JPH04362008A - Treatment of hydrogen sulfide containing gas - Google Patents
Treatment of hydrogen sulfide containing gasInfo
- Publication number
- JPH04362008A JPH04362008A JP3136661A JP13666191A JPH04362008A JP H04362008 A JPH04362008 A JP H04362008A JP 3136661 A JP3136661 A JP 3136661A JP 13666191 A JP13666191 A JP 13666191A JP H04362008 A JPH04362008 A JP H04362008A
- Authority
- JP
- Japan
- Prior art keywords
- sulfur
- hydrogen sulfide
- sulfuric acid
- aqueous solution
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910000037 hydrogen sulfide Inorganic materials 0.000 title claims abstract description 54
- 239000007789 gas Substances 0.000 title claims abstract description 38
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 99
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 70
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 69
- 239000011593 sulfur Substances 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 52
- 150000002505 iron Chemical class 0.000 claims abstract description 32
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 30
- 229910052742 iron Inorganic materials 0.000 claims abstract description 29
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 14
- 239000007864 aqueous solution Substances 0.000 claims description 54
- -1 iron ions Chemical class 0.000 claims description 31
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000000926 separation method Methods 0.000 abstract description 34
- 230000008929 regeneration Effects 0.000 abstract description 19
- 238000011069 regeneration method Methods 0.000 abstract description 19
- 238000010521 absorption reaction Methods 0.000 abstract description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 6
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 14
- 150000003839 salts Chemical class 0.000 description 10
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910001447 ferric ion Inorganic materials 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000012528 membrane Substances 0.000 description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 6
- 229910001448 ferrous ion Inorganic materials 0.000 description 6
- 239000003014 ion exchange membrane Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000000502 dialysis Methods 0.000 description 5
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 239000012266 salt solution Substances 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 159000000014 iron salts Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000003011 anion exchange membrane Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004063 acid-resistant material Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- BYMMIQCVDHHYGG-UHFFFAOYSA-N Cl.OP(O)(O)=O Chemical compound Cl.OP(O)(O)=O BYMMIQCVDHHYGG-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000005955 Ferric phosphate Substances 0.000 description 1
- 229910003556 H2 SO4 Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- VEPSWGHMGZQCIN-UHFFFAOYSA-H ferric oxalate Chemical compound [Fe+3].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O VEPSWGHMGZQCIN-UHFFFAOYSA-H 0.000 description 1
- 229940032958 ferric phosphate Drugs 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 1
- 229910000399 iron(III) phosphate Inorganic materials 0.000 description 1
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は硫化水素含有ガスの処理
方法に関し、詳しくは硫化水素含有ガスと水から硫黄と
硫酸あるいはさらに水素を効率良く生成,回収する方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating hydrogen sulfide-containing gas, and more particularly to a method for efficiently producing and recovering sulfur, sulfuric acid, or even hydrogen from hydrogen sulfide-containing gas and water.
【0002】0002
【従来の技術及び発明が解決しようとする課題】従来、
石油精製の際に排出される硫化水素は、クラウス法によ
って工業的に処理されていた。しかし、この方法は、硫
化水素中の硫黄成分は硫黄として回収されるが、水素成
分は水素ガスとして回収されず水になり、工業的に効率
よく利用を図ることができなかった。[Prior art and problems to be solved by the invention] Conventionally,
Hydrogen sulfide emitted during oil refining was industrially treated using the Claus process. However, in this method, the sulfur component in hydrogen sulfide is recovered as sulfur, but the hydrogen component is not recovered as hydrogen gas but instead becomes water, making it impossible to utilize it industrially efficiently.
【0003】現在、硫化水素から硫黄と水素ガスを、酸
化及び電気化学的処理によって回収する方法として、3
価の鉄イオンを含有する溶液を用いる方法が知られてい
る。このような方法としては、3価の鉄イオンを含む塩
酸系鉄塩水溶液を用いて硫化水素を接触,酸化し、生成
した硫黄を分離した後、さらに該塩酸系鉄塩水溶液を電
気化学的再生処理を行って水素を発生させ、これを回収
する方法が提案されている(特公平1−53201号公
報)。Currently, there are three methods for recovering sulfur and hydrogen gas from hydrogen sulfide by oxidation and electrochemical treatment.
A method using a solution containing valent iron ions is known. Such a method involves contacting and oxidizing hydrogen sulfide using a hydrochloric acid-based iron salt aqueous solution containing trivalent iron ions, separating the generated sulfur, and then electrochemically regenerating the hydrochloric acid-based iron salt aqueous solution. A method has been proposed in which hydrogen is generated through treatment and recovered (Japanese Patent Publication No. 1-53201).
【0004】しかし、この方法によれば、硫化水素を塩
酸系鉄塩水溶液と接触させ、酸化して硫黄を生成させる
際、硫黄酸化物である二酸化硫黄,硫酸等が副生し、蓄
積されて、ついには鉄塩として析出して配管系の閉塞を
もたらし、運転の継続が不可能になることがあった。ま
た、鉄イオンについては、続いて行われる電気化学的再
生処理工程において、電気的な駆動力のために電解槽の
イオン交換膜を通して陰極部電解液中に移行し蓄積され
、電解効率を低下させるとともに、電解槽内で鉄塩とし
て析出して閉塞トラブルを起こすこともある。このため
、電解液の一部を新しいものに取り替えることが容易に
考えられるが、電解液の新規購入費や使用済液の処理費
が多大になる。However, according to this method, when hydrogen sulfide is brought into contact with a hydrochloric acid-based iron salt aqueous solution and oxidized to produce sulfur, sulfur oxides such as sulfur dioxide and sulfuric acid are produced as by-products and accumulated. In the end, it precipitated as iron salts, causing blockages in the piping system, making it impossible to continue operation. In addition, in the subsequent electrochemical regeneration process, iron ions migrate and accumulate in the cathode electrolyte through the ion exchange membrane of the electrolytic cell due to the electrical driving force, reducing electrolytic efficiency. At the same time, it may precipitate as iron salts in the electrolytic cell, causing clogging problems. For this reason, although it is easy to consider replacing a portion of the electrolyte with a new one, the cost of purchasing a new electrolyte and the cost of processing the used solution will be considerable.
【0005】本発明者らは、硫黄酸化物等の副生を抑制
し、ガスの品質を高め、反応容器を構成する金属材料に
対して腐食性が小さく、さらに電気化学的再生処理工程
において低い電解電圧にて効率の良い硫化水素の処理方
法を開発すべく鋭意研究を重ねた結果、硫化水素を酸化
させるにあたって、リン酸系塩化鉄水溶液またはリン酸
−塩酸系塩化鉄水溶液を用いることにより、上記の問題
点を解消している(特願平3−100094号明細書等
)。[0005] The present inventors have found that by-products such as sulfur oxides are suppressed, the quality of the gas is improved, the corrosiveness to the metal materials constituting the reaction vessel is low, and the corrosion resistance is low in the electrochemical regeneration process. As a result of intensive research to develop an efficient hydrogen sulfide treatment method using electrolytic voltage, we found that by using a phosphoric acid-based iron chloride aqueous solution or a phosphoric acid-hydrochloric acid-based iron chloride aqueous solution to oxidize hydrogen sulfide, The above problems have been solved (Japanese Patent Application No. 3-100094, etc.).
【0006】しかし、このようにして得られた硫黄は、
実際、硫酸を製造するための原料として主に用いられて
いるのが現状である。このことから、硫化水素を処理す
る際に、水素ガスと共に直接硫酸を製造することができ
れば、硫酸製造の工程を大幅に短縮することができる利
点がある。本発明者らは、かかる観点から研究を続けた
ところ、用いる鉄塩水溶液中の遊離酸濃度を抑制するこ
とによって、上記目的が達成できることを見出した。本
発明はこのような知見に基いて完成したものである。However, the sulfur obtained in this way is
In fact, at present it is mainly used as a raw material for producing sulfuric acid. Therefore, if sulfuric acid can be directly produced together with hydrogen gas when treating hydrogen sulfide, there is an advantage that the process for producing sulfuric acid can be significantly shortened. The present inventors continued their research from this point of view and found that the above object could be achieved by suppressing the free acid concentration in the iron salt aqueous solution used. The present invention was completed based on this knowledge.
【0007】[0007]
【課題を解決するための手段】すなわち本発明は、硫化
水素含有ガスを、3価の鉄イオンを含む鉄塩水溶液に、
該水溶液中の遊離酸濃度が2モル/リットルを超えない
範囲に維持しつつ120〜200℃で接触,吸収させて
硫化水素を酸化反応することにより、硫黄と硫酸を生成
させることを特徴とする硫化水素含有ガスの処理方法を
提供するものである。また本発明は、硫化水素含有ガス
を、3価の鉄イオンを含む鉄塩水溶液に、該水溶液中の
遊離酸濃度が2モル/リットルを超えない範囲に維持し
つつ120〜200℃で接触,吸収させて硫化水素を酸
化することにより、硫化水素から硫黄と硫酸を生成させ
、次いで生成した硫黄あるいは硫黄と硫酸を分離した後
、この水溶液を電解槽の陽極部に導入して該水溶液を電
解酸化すると同時に、電解槽の陰極部から水素を発生さ
せて回収することを特徴とする硫化水素含有ガスの処理
方法をも提供するものである。[Means for Solving the Problems] That is, the present invention provides hydrogen sulfide-containing gas to an iron salt aqueous solution containing trivalent iron ions.
Sulfur and sulfuric acid are produced by contacting and absorbing hydrogen sulfide at 120 to 200°C while maintaining the free acid concentration in the aqueous solution within a range not exceeding 2 mol/liter. The present invention provides a method for treating hydrogen sulfide-containing gas. The present invention also provides a method for contacting a hydrogen sulfide-containing gas with an iron salt aqueous solution containing trivalent iron ions at 120 to 200°C while maintaining the free acid concentration in the aqueous solution within a range of not exceeding 2 mol/liter. By absorbing and oxidizing hydrogen sulfide, sulfur and sulfuric acid are generated from hydrogen sulfide, and after separating the generated sulfur or sulfur and sulfuric acid, this aqueous solution is introduced into the anode part of the electrolytic cell and electrolyzed. The present invention also provides a method for treating hydrogen sulfide-containing gas, which is characterized in that hydrogen is generated and recovered from the cathode portion of an electrolytic cell at the same time as the oxidation.
【0008】本発明の処理方法は、硫化水素含有ガスを
、3価の鉄イオンを含む鉄塩水溶液に接触,吸収させる
工程(気液接触工程)を必須工程とし、この工程におい
て使用する鉄塩水溶液中には、遊離酸、例えば塩酸,硫
酸,リン酸,硝酸,シュウ酸等が2モル/リットルを超
えない濃度範囲で含有されている。この気液接触工程は
、例えば次の如く進行する。The treatment method of the present invention includes a step of bringing hydrogen sulfide-containing gas into contact with and absorbing an iron salt aqueous solution containing trivalent iron ions (gas-liquid contact step), and the iron salt used in this step The aqueous solution contains free acids such as hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, oxalic acid, etc. in a concentration range not exceeding 2 mol/liter. This gas-liquid contact step proceeds, for example, as follows.
【0009】気液接触工程即ち、本発明の方法では、上
述したように、まず硫化水素含有ガスと3価の鉄イオン
を含む鉄塩水溶液との接触処理を行う。この気液接触工
程において処理できる気体は、硫化水素含有ガスであり
、硫化水素を含有するガスであれば純粋な硫化水素ガス
に限られない。3価鉄イオンに対して不活性な気体であ
れば、混入していても差支えない。例えば、硫化水素と
水素,一酸化炭素,二酸化炭素,炭化水素(メタン,エ
タンなど),アンモニア,窒素等との混合気体でも利用
可能である。[0009] In the gas-liquid contact step, that is, the method of the present invention, as described above, a gas containing hydrogen sulfide is first brought into contact with an aqueous iron salt solution containing trivalent iron ions. The gas that can be treated in this gas-liquid contact step is a hydrogen sulfide-containing gas, and is not limited to pure hydrogen sulfide gas as long as it contains hydrogen sulfide. There is no problem even if the gas is mixed in as long as it is inert to trivalent iron ions. For example, a mixed gas of hydrogen sulfide and hydrogen, carbon monoxide, carbon dioxide, hydrocarbons (methane, ethane, etc.), ammonia, nitrogen, etc. can also be used.
【0010】本発明の方法では、硫化水素含有ガスと接
触させる吸収液として、鉄塩水溶液を用いることが必要
である。ここで、鉄塩水溶液としては、3価の鉄イオン
(第二鉄イオン)を含む第二鉄塩水溶液が用いられる。
この第二鉄塩水溶液を構成する第二鉄塩としては、例え
ば塩化第二鉄,硫酸第二鉄,リン酸第二鉄,硝酸第二鉄
,シュウ酸第二鉄等があげられる。本発明で用いる第二
鉄塩水溶液は、上記第二鉄塩の単一溶液に限られず、二
種以上の第二鉄塩を含む混合液、さらには本発明の目的
を阻害しない限り、第一鉄塩や他の塩類等を含有したも
のでもよい。使用する鉄塩水溶液中のイオン濃度は、特
に制限はないが、通常第二鉄イオンが0.1〜6.0モ
ル/リットル、好ましくは1.0〜5.0モル/リット
ルの範囲である。第二鉄イオンが0.1モル/リットル
未満であると硫化水素の吸収率が低下し、また6.0モ
ル/リットルを超えると溶解度に問題があり好ましくな
い。また第一鉄イオンについては、必須ではないが、通
常5.0モル/リットル以下であればよく、好ましくは
0.5〜4.0モル/リットルの範囲で存在する。第一
鉄イオンの添加は主に電気化学的処理において効率を向
上させるためであるが、5.0モル/リットルを超える
と鉄塩の析出が起こり好ましくない。[0010] In the method of the present invention, it is necessary to use an aqueous iron salt solution as the absorption liquid that is brought into contact with the hydrogen sulfide-containing gas. Here, as the iron salt aqueous solution, a ferric salt aqueous solution containing trivalent iron ions (ferric ions) is used. Examples of the ferric salt constituting this ferric salt aqueous solution include ferric chloride, ferric sulfate, ferric phosphate, ferric nitrate, and ferric oxalate. The ferric salt aqueous solution used in the present invention is not limited to a single solution of the above-mentioned ferric salts, but may also be a mixed solution containing two or more types of ferric salts, and even a ferric salt aqueous solution as long as it does not impede the purpose of the present invention. It may also contain iron salts or other salts. The ion concentration in the iron salt aqueous solution used is not particularly limited, but ferric ions are usually in the range of 0.1 to 6.0 mol/liter, preferably 1.0 to 5.0 mol/liter. . If the ferric ion content is less than 0.1 mol/liter, the hydrogen sulfide absorption rate will decrease, and if it exceeds 6.0 mol/liter, there will be problems with solubility, which is not preferable. Further, although ferrous ion is not essential, it should normally be present in an amount of 5.0 mol/liter or less, preferably in a range of 0.5 to 4.0 mol/liter. The main purpose of adding ferrous ions is to improve efficiency in electrochemical processing, but if the amount exceeds 5.0 mol/liter, precipitation of iron salts occurs, which is not preferable.
【0011】また、本発明では、前述の如く、鉄塩水溶
液中の遊離酸濃度を2モル/リットルを超えない範囲に
維持することが肝要である。この遊離酸濃度を低く抑え
た鉄塩水溶液を使用することにより、硫酸の生成を高め
ることが可能である。遊離酸の濃度は通常2モル/リッ
トル以下であればよく、好ましくは1.5〜0.1モル
/リットルである。ここで、遊離酸濃度が2モル/リッ
トルを超えると、硫酸の選択率が低下し、本発明の目的
を達成することができない。なお、上記気液接触工程に
おいて、反応の進行につれて鉄塩水溶液中に遊離酸が生
成して徐々に増大するため、最初に用いる鉄塩水溶液に
は、遊離酸を含有しない(つまり遊離酸濃度0モル/リ
ットル)水溶液を充当してもよい。また、反応過程の進
行にともなって、遊離酸濃度が2モル/リットルを超え
るような場合には、適宜手段にて鉄塩水溶液から遊離酸
を除去して、所定の濃度範囲に維持することが望ましい
。Further, in the present invention, as mentioned above, it is important to maintain the free acid concentration in the iron salt aqueous solution within a range not exceeding 2 mol/liter. By using an aqueous iron salt solution with a low free acid concentration, it is possible to increase the production of sulfuric acid. The concentration of the free acid should normally be 2 mol/liter or less, preferably 1.5 to 0.1 mol/liter. Here, if the free acid concentration exceeds 2 mol/liter, the selectivity of sulfuric acid decreases, making it impossible to achieve the object of the present invention. In addition, in the above gas-liquid contact step, as the reaction progresses, free acid is generated in the iron salt aqueous solution and gradually increases, so the iron salt aqueous solution used initially does not contain free acid (that is, the free acid concentration is 0). (mol/liter) aqueous solution may be applied. Additionally, if the free acid concentration exceeds 2 mol/liter as the reaction process progresses, it is necessary to remove the free acid from the iron salt aqueous solution by appropriate means to maintain the concentration within a predetermined range. desirable.
【0012】この気液接触工程(硫化水素ガス吸収工程
)を行うにあたっては、特に制限はないが、従来から液
体によるガス吸収において慣用されている方法、例えば
気泡塔,スプレー塔,ぬれ壁塔,攪拌式吸収塔,充填気
泡塔,充填塔などの汎用の吸収塔を採用すればよい。
この工程における硫化水素から硫黄及び硫酸を生成させ
る気液接触工程の反応式を次に示す。
H2 S+4H2 O+8Fe3+=H2 SO4
+8H+ +8Fe2+・・・(I) H2 S+
2Fe3+=S+2H+ +2Fe2+
・・・(II)即ち、硫化水素
ガスは、第二鉄イオンにより酸化され硫酸及び硫黄を生
成し、第二鉄イオンは第一鉄イオンに還元される。その
結果、硫酸及び硫黄が鉄塩水溶液中に含有されることと
なる。[0012] There are no particular restrictions on the method of carrying out this gas-liquid contact step (hydrogen sulfide gas absorption step), but methods conventionally used for gas absorption using liquids, such as bubble columns, spray columns, wet wall columns, etc. A general-purpose absorption tower such as a stirred absorption tower, a packed bubble tower, or a packed tower may be used. The reaction formula of the gas-liquid contact step for producing sulfur and sulfuric acid from hydrogen sulfide in this step is shown below. H2 S+4H2 O+8Fe3+=H2 SO4
+8H+ +8Fe2+...(I) H2 S+
2Fe3+=S+2H+ +2Fe2+
(II) That is, hydrogen sulfide gas is oxidized by ferric ions to produce sulfuric acid and sulfur, and the ferric ions are reduced to ferrous ions. As a result, sulfuric acid and sulfur will be contained in the iron salt aqueous solution.
【0013】上記気液接触工程における温度は、通常1
20〜200℃、好ましくは140〜180℃である。
120℃未満の低温では、硫酸の選択率が低下して好ま
しくない。また、特に分離を速やかに行うためには、硫
黄の融点以上、硫黄の融点は同素体毎に異なるが120
℃以上にすべきである。200℃を超える高温では装置
の材質上の制約が生じる。このように硫黄の融点以上に
設定することによって硫黄が溶融状態で生成し、比重差
で容易に硫黄と水溶液を分離することができる。この温
度範囲未満では、硫黄が溶融状態にならず、分離が困難
であると共に高純度で回収することが困難である。[0013] The temperature in the above gas-liquid contact step is usually 1
The temperature is 20-200°C, preferably 140-180°C. A low temperature below 120° C. is not preferred because the selectivity of sulfuric acid decreases. In addition, in order to perform the separation particularly quickly, the melting point of sulfur must be higher than the melting point of sulfur, and the melting point of sulfur is 120
It should be above ℃. At high temperatures exceeding 200° C., restrictions arise regarding the material of the device. By setting the temperature above the melting point of sulfur, sulfur is generated in a molten state, and the sulfur and the aqueous solution can be easily separated based on the difference in specific gravity. Below this temperature range, sulfur does not become molten and is difficult to separate and recover in high purity.
【0014】また、接触反応する際の圧力は、操作上に
支障のない範囲で水分蒸発を防いで液相を維持できると
ともに、上記所望の温度を保つために必要な圧力であれ
ば特に制限はないが、通常は1.5気圧以上が好ましい
。[0014] The pressure during the catalytic reaction is not particularly limited as long as it is sufficient to prevent moisture evaporation and maintain the liquid phase within a range that does not cause any operational problems, and is necessary to maintain the above-mentioned desired temperature. However, 1.5 atmospheres or more is usually preferred.
【0015】上記接触反応において生じた硫黄,硫酸及
び2価の鉄イオンを処理するには、物理的または化学的
な様々な方法によればよく、特に限定されるものではな
い。例えば硫黄を処理するには、物理的処理方法として
は、沈降分離法,遠心分離法などがあり、また化学的処
理方法としては、さらに他の硫黄化合物に変換する方法
などが挙げられる。また、2価の鉄イオンを処理する方
法としては、2価の鉄イオンを3価の鉄イオンに再生す
る方法あるいは金属鉄とする方法などが挙げられる。硫
酸を処理するには、イオン交換膜,イオン交換カラムな
ど化学的処理方法等がある。ここでは、硫黄を処理する
好ましい方法として沈降分離を利用した硫黄分離工程、
2価の鉄イオンを処理する好ましい方法として電気化学
的再生処理を施した電気化学的再生処理工程、硫酸を処
理する好ましい方法としてイオン交換膜を用いた硫酸分
離工程を以下に挙げる。[0015] The sulfur, sulfuric acid and divalent iron ions produced in the above contact reaction may be treated by various physical or chemical methods, and are not particularly limited. For example, to treat sulfur, physical treatment methods include sedimentation separation, centrifugation, etc., and chemical treatment methods include methods of converting it into other sulfur compounds. Examples of methods for treating divalent iron ions include a method of regenerating divalent iron ions into trivalent iron ions or a method of converting them into metallic iron. To treat sulfuric acid, there are chemical treatment methods such as ion exchange membranes and ion exchange columns. Here, a sulfur separation process using sedimentation separation as a preferred method of treating sulfur;
A preferred method for treating divalent iron ions is an electrochemical regeneration treatment step in which electrochemical regeneration treatment is performed, and a preferred method for treating sulfuric acid is a sulfuric acid separation step using an ion exchange membrane.
【0016】硫黄分離工程この工程は、様々な手法があ
り、条件や操作手順を適宜選定すればよい。そのうち好
ましいものとしては、上記で生成した硫黄を溶融硫黄と
して、液−液分離し、これを比重差により沈降分離し、
回収する方法が挙げられる。この硫黄分離工程に用いる
硫黄分離装置は、特に制限はなく、種々の構造のものを
利用することができる。例えば一般のシックナー形式,
空塔ドラム形式,沈降池形式等、分離回収すべき溶融硫
黄滴の大きさや設計上の回収率に応じて適宜選定すれば
よい。Sulfur separation process There are various methods for this process, and the conditions and operating procedures may be selected as appropriate. Among these, preferable methods include liquid-liquid separation of the sulfur produced above as molten sulfur, followed by sedimentation separation based on the difference in specific gravity;
One method is to collect it. The sulfur separation device used in this sulfur separation step is not particularly limited, and devices of various structures can be used. For example, general thickener format,
An empty column drum format, a sedimentation pond format, etc. may be selected as appropriate depending on the size of the molten sulfur droplets to be separated and recovered and the designed recovery rate.
【0017】電気化学的再生処理工程この電気化学的再
生処理工程は、前述の硫黄分離工程を経て硫黄を分離,
回収した後の水溶液を対象とする。この工程も上記と同
様に様々な方法があり限定されるものではない。好まし
いものとしては、次の方法が挙げられる。前記硫黄分離
工程にて得られた硫黄回収後の水溶液(吸収液)には、
第一鉄イオンが多く含有されている。それをこの再生工
程において、例えば電気分解等により、第一鉄イオンを
第二鉄イオンに変換すると共に水素ガスを発生させ、3
価の鉄イオン(第二鉄イオン)を多く含有する水溶液(
吸収液)を再生するとともに、水素ガスを分離回収する
。ここで進行する反応は、次の反応式で示される。
2Fe2++2H+ =2Fe3++H2 (
気体) ・・・(III)即ち、第一鉄イオ
ンは、第二鉄イオンに酸化再生されるとともに水素ガス
が発生する。再生された溶液は、再び気液接触工程に供
することができる。なお、この電気化学的再生工程を行
うための装置としては、通常の電気分解等に慣用されて
いる型式の電解槽などが充当される。Electrochemical regeneration treatment step This electrochemical regeneration treatment step separates sulfur through the aforementioned sulfur separation step.
The target is the aqueous solution after it has been collected. This step is not limited, as there are various methods as described above. Preferred methods include the following method. The aqueous solution (absorption liquid) after sulfur recovery obtained in the sulfur separation step includes:
Contains a lot of ferrous ions. In this regeneration step, ferrous ions are converted to ferric ions and hydrogen gas is generated, for example by electrolysis, etc.
Aqueous solution containing a large amount of valent iron ions (ferric ions) (
At the same time, the hydrogen gas is separated and recovered. The reaction that proceeds here is shown by the following reaction formula. 2Fe2++2H+ =2Fe3++H2 (
Gas) (III) That is, ferrous ions are oxidized and regenerated into ferric ions and hydrogen gas is generated. The regenerated solution can be subjected to the gas-liquid contacting step again. Note that as a device for performing this electrochemical regeneration step, an electrolytic cell or the like of a type commonly used for ordinary electrolysis or the like can be used.
【0018】このような工程を行う電解槽には、陽極と
陰極との間に、隔膜が設けられており、また前記電極に
は、黒鉛や炭素繊維などの耐酸材料が用いられている。
前記隔膜としては水素イオン選択透過性膜を用いること
が好ましい。例えば電解は、前記電解槽の陽極部に、前
記のようにして処理された鉄塩水溶液を入れ、一方陰極
部に、通常所定濃度の水素イオンを含む水溶液を入れる
か、あるいは陽極と陰極の間にある隔膜が乾燥しない程
度の水分を補給して、電圧を印加することにより行われ
る。[0018] In an electrolytic cell in which such a process is carried out, a diaphragm is provided between an anode and a cathode, and an acid-resistant material such as graphite or carbon fiber is used for the electrode. It is preferable to use a hydrogen ion permselective membrane as the diaphragm. For example, in electrolysis, an aqueous iron salt solution treated as described above is placed in the anode part of the electrolytic cell, while an aqueous solution containing hydrogen ions at a predetermined concentration is usually put in the cathode part, or an aqueous solution containing hydrogen ions at a predetermined concentration is usually put in the anode part of the electrolytic cell, or an aqueous solution containing hydrogen ions at a predetermined concentration is put in the anode part of the electrolytic cell. This is done by replenishing moisture to the extent that the diaphragm does not dry out and applying a voltage.
【0019】隔膜に水素イオン選択透過性膜を用いる場
合は、所望に応じて多孔質のガス拡散性電極、例えば黒
鉛繊維布、好ましくは白金等の触媒を担持したものを、
前記隔膜に直接接触させてもよい。なお、この電解は通
常は25〜100℃で行われる。When a hydrogen ion permselective membrane is used as the diaphragm, if desired, a porous gas diffusive electrode, such as a graphite fiber cloth, preferably carrying a catalyst such as platinum, is used.
It may be brought into direct contact with the diaphragm. In addition, this electrolysis is normally performed at 25-100 degreeC.
【0020】本発明では、電気化学的再生処理工程にお
いて、陽極部では2価の鉄イオンは3価の鉄イオンに電
解酸化され、陰極部では水素が発生する。In the present invention, in the electrochemical regeneration process, divalent iron ions are electrolytically oxidized to trivalent iron ions at the anode, and hydrogen is generated at the cathode.
【0021】このようにして、生成した硫黄が除去され
た2価の鉄イオンを含む鉄塩水溶液を電気化学的に処理
することにより、水素が発生するとともに前記2価の鉄
イオンは3価の鉄イオンに再生されるので、この再生さ
れた処理液は硫化水素の吸収液として繰り返し使用する
ことができる。By electrochemically treating the iron salt aqueous solution containing divalent iron ions from which the generated sulfur has been removed, hydrogen is generated and the divalent iron ions are converted into trivalent iron ions. Since it is regenerated into iron ions, the regenerated treatment liquid can be used repeatedly as a hydrogen sulfide absorption liquid.
【0022】硫酸分離工程この工程は、上記電気化学的
再生処理工程と同様、前述の硫黄分離工程を経て硫黄を
分離,回収した後の水溶液を対象とする。この工程では
、例えば通常の塩基性官能基に修飾されたイオン交換膜
を用い、鉄塩水溶液中に含まれる硫酸を拡散透析した後
、さらに疎水性多孔質チューブ等で濃縮処理することに
より濃硫酸を得ることができる。ここで用いられるイオ
ン交換膜としては、例えばネオセプタAFN(徳山曹達
(株)製),セレミオンDMV(旭硝子(株)製)等の
強塩基性陰イオン交換膜を充当すればよい。また、疎水
性多孔質チューブとしては、例えばポアフロン(住友電
工(株)製)等が挙げられる。以上の3工程、即ち硫黄
分離工程,電気化学的再生処理工程および硫酸分離工程
の順序については、通常は先ず硫黄分離工程が行われた
後、電気化学的再生処理工程または硫酸分離工程が行わ
れる。ここで、電気化学的再生処理工程と硫酸分離工程
は、どちらを先に行ってもよい。つまり、硫黄分離工程
,電気化学的再生処理工程および硫酸分離工程の順に操
作を行っても、また硫黄分離工程,硫酸分離工程および
電気化学的再生処理工程の順に操作を行ってよい。Sulfuric Acid Separation Step Similar to the electrochemical regeneration treatment step, this step targets the aqueous solution after sulfur has been separated and recovered through the sulfur separation step described above. In this step, for example, sulfuric acid contained in the iron salt aqueous solution is subjected to diffusion dialysis using an ion exchange membrane modified with ordinary basic functional groups, and then concentrated sulfuric acid is further concentrated using a hydrophobic porous tube. can be obtained. The ion exchange membrane used here may be a strongly basic anion exchange membrane such as Neocepta AFN (manufactured by Tokuyama Soda Co., Ltd.) or Selemion DMV (manufactured by Asahi Glass Co., Ltd.). Examples of the hydrophobic porous tube include POREFLON (manufactured by Sumitomo Electric Industries, Ltd.). Regarding the order of the above three steps, that is, the sulfur separation step, the electrochemical regeneration treatment step, and the sulfuric acid separation step, the sulfur separation step is usually performed first, and then the electrochemical regeneration treatment step or the sulfuric acid separation step is performed. . Here, either the electrochemical regeneration process or the sulfuric acid separation process may be performed first. That is, the sulfur separation step, the electrochemical regeneration step, and the sulfuric acid separation step may be performed in this order, or the sulfur separation step, the sulfuric acid separation step, and the electrochemical regeneration step may be performed in this order.
【0023】次に本発明の好適な実施態様の一例を図1
に従って説明する。本発明は、以下の方法に限定される
ものではない。図1は、前述したように本発明を実施す
る装置の一例を示す概略図である。図1に示すように、
気液接触工程1(例えば吸収塔)には、被処理ガスであ
る硫化水素(H2 S)ガスと3価の鉄イオンを含有す
る鉄塩水溶液、具体的には第二鉄塩水溶液等を導入する
。
この第二鉄塩水溶液は初期状態においては新たに調製さ
れた溶液を前記吸収塔に導入すればよい。装置の運転を
開始してからは、硫酸分離工程4(例えばイオン交換膜
)で得られた鉄塩水溶液を供給するのが効率的で好まし
い。Next, an example of a preferred embodiment of the present invention is shown in FIG.
Explain according to the following. The present invention is not limited to the following method. FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the present invention as described above. As shown in Figure 1,
In the gas-liquid contact step 1 (for example, absorption tower), hydrogen sulfide (H2S) gas, which is the gas to be treated, and an iron salt aqueous solution containing trivalent iron ions, specifically, a ferric salt aqueous solution, etc. are introduced. do. In the initial state, a freshly prepared ferric salt aqueous solution may be introduced into the absorption tower. After starting the operation of the apparatus, it is efficient and preferable to supply the iron salt aqueous solution obtained in the sulfuric acid separation step 4 (for example, using an ion exchange membrane).
【0024】吸収塔の内部は、図示していない加熱装置
により、加熱される。吸収塔に前記被処理ガスと前記鉄
塩水溶液とを導入し、両者を接触させると、前記反応式
(I)及び(II)に従って反応が進行し、硫酸及び硫
黄が生成する。この際、反応系内は硫黄の融点以上であ
れば、硫黄は吸収塔の内壁へ付着することがほとんど無
く好ましい。The inside of the absorption tower is heated by a heating device (not shown). When the gas to be treated and the aqueous iron salt solution are introduced into the absorption tower and brought into contact with each other, the reaction proceeds according to the reaction formulas (I) and (II), producing sulfuric acid and sulfur. At this time, it is preferable that the inside of the reaction system be at or above the melting point of sulfur, since sulfur will hardly adhere to the inner wall of the absorption tower.
【0025】次に、硫酸及び硫黄を含む鉄塩水溶液は、
硫黄分離工程2(硫黄分離装置)に送られる。なお、所
望によりこの工程の前に溶融硫黄滴を合一させる工程を
設けてもよい。前記硫黄分離装置では、硫黄を溶融状態
として比重差により鉄塩水溶液中で沈降する。該分離装
置の底部から容易に回収される。また、硫黄を溶融状態
で分離を行えば硫黄分離装置の内部構造を簡単にするこ
とができる。Next, the iron salt aqueous solution containing sulfuric acid and sulfur is
Sent to sulfur separation step 2 (sulfur separation device). Note that, if desired, a step of coalescing the molten sulfur droplets may be provided before this step. In the sulfur separation device, molten sulfur is precipitated in an iron salt aqueous solution due to the difference in specific gravity. It is easily recovered from the bottom of the separator. Furthermore, if sulfur is separated in a molten state, the internal structure of the sulfur separation device can be simplified.
【0026】さらに硫黄分離装置から出てくる硫黄回収
後の液は、電気化学的再生工程3(例えば電解槽)に供
給される。この電解槽では、前記(III)の反応が進
行する。この電気化学的処理において用いられる装置と
しては、既に前述した如く、従来慣用されている型式の
電解槽を使用することができる。この電解槽には、陽極
と陰極との間に、隔膜が設けられており、また前記電極
には、黒鉛や炭素繊維などの耐酸材料が用いられている
。
前記隔膜としては水素イオン選択透過性膜を用いること
が好ましい。Furthermore, the liquid after sulfur recovery coming out of the sulfur separation device is supplied to an electrochemical regeneration step 3 (for example, an electrolytic cell). In this electrolytic cell, the reaction (III) described above proceeds. As the apparatus used in this electrochemical treatment, as already mentioned above, a conventional type of electrolytic cell can be used. This electrolytic cell is provided with a diaphragm between an anode and a cathode, and the electrode is made of an acid-resistant material such as graphite or carbon fiber. It is preferable to use a hydrogen ion permselective membrane as the diaphragm.
【0027】なお、電解槽に供給する鉄塩水溶液中の沈
降した硫黄の濃度が大きいと電解性能が低下するので、
電解槽に送られる水溶液中の沈降した硫黄は、できるだ
け除去しておく方が良い。また、所望により、電解槽の
前にフィルターを設けることもできる。[0027] Note that if the concentration of precipitated sulfur in the iron salt aqueous solution supplied to the electrolytic cell is high, the electrolytic performance will decrease.
It is better to remove as much of the precipitated sulfur from the aqueous solution as possible to the electrolytic cell. Furthermore, if desired, a filter can be provided in front of the electrolytic cell.
【0028】次いで、上記処理を経た硫酸を含む鉄塩水
溶液は、硫酸分離工程4(例えば強塩基性陰イオン交換
膜)に供給される。ここで上記水溶液中の硫酸は、拡散
透析され選択的に分離される。分離された硫酸水は、さ
らに膜蒸留され濃硫酸として採取することができる。Next, the iron salt aqueous solution containing sulfuric acid that has undergone the above treatment is supplied to a sulfuric acid separation step 4 (for example, a strong basic anion exchange membrane). Here, the sulfuric acid in the aqueous solution is selectively separated by diffusion dialysis. The separated sulfuric acid water can be further subjected to membrane distillation and collected as concentrated sulfuric acid.
【0029】[0029]
【実施例】次に、本発明を実施例及び比較例によりさら
に詳しく説明する。実施例1〜6及び比較例1〜33価
の鉄イオンを含む所定量の硫化水素吸収液(鉄塩水溶液
)100ミリリットルを150ミリリットルのセミバッ
チ方式の反応器に入れて、硫化水素含有ガス(組成:H
2 S:10%,N2 :90%)を3時間かけて吹込
H2 S量24〜26ミリモルにて導入して接触,吸収
反応を行った。なお反応圧は5kg/cm2 とした。
反応中、圧力調節弁から流出するガス全量約5リットル
をガスホルダー(テトラバッグ)にて捕集した。反応終
了後、降温した後に脱圧,窒素置換して反応液から生成
した硫黄を濾過,除去した。回収反応ガスは良く混合し
て吸引式ガス検知管を利用して硫化水素及び二酸化硫黄
の分析を行った。また、回収反応液中の二酸化硫黄及び
硫酸の分析も行った。得られた結果より、硫化水素の転
化率,二酸化硫黄の選択率及び硫酸の選択率を求めた。
得られた結果を第1表に示す。なお、硫化水素の転化率
,二酸化硫黄の選択率及び硫酸の選択率は、それぞれ次
の式で定義される。EXAMPLES Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Examples 1 to 6 and Comparative Examples 1 to 3 100 ml of a predetermined amount of hydrogen sulfide absorption liquid (iron salt aqueous solution) containing trivalent iron ions was put into a 150 ml semi-batch type reactor, and the hydrogen sulfide-containing gas (composition :H
2S: 10%, N2: 90%) was introduced over 3 hours at an amount of 24 to 26 mmol of H2S to carry out a contact and absorption reaction. Note that the reaction pressure was 5 kg/cm2. During the reaction, a total amount of about 5 liters of gas flowing out from the pressure control valve was collected with a gas holder (tetra bag). After the reaction was completed, the temperature was lowered, the pressure was removed and the atmosphere was replaced with nitrogen, and the sulfur produced from the reaction solution was filtered and removed. The recovered reaction gas was mixed well and analyzed for hydrogen sulfide and sulfur dioxide using a suction type gas detection tube. In addition, sulfur dioxide and sulfuric acid in the recovered reaction solution were analyzed. From the obtained results, the conversion rate of hydrogen sulfide, the selectivity of sulfur dioxide, and the selectivity of sulfuric acid were determined. The results obtained are shown in Table 1. Note that the conversion rate of hydrogen sulfide, the selectivity of sulfur dioxide, and the selectivity of sulfuric acid are each defined by the following formulas.
【0030】硫化水素の転化率(%)
=(1−残存硫化水素 mol/仕込み硫化水素 mo
l)×100
二酸化硫黄の選択率(%)
=(ガス及び液中の二酸化硫黄 mol/反応硫化水素
mol)×100
硫酸の選択率(%)=(液中硫酸 mol/反応硫化水
素 mol)×100Conversion rate of hydrogen sulfide (%) = (1-residual hydrogen sulfide mol/charged hydrogen sulfide mo
l) x 100 Selectivity of sulfur dioxide (%) = (mol of sulfur dioxide in gas and liquid/mol of reacted hydrogen sulfide) x 100 Selectivity of sulfuric acid (%) = (mol of sulfuric acid in liquid/mol of reacted hydrogen sulfide) x 100
【0031】実施例7
ミニセル装置(電極面積:10cm2 ,陽極室:炭素
板/炭素繊維布,隔膜:市販のカチオン交換膜,陰極室
:白金触媒付炭素繊維布/炭素板)の陽極室に、硫黄を
除去した水溶液(実施例6のもの)を、陰極室に硫酸(
1.5モル/リットル)を、各々5ミリリットル/分の
速度で流し、電流密度100mA/cm2 における電
解電圧を測定した。電解は50℃で行った。電解電圧は
850mVを示し、陰極からは水素ガスが発生した。次
に、上記実施例6と同様の硫化水素含有ガスの吸収,酸
化反応及び上記の電気化学処理と同様の処理を10回繰
り返した後、得られた水溶液100ミリリットルを透析
用ミニセル装置(膜面積:10cm2 ,膜:市販のア
ニオン交換膜)へイオン交換水と向流で通し、拡散透析
を行った。ここで、ミニセル装置の通過速度は、上記水
溶液及びイオン交換水共に0.1ミリリットル/分とし
た。透析温度は、室温25℃である。得られた結果を第
2表に示す。Example 7 In the anode chamber of a minicell device (electrode area: 10 cm2, anode chamber: carbon plate/carbon fiber cloth, diaphragm: commercially available cation exchange membrane, cathode chamber: carbon fiber cloth with platinum catalyst/carbon plate), The aqueous solution from which sulfur was removed (from Example 6) was placed in the cathode chamber with sulfuric acid (
1.5 mol/liter) at a rate of 5 ml/min, and the electrolytic voltage at a current density of 100 mA/cm2 was measured. Electrolysis was performed at 50°C. The electrolytic voltage was 850 mV, and hydrogen gas was generated from the cathode. Next, after repeating the absorption of hydrogen sulfide-containing gas similar to Example 6, the oxidation reaction, and the same treatment as the electrochemical treatment described above 10 times, 100 ml of the obtained aqueous solution was added to a dialysis minicell device (membrane area : 10 cm2, membrane: commercially available anion exchange membrane) in countercurrent flow with ion-exchanged water to perform diffusion dialysis. Here, the passage speed of the minicell device was 0.1 ml/min for both the aqueous solution and ion-exchanged water. The dialysis temperature is room temperature 25°C. The results obtained are shown in Table 2.
【0032】[0032]
【表1】[Table 1]
【0033】[0033]
【表2】[Table 2]
【0034】[0034]
【表3】[Table 3]
【0035】[0035]
【表4】[Table 4]
【0036】[0036]
【発明の効果】以上のように、本発明によれば、硫化水
素ガスから硫黄と硫酸を効率よく生成回収することがで
きる。さらに、電気化学的再生工程を行えば、2価の鉄
イオンを3価の鉄イオンに再生するとともに、水素ガス
を生成することができる。このように、本発明の方法は
、石油精製,天然ガス産出あるいは地熱利用の際などに
副生する硫化水素含有ガスから極めて効率良く硫酸,硫
黄及び水素を回収できる方法として、工業的な利用価値
が高い。As described above, according to the present invention, sulfur and sulfuric acid can be efficiently produced and recovered from hydrogen sulfide gas. Furthermore, by performing an electrochemical regeneration step, divalent iron ions can be regenerated into trivalent iron ions and hydrogen gas can be generated. As described above, the method of the present invention has industrial utility as a method that can extremely efficiently recover sulfuric acid, sulfur, and hydrogen from hydrogen sulfide-containing gas that is produced as a by-product during oil refining, natural gas production, or geothermal utilization. is high.
【図1】本発明の全処理工程の概略図である。FIG. 1 is a schematic diagram of the entire process steps of the present invention.
1:気液接触工程 2:硫黄分離工程 3:電気化学的再生工程 4:硫酸分離工程 1: Gas-liquid contact process 2: Sulfur separation process 3: Electrochemical regeneration process 4: Sulfuric acid separation process
Claims (2)
む鉄塩水溶液に、該水溶液中の遊離酸濃度が2モル/リ
ットルを超えない範囲に維持しつつ120〜200℃で
接触,吸収させて硫化水素を酸化反応することにより、
硫黄と硫酸を生成させることを特徴とする硫化水素含有
ガスの処理方法。Claim 1: Contacting a hydrogen sulfide-containing gas with an iron salt aqueous solution containing trivalent iron ions at 120 to 200°C while maintaining the free acid concentration in the aqueous solution within a range of not exceeding 2 mol/liter; By absorbing and oxidizing hydrogen sulfide,
A method for treating hydrogen sulfide-containing gas, which is characterized by generating sulfur and sulfuric acid.
む鉄塩水溶液に、該水溶液中の遊離酸濃度が2モル/リ
ットルを超えない範囲に維持しつつ120〜200℃で
接触,吸収させて硫化水素を酸化することにより、硫化
水素から硫黄と硫酸を生成させ、次いで生成した硫黄あ
るいは硫黄と硫酸を分離した後、この水溶液を電解槽の
陽極部に導入して該水溶液を電解酸化すると同時に、電
解槽の陰極部から水素を発生させて回収することを特徴
とする硫化水素含有ガスの処理方法。2. Contacting a hydrogen sulfide-containing gas with an iron salt aqueous solution containing trivalent iron ions at 120 to 200°C while maintaining the free acid concentration in the aqueous solution within a range of not exceeding 2 mol/liter; By absorbing and oxidizing hydrogen sulfide, sulfur and sulfuric acid are generated from hydrogen sulfide, and after separating the generated sulfur or sulfur and sulfuric acid, this aqueous solution is introduced into the anode part of the electrolytic cell and electrolyzed. A method for processing hydrogen sulfide-containing gas, which comprises oxidizing the gas and simultaneously generating and recovering hydrogen from the cathode section of an electrolytic cell.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3136661A JPH04362008A (en) | 1991-06-07 | 1991-06-07 | Treatment of hydrogen sulfide containing gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3136661A JPH04362008A (en) | 1991-06-07 | 1991-06-07 | Treatment of hydrogen sulfide containing gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04362008A true JPH04362008A (en) | 1992-12-15 |
Family
ID=15180546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3136661A Pending JPH04362008A (en) | 1991-06-07 | 1991-06-07 | Treatment of hydrogen sulfide containing gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04362008A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612556A1 (en) * | 1993-02-25 | 1994-08-31 | Idemitsu Kosan Company Limited | Process for removal of hydrogen sulfide |
CN112938905A (en) * | 2021-04-23 | 2021-06-11 | 中国科学院过程工程研究所 | Method for preparing high-purity sulfur by using tail gas containing hydrogen sulfide |
-
1991
- 1991-06-07 JP JP3136661A patent/JPH04362008A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0612556A1 (en) * | 1993-02-25 | 1994-08-31 | Idemitsu Kosan Company Limited | Process for removal of hydrogen sulfide |
US5391278A (en) * | 1993-02-25 | 1995-02-21 | Idemitsu Kosan Co., Ltd. | Process for removal of hydrogen sulfide |
CN112938905A (en) * | 2021-04-23 | 2021-06-11 | 中国科学院过程工程研究所 | Method for preparing high-purity sulfur by using tail gas containing hydrogen sulfide |
CN112938905B (en) * | 2021-04-23 | 2023-05-30 | 中国科学院过程工程研究所 | Method for preparing high-purity sulfur by utilizing tail gas containing hydrogen sulfide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230303401A1 (en) | Preparation of lithium carbonate from lithium chloride containing brines | |
US12054835B2 (en) | Method for electrochemically reducing carbon dioxide | |
JPS5982925A (en) | Removal of hydrogen sulfide | |
US5391278A (en) | Process for removal of hydrogen sulfide | |
GB1576280A (en) | Electrolytic process for the recovery of iron sulphuric acid and/or hydrochloric acid from a waste iron-containing solution | |
US4210502A (en) | Process for recovery of waste H2 SO4 and HCl | |
JPH04362008A (en) | Treatment of hydrogen sulfide containing gas | |
JP4292454B2 (en) | Method for treating aqueous solution containing metal fluoride | |
EP0464532B1 (en) | Process for recovering sulfur | |
EP0348875A2 (en) | Method for the recovery of sulfur | |
JPH042794A (en) | Method for recovering hydrogen from hydrogen sulfide | |
JPH07268359A (en) | Method for treating hydrogen sulfide | |
JPH04238803A (en) | Treatment of hydrogen sulfide | |
JPH05125576A (en) | Method for recovering hydrogen from hydrogen sulfide | |
JPH07268357A (en) | Method for treating hydrogen sulfide-containing gas | |
JPH07112115A (en) | Treatment of hydrogen sulfide | |
JPH0884905A (en) | Method for treating gas containing hydrogen sulfide | |
JPH089482B2 (en) | How to treat hydrogen sulfide | |
JPH04333585A (en) | Method for recovering hydrogen from hydrogen sulfide | |
JPH07268358A (en) | Method for treating hydrogen sulfide | |
JPH04329887A (en) | Method for recovering hydrogen from hydrogen sulfide | |
JPH07299320A (en) | Removal of hydrogen sulfide | |
JPH06246132A (en) | Treatment of hydrogen sulfide | |
JPH0841669A (en) | Treatment of hydrogen sulfide-containing gas | |
JPS5930455B2 (en) | Exhaust gas treatment method |