermetallic compound, the bonded part containing the insert material is bonded to the base material despite the low bonding temperature. It can demonstrate the same or higher heat resistance and functionality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を示す工程説明図、第2図は本発明
の一実施例を示す工程説明図、第3図は複合材の一例を
示す断面図、第4図は第3図に示された複合材の接合部
の金属組織を100倍に拡大して示す顕微鏡写真、第5
図は第3図に示されたの例を示す金属組織を200倍に
拡大した顕微鏡写真、第8図はホ≠ホ≠複合材の例を示
す断面図、第9図は各部材とインサート材の形状例を示
す断面図、第10図は第9図に示されたインサート材を
用いた複合材の斜視図、第11図はリベット状のインサ
ート材を用いた例を示す断面図、第12図は第11図に
示されたインサート材を用いた複合材の断面図、第13
図ないし第15図はそれぞれ互いに異なる複合材の例を
示す断面図、第16図は第15図に示された複合材の斜
視図、第17図および第18図は互いに異なる複合材の
例を示す断面図、第19図は複合材の例を一部断面で示
す斜視図である。 11・・・第1の部材、12・・・第2の部材、13゜
13a、13b・・・インサート材。 出願人代理人 弁理士 鈴江武彦 第2 図 第3図 仲)8・ ii1曲て 1川■川 (x 100 ) 第4 男Iの冴味〆 接合部 !  インサート材イ パ−ごへJシ、6′ (x600) 第 図 接合部 第 図 i12 図 第13 図 加圧 第14 図 憩15図 398図 j!10 図 第16図 加圧 篇9 図 第11 図 3c j[19 図
Fig. 1 is a process explanatory diagram showing the method of the present invention, Fig. 2 is a process explanatory diagram showing an embodiment of the present invention, Fig. 3 is a sectional view showing an example of a composite material, and Fig. 4 is a process explanatory diagram showing an example of the composite material. Micrograph showing the metallographic structure of the joint of the indicated composite material at 100 times magnification, No. 5
The figure is a 200x magnified micrograph of the metal structure showing the example shown in Figure 3, Figure 8 is a cross-sectional view showing an example of Ho≠Ho≠composite material, and Figure 9 shows each member and insert material. 10 is a perspective view of a composite material using the insert material shown in FIG. 9, FIG. 11 is a sectional view showing an example using a rivet-shaped insert material, and FIG. The figure is a cross-sectional view of a composite material using the insert material shown in Figure 11, and Figure 13.
15 through 15 are cross-sectional views showing examples of different composite materials, FIG. 16 is a perspective view of the composite material shown in FIG. 15, and FIGS. 17 and 18 are cross-sectional views showing examples of different composite materials. The cross-sectional view shown in FIG. 19 is a perspective view partially showing an example of a composite material in cross section. DESCRIPTION OF SYMBOLS 11... First member, 12... Second member, 13° 13a, 13b... Insert material. Applicant's agent Patent attorney Takehiko Suzue (Figure 2) Figure 3 (middle) 8. ii 1 turn 1 river ■ river (x 100) 4th Man I's Saemi 〆 joint! Insert material Ipergohe Jshi, 6' (x600) Fig. Joint part Fig. i12 Fig. 13 Fig. Pressure Fig. 14 Fig. Relaxation Fig. 15 Fig. 398 Fig. j! 10 Figure 16 Pressure version 9 Figure 11 Figure 3c j [Figure 19

Claims (2)

【特許請求の範囲】[Claims] (1)第1の部材と第2の部材とがインサート材を介し
て互いに接合された複合材であって、上記インサート材
が主として金属間化合物からなることを特徴とする複合
材。
(1) A composite material in which a first member and a second member are joined to each other via an insert material, the insert material mainly consisting of an intermetallic compound.
(2)第1の部材と第2の部材とをインサート材を介し
て互いに接合する場合、上記インサート材の材料に金属
間化合物を形成可能な組成比で混合された複数元素を含
有する混合体を用い、このインサート材を第1の部材と
第2の部材とにわたって位置させかつ金属間化合物が形
成される温度で熱処理することにより、金属間化合物形
成時に生じる発熱によって上記第1の部材と第2の部材
を互いに接合させることを特徴とする複合材の製造方法
(2) When the first member and the second member are joined to each other via an insert material, a mixture containing multiple elements mixed in a composition ratio that allows the formation of an intermetallic compound in the material of the insert material; By positioning this insert material across the first member and the second member and heat-treating it at a temperature at which an intermetallic compound is formed, the first member and the second member are bonded together by the heat generated during the formation of the intermetallic compound. A method for manufacturing a composite material, characterized by joining two members to each other.
JP13918290A 1990-05-29 1990-05-29 Composite material and method for producing the same Expired - Fee Related JP3259959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13918290A JP3259959B2 (en) 1990-05-29 1990-05-29 Composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13918290A JP3259959B2 (en) 1990-05-29 1990-05-29 Composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0437658A true JPH0437658A (en) 1992-02-07
JP3259959B2 JP3259959B2 (en) 2002-02-25

Family

ID=15239473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13918290A Expired - Fee Related JP3259959B2 (en) 1990-05-29 1990-05-29 Composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3259959B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0767028A1 (en) * 1995-10-04 1997-04-09 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Process for joining intermetallic materials by reaction sintering and derived applications
JP2006507128A (en) * 2002-11-26 2006-03-02 ボルボ エアロ コーポレイション Method for joining two or more components together
WO2009143173A2 (en) * 2008-05-19 2009-11-26 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal-aluminum powders
JP2010163889A (en) * 2009-01-13 2010-07-29 Ihi Corp Method for repairing low-pressure turbine component made of titanium-aluminum intermetallic compound, and low-pressure turbine part repaired thereby
US8444045B2 (en) 2008-05-19 2013-05-21 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal aluminum powders
WO2015182783A1 (en) * 2014-05-30 2015-12-03 三菱マテリアル株式会社 Porous aluminum composite and method for manufacturing porous aluminum composite
JP2016207380A (en) * 2015-04-20 2016-12-08 三菱電機株式会社 Electric contactor and manufacturing method thereof
US10543531B2 (en) 2014-10-30 2020-01-28 Mitsubishi Materials Corporation Porous aluminum sintered material and method of producing porous aluminum sintered material
CN112620488A (en) * 2020-12-16 2021-04-09 西部超导材料科技股份有限公司 Ti3Al laminated composite board and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739583A1 (en) * 1995-10-04 1997-04-11 Snecma PROCESS FOR REACTIVE FRITTAGE ASSEMBLY OF INTERMETALLIC MATERIAL PARTS AND DERIVED APPLICATIONS
US5788142A (en) * 1995-10-04 1998-08-04 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Process for joining, coating or repairing parts made of intermetallic material
EP0767028A1 (en) * 1995-10-04 1997-04-09 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Process for joining intermetallic materials by reaction sintering and derived applications
JP2006507128A (en) * 2002-11-26 2006-03-02 ボルボ エアロ コーポレイション Method for joining two or more components together
US8444045B2 (en) 2008-05-19 2013-05-21 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal aluminum powders
WO2009143173A2 (en) * 2008-05-19 2009-11-26 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal-aluminum powders
WO2009143173A3 (en) * 2008-05-19 2010-03-11 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal-aluminum powders
US8172126B2 (en) 2008-05-19 2012-05-08 The Trustees Of Dartmouth College Joining of parts via magnetic heating of metal-aluminum powders
JP2010163889A (en) * 2009-01-13 2010-07-29 Ihi Corp Method for repairing low-pressure turbine component made of titanium-aluminum intermetallic compound, and low-pressure turbine part repaired thereby
WO2015182783A1 (en) * 2014-05-30 2015-12-03 三菱マテリアル株式会社 Porous aluminum composite and method for manufacturing porous aluminum composite
JP2016006226A (en) * 2014-05-30 2016-01-14 三菱マテリアル株式会社 Porous aluminum composite and method for manufacturing porous aluminum composite
US10981230B2 (en) 2014-05-30 2021-04-20 Mitsubishi Materials Corporation Porous aluminum complex and method of producing porous aluminum complex
US10543531B2 (en) 2014-10-30 2020-01-28 Mitsubishi Materials Corporation Porous aluminum sintered material and method of producing porous aluminum sintered material
JP2016207380A (en) * 2015-04-20 2016-12-08 三菱電機株式会社 Electric contactor and manufacturing method thereof
CN112620488A (en) * 2020-12-16 2021-04-09 西部超导材料科技股份有限公司 Ti3Al laminated composite board and preparation method thereof

Also Published As

Publication number Publication date
JP3259959B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US6599466B1 (en) Manufacture of lightweight metal matrix composites with controlled structure
US4469757A (en) Structural metal matrix composite and method for making same
JPH0347903A (en) Density increase of powder aluminum and aluminum alloy
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
JPH0437658A (en) Combined material and its production
US5768679A (en) Article made of a Ti-Al intermetallic compound
KR101200578B1 (en) Material composite
JP3380892B2 (en) Ti-Al alloy, method for producing the same, and method for joining the same
JP2001271127A (en) Ti-Al INTERMETALLIC COMPOUND SHEET AND ITS PRODUCING METHOD
JPH04214826A (en) Manufacture of compounded material as well as heat receiving material and manufacture of heat receiving material
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS58187284A (en) Diffusion welding method for structure element consisting of high heat-resistant metallic material
JP3187876B2 (en) Method of joining composite material at least partially composed of intermetallic compound
US5564620A (en) Forming metal-intermetallic or metal-ceramic composites by self-propagating high-temperature reactions
JP2843644B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JP2843661B2 (en) Ti-Al based composite material
JP4355431B2 (en) Piston manufacturing method
JP4252161B2 (en) Method for producing metal-based composite material using liquid phase sintering
JP2588889B2 (en) Forming method of Ti-Al based intermetallic compound member
JPS63255329A (en) Manufacture of oxidation-resistant tungsten-base sintered alloy
JP3691399B2 (en) Method for producing hot-worked aluminum alloy powder
JPH09287038A (en) Production of composite product of titanium-aluminum alloy and metal fiber
JPH03215603A (en) Manufacture of high density titanium alloy powder sintered product
JPS63260687A (en) Manufacture of metallic material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees