JPH0436100B2 - - Google Patents
Info
- Publication number
- JPH0436100B2 JPH0436100B2 JP7184A JP7184A JPH0436100B2 JP H0436100 B2 JPH0436100 B2 JP H0436100B2 JP 7184 A JP7184 A JP 7184A JP 7184 A JP7184 A JP 7184A JP H0436100 B2 JPH0436100 B2 JP H0436100B2
- Authority
- JP
- Japan
- Prior art keywords
- quartz
- tube
- base material
- furnace
- core tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 42
- 239000000463 material Substances 0.000 claims description 39
- 239000010453 quartz Substances 0.000 claims description 36
- 239000000919 ceramic Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 15
- 239000011521 glass Substances 0.000 claims description 11
- 239000013307 optical fiber Substances 0.000 claims description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 10
- 229910052731 fluorine Inorganic materials 0.000 claims description 10
- 239000011737 fluorine Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000000835 fiber Substances 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 6
- 238000005260 corrosion Methods 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 3
- 150000002222 fluorine compounds Chemical class 0.000 claims description 3
- 239000005373 porous glass Substances 0.000 claims description 3
- 229910052582 BN Inorganic materials 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 17
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000011109 contamination Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/08—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
- C03B2201/12—Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
本発明はガラス母材に対する不純物元素の混入
を防止し、かつ耐久性の優れた光フアイバ用母材
の製造装置に関する。
光フアイバ用母材を大量生産する一般的な方法
としてVAD法が知られている。このVAD法は回
転する出発部材、例えばガラス板あるいはガラス
棒の上に酸水素炎中で生成したガラス微粒子を堆
積させて円柱状の多孔質母材をつくり、この多孔
質母材を焼結して透明な光フアイバ用母材を製造
する方法である。この方法において多孔質母材を
焼結し透明化するには母材をHeもしくはArガス
雰囲気で1600℃以上に加熱する必要がある。この
加熱炉としては通常カーボン炉が用いられてい
る。かかる加熱炉における焼結に際して時に留意
しなければならない点はCuやFeなどの遷移元素
の混入並びに水分の混入の防止である。遷移元素
が1ppb以上混入すると、光フアイバの損失波長
特性が全波長にわたり著しく損われ、、また水分
が0.1ppm以上混入すると長波長域におけるその
特性が損なわれるからである。そこで通常上記多
孔質母材を脱水することが行なわれ、この脱水処
理として該多孔質母材をフツ素ガスを添加した不
活性ガス雰囲気中で高温加熱する方法が知られて
いる。この方法は多孔質母材の脱水を行うのみな
らずフツ素を添加させる効果をも有している。多
孔質母材中にフツ素を添加すると光フアイバの必
須要素である屈折率分布の調整ができる利点があ
る。尚この点に関しては特公昭55−15682号、特
開昭55−67533号に詳しく説明されている。
上記フツ素ガスを用いた処理は通常、焼結と同
時にもしくは前工程としてカーボン炉内で行なわ
れる。カーボン炉にはカーボン発熱体が母材の加
熱処理中に発生する水分や酸素で消耗するのを防
ぐため、カーボン発熱体と焼結雰囲気とを隔離す
る炉心管が設置されており、従来アルミナ製のも
のが使用されていた。しかし、アルミナ製の炉心
管を用いるとアルミナの中に含まれるアルカリ成
分が高温で周囲に飛散し、これが多孔質母材表面
に付着し、クリストバライト層を形成するという
問題がある。そこで炉心管として石英ガラス製の
ものが実用化されつつある。しかし石英ガラス製
の炉心管にCuやFeが含有されてると、脱水処理
雰囲気中の塩素系のガスとCuあるいはFeとが容
易に化学反応し、下式に示すような揮散性の塩化
物として多孔質母材に侵入し、フアイバの損失特
性を著しく損なうという新たな問題も生じるてい
る。
CuOCl2
――→
Cu2Cl2
Fe2O3Cl2
――→
FeCl3
更に、炉心管が石英ガラスの単体である場合、
高温下にいて、Cuは容易に石英ガラス中に拡散
する性質があるため、炉本体や発熱体から揮散す
るCuが炉心管を透過し、ガラス母材中に混入す
るという問題もある。
更にフツ素ガスは高温で分解もしくは反応し、
F2やHFガスを生成する。これ等のガスは次式の
ように石英材と反応しSiF4ガスを生成して石英材
をエツチングする。
SiO2+2F2→SiF4+O2
SiO2+4HF→SiF4+2H2O
このため石英材中に存在するCuFeが石英材の
表面に現われ多孔質母材へ混入する原因となる。
更には石英炉心管にピンホールを生じ、外気の混
入や雰囲気ガスが炉外へ漏出する原因ともなり製
造工程上悪影響を招く結果になる。
本発明は石英管がアルミナ管等に比べ稠密であ
り、しかも熱膨張係数が小さいため耐久性に優れ
るという利点を維持したまま、高温下における上
記不純物の混入と、フツ素ガスによる浸蝕とを確
実に防止した光フアイバ用母材の製造装置を提供
することを目的とするものであつて、その構成
は、加熱炉の炉心管に多孔質ガスル母材を挿入
し、フツ素化合物を含む雰囲気中で上記ガラス場
材を脱水焼結する装置において、加熱炉を具え、
該加熱炉に石英炉心管が内装され、該石英炉心管
の内壁に融点が石英より高くかつフツ素ガスに対
して耐蝕性を有するセラミツクスがコーテイング
されていることを特徴とする。
以下に本発明を図面に示す実施例に基づいて詳
細に説明する。
本発明の概略構成を図に示す。加熱炉本体6の
内側に発熱体5が設けられると共に炉体中心に炉
心管3が設けられる。該炉心管3は石英ガラス管
により形成され、その内周壁にアルミナ
(Al2O3)のセラミツクス層4がコーテイングさ
れている。尚該セラミツクス層4としては上記ア
ルミナ以外にも石英より融点が高くかつフツ素ガ
スに対して耐蝕性のあるセラミツクスを用いるこ
とができる。
該セラミツクス層として好適な材質を次表に示
す。
The present invention relates to an apparatus for manufacturing an optical fiber base material that prevents contamination of impurity elements into a glass base material and has excellent durability. The VAD method is known as a general method for mass producing base materials for optical fibers. In this VAD method, glass particles generated in an oxyhydrogen flame are deposited on a rotating starting member, such as a glass plate or a glass rod, to create a cylindrical porous base material, and this porous base material is sintered. This is a method for manufacturing a transparent optical fiber base material. In this method, in order to sinter the porous base material and make it transparent, it is necessary to heat the base material to 1600°C or higher in a He or Ar gas atmosphere. A carbon furnace is usually used as this heating furnace. Points that must be kept in mind during sintering in such a heating furnace are prevention of contamination of transition elements such as Cu and Fe as well as contamination of moisture. This is because if 1 ppb or more of transition elements are mixed in, the loss wavelength characteristics of the optical fiber will be significantly impaired over all wavelengths, and if 0.1 ppm or more of water is mixed in, the characteristics in the long wavelength range will be impaired. Therefore, the porous base material is usually dehydrated, and a known method is to heat the porous base material at a high temperature in an inert gas atmosphere to which fluorine gas is added. This method not only dehydrates the porous matrix but also has the effect of adding fluorine. Adding fluorine to the porous base material has the advantage that the refractive index distribution, which is an essential element of optical fibers, can be adjusted. This point is explained in detail in Japanese Patent Publication No. 55-15682 and Japanese Patent Application Laid-open No. 55-67533. The above-mentioned treatment using fluorine gas is usually carried out in a carbon furnace simultaneously with sintering or as a preliminary step. Carbon furnaces are equipped with a furnace tube that isolates the carbon heating element from the sintering atmosphere in order to prevent the carbon heating element from being consumed by moisture and oxygen generated during heat treatment of the base material. was used. However, when an alumina core tube is used, there is a problem in that alkaline components contained in the alumina scatter around at high temperatures, and this adheres to the surface of the porous base material, forming a cristobalite layer. Therefore, quartz glass core tubes are being put into practical use. However, if the quartz glass reactor core tube contains Cu or Fe, the chlorine-based gas in the dehydration treatment atmosphere will easily chemically react with the Cu or Fe, producing volatile chlorides as shown in the equation below. A new problem arises in that it penetrates the porous matrix and significantly impairs the loss characteristics of the fiber. CuOCl 2 ---→ Cu 2 Cl 2 Fe 2 O 3 Cl 2 ---→ FeCl 3Furthermore , if the furnace core tube is a single piece of quartz glass,
Since Cu has the property of easily diffusing into quartz glass under high temperatures, there is also the problem that Cu volatilized from the furnace body and heating element passes through the furnace core tube and mixes into the glass base material. Furthermore, fluorine gas decomposes or reacts at high temperatures,
Produces F2 and HF gas. These gases react with the quartz material as shown in the following equation to generate SiF 4 gas and etch the quartz material. SiO 2 +2F 2 →SiF 4 +O 2 SiO 2 +4HF → SiF 4 +2H 2 O This causes CuFe present in the quartz material to appear on the surface of the quartz material and mix into the porous base material.
Furthermore, pinholes are formed in the quartz furnace tube, which causes outside air to get mixed in and atmospheric gas to leak out of the furnace, resulting in an adverse effect on the manufacturing process. The present invention maintains the advantage that quartz tubes are denser than alumina tubes and have excellent durability due to their low coefficient of thermal expansion, while also ensuring that the above-mentioned impurities do not mix in at high temperatures and corrode by fluorine gas. The purpose of the present invention is to provide an apparatus for manufacturing an optical fiber base material that prevents the occurrence of oxidation, and its configuration is such that a porous gaseous base material is inserted into the core tube of a heating furnace, and the process is carried out in an atmosphere containing fluorine compounds. In the apparatus for dehydrating and sintering the above-mentioned glass field material, comprising a heating furnace,
The heating furnace is equipped with a quartz furnace tube, and the inner wall of the quartz furnace tube is coated with ceramic having a melting point higher than that of quartz and having corrosion resistance against fluorine gas. The present invention will be described in detail below based on embodiments shown in the drawings. The schematic configuration of the present invention is shown in the figure. A heating element 5 is provided inside the heating furnace body 6, and a furnace core tube 3 is provided at the center of the furnace body. The furnace core tube 3 is formed of a quartz glass tube, and its inner peripheral wall is coated with a ceramic layer 4 of alumina (Al 2 O 3 ). In addition to the above alumina, the ceramic layer 4 may be made of a ceramic having a melting point higher than that of quartz and having corrosion resistance against fluorine gas. The following table shows suitable materials for the ceramic layer.
【表】
尚、セラミツクスをコーテイングする方法とし
ては、気相反応による膜形成方法、例えばプラズ
マCVDコート、CVDコートなどが緻密な膜を形
成できるので好ましい。
上記セラミツクス層4の厚みは5μm〜2mm程
度が好ましい。2mm以上の層厚になると剥離し易
く、又、5μm以下の層厚では上記効果が充分で
はない。
次にセラミツクス層4は、予め石英炉心管の内
壁に下地層を形成しこの下地層の表面に積層させ
ると一層良好である。下地層としてはボロンナイ
トライド(BN)等を用いるとよい。尚他の下地
層としてはアルミナや炭化ケイ素が用いられる。
これら下地層は上記セラミツクス、石英と密着し
易いので下地層として好適である。該下地層の厚
さは、あまり厚いと石英管との間に歪を生じ剥離
するので2〜10μm程度でよい。
一方、上記炉本体6の側端にはAr、N2等のシ
ールドガスを導入する供給口7が設けられる。又
該炉心管3の下端にはHe、Ar、Cl2等の処理用
ガスを導入する供給口8が設けられると共に該炉
心管3の上方には支持棒2を介して多孔質ガラス
母材1が吊り下げられている。
上記構成において、セラミツクス層4が内張り
された石英管はアルミナ管やカーボン管に比べ稠
密であり、しかも熱膨張係数が小さく熱履歴によ
る破壊の虞がなく耐久性に優れる。この場合、石
英管自体に含まれる不純物が拡散して母材に混入
するのを防止するため、石英管としては高純度で
透明なものが望ましい。その程度としてはCuOが
0.5ppm以下、Fe2O3が1%以下となるよう特に銅
分を除去した透明石英管が適している。尚、一般
に石英管を1500℃以上に加熱すると、石英管が引
き伸びる現象がみられるが、肉厚を5mm以上とす
ると1600℃でも引き伸びを生ぜず又電気熔融法で
製作した肉厚6mmの石英管では1650℃でも引き伸
びを生ずることはない。更に、セラミツクス層4
として第1表に示す材質のものを用いれば石英に
比べて高温での粘性が小さく管の引伸びを抑える
ことができる。従つてこのような石英管を使用す
れば1500℃以上の焼結温度に対しても不都合を生
じない。又、Cu等の不純物はアルミナ等のセラ
ミツクス層4を透過できない。このため本発明の
石英炉心管においては外部の炉本体6や発熱体5
から拡散されるCu等の不純物はこのセラミツク
ス層4により遮蔽され、炉心管3内部に侵入する
ことがない。従つて、多孔質ガラス母材に対する
不純物の混入を確実に防止することができる。
更に上記石英管はその内周壁が第1表に示す材
質のセラミツクス層4により内張りされているの
でフツ素化合物を含むガス雰囲気でガラス母材を
焼結する場合でもF2ガスやHFガスによる腐蝕を
防止することができる。因にHF溶液による石英
とアルミナとのエツチング効果を次表に示す[Table] As a method for coating ceramics, a film forming method using a gas phase reaction, such as plasma CVD coating or CVD coating, is preferred because it can form a dense film. The thickness of the ceramic layer 4 is preferably about 5 μm to 2 mm. When the layer thickness is 2 mm or more, it is easy to peel off, and when the layer thickness is 5 μm or less, the above effect is not sufficient. Next, the ceramic layer 4 is even better if a base layer is formed on the inner wall of the quartz furnace tube in advance and the ceramic layer 4 is laminated on the surface of this base layer. As the base layer, boron nitride (BN) or the like may be used. In addition, alumina and silicon carbide are used as other base layers.
These base layers are suitable as base layers because they easily adhere to the ceramics and quartz. The thickness of the base layer may be about 2 to 10 μm, since if it is too thick, it will cause distortion and peeling between the base layer and the quartz tube. On the other hand, a supply port 7 is provided at the side end of the furnace body 6 to introduce a shielding gas such as Ar or N 2 . Further, a supply port 8 for introducing processing gases such as He, Ar, Cl2, etc. is provided at the lower end of the furnace core tube 3, and a porous glass base material 1 is provided above the furnace core tube 3 via a support rod 2. is suspended. In the above configuration, the quartz tube lined with the ceramic layer 4 is denser than an alumina tube or a carbon tube, has a small coefficient of thermal expansion, and has excellent durability without fear of breakage due to thermal history. In this case, in order to prevent impurities contained in the quartz tube itself from diffusing and mixing into the base material, it is desirable that the quartz tube be highly pure and transparent. As for the degree, CuO
A transparent quartz tube in which the copper content is particularly removed so that the content is 0.5 ppm or less and Fe 2 O 3 is 1% or less is suitable. Generally, when a quartz tube is heated to 1,500℃ or higher, a phenomenon of stretching is observed, but if the wall thickness is 5 mm or higher, no stretching occurs even at 1,600℃, and a 6-mm-thick tube made using the electric melting method does not cause stretching. Quartz tubes do not elongate even at 1650℃. Furthermore, ceramic layer 4
If a material shown in Table 1 is used as the material, the viscosity at high temperatures is lower than that of quartz, and the elongation of the tube can be suppressed. Therefore, if such a quartz tube is used, there will be no problem even at sintering temperatures of 1500° C. or higher. Further, impurities such as Cu cannot pass through the ceramic layer 4 made of alumina or the like. Therefore, in the quartz furnace tube of the present invention, the external furnace body 6 and the heating element 5 are
Impurities such as Cu diffused from the furnace are shielded by the ceramic layer 4 and do not enter the inside of the furnace tube 3. Therefore, it is possible to reliably prevent impurities from entering the porous glass base material. Furthermore, since the inner circumferential wall of the quartz tube is lined with a ceramic layer 4 made of the material shown in Table 1, even when the glass base material is sintered in a gas atmosphere containing fluorine compounds, it will not be corroded by F2 gas or HF gas. can be prevented. The table below shows the etching effect of HF solution on quartz and alumina.
【表】
した場合の重量変化により測定
上記第2表から明らかなように本発明の炉心管
はF2ガス、HFガスに対する顕著な耐蝕性を有す
る。従つて石材中に存在するCu、Feが表面に露
出して不純物混入の原因となる虞れがなく一層高
純度のガラス母材を得ることができる。以上本発
明の装置例を例示する実施例に基づいて説明した
が本発明は上記実施例に限定されるものではな
く、例えばセラミツクス層を有する上記石英管を
更にカーボン炉心管内に挿入した構造としてもよ
い。
実施例 1
発熱体で10μm厚のアルミナを内装した石英炉
心管を1600℃に加熱し、該管内にSF6を50c.c./
分、Heを5/分の割合で流し、その中に多孔
質母材1の下降速度2mm/分で挿入した。得られ
た透明ガラス母材を引き続きフアイバに紡糸した
ところ、フアイバの残留水分は0.01ppmでありCu
やFeに由来する吸収は全くみられなかつた。
実施例 2
石英管の内周壁に予め2μm厚のBNを下地層と
してコーテイングし、その上に10μm厚のアルミ
ナをコーテイングした石英炉心管を用い、その他
は実施例1と同様の条件下でガラス母材を製造し
たところ炉温の昇降を繰り返した場合、実施例1
よりも更に10倍の寿命を保つことが可能となつ
た。
比較例
石英炉管として、1ppmのCuを含みかつセラミ
ツクス層を有しない石英管を使用し、その他は実
施例1と同じ条件でフアイバを製造した。得られ
たフアイバの残留水分は0.01ppmであつた。また
Cuに由来する吸収が〜1.30μm近傍まで存在した
が、この値は従前の吸収に比べると十分低く2〜
3dBであつた。しかしながら炉心管の内周壁は著
しくエツチングされており、耐蝕性のうえで問題
のあることが判明した。
以上、実施例に基づいて具体的に説明したよう
に本発明は、不純物特にCuや水分の混入しない
光フアイバ用母材を製造でき、伝送損失の小さな
光フアイバを得ることができる。
更にフツ素にる石英管の浸蝕消耗を防止でき、
耐久性に優れることから経済的であるという利点
もある。[Table] Measured by the weight change when Therefore, there is no risk that Cu and Fe present in the stone will be exposed on the surface and cause impurity contamination, and a glass base material of higher purity can be obtained. Although the present invention has been described above based on an embodiment illustrating an example of the apparatus of the present invention, the present invention is not limited to the above embodiment. good. Example 1 A quartz furnace tube with a 10 μm thick alumina inside was heated to 1600°C using a heating element, and 50 c.c./cm of SF 6 was placed inside the tube.
Helium was flowed at a rate of 5/min, and the porous base material 1 was inserted therein at a descending speed of 2 mm/min. When the obtained transparent glass base material was subsequently spun into a fiber, the residual moisture in the fiber was 0.01 ppm, and Cu
Absorption originating from or Fe was not observed at all. Example 2 A quartz furnace tube was used, in which the inner circumferential wall of the quartz tube was coated with BN with a thickness of 2 μm as a base layer in advance, and alumina was coated with a thickness of 10 μm on top of that, and the other conditions were the same as in Example 1. When the furnace temperature was repeatedly raised and lowered when the material was manufactured, Example 1
It has become possible to maintain a lifespan 10 times longer than before. Comparative Example A fiber was manufactured under the same conditions as in Example 1 except that a quartz tube containing 1 ppm of Cu and having no ceramic layer was used as the quartz furnace tube. The residual moisture content of the obtained fiber was 0.01 ppm. Also
Absorption originating from Cu existed up to around 1.30 μm, but this value was sufficiently low compared to the previous absorption.
It was 3dB hot. However, the inner circumferential wall of the core tube was severely etched, and it was found that there was a problem in terms of corrosion resistance. As described above in detail based on the examples, the present invention can produce an optical fiber base material that does not contain impurities, particularly Cu and water, and can obtain an optical fiber with small transmission loss. Furthermore, it can prevent erosion and wear and tear of the quartz tube caused by fluorine.
It also has the advantage of being economical due to its excellent durability.
図は本発明にかかる光フアイバ用ガラス母材の
製造装置を示す概略構造図である。
図面中、1は多孔質母材、2は支持棒、3は炉
心管、4はセラミツクス層、5は発熱体、6は炉
本体、7,8は供給口である。
The figure is a schematic structural diagram showing an apparatus for manufacturing a glass preform for optical fiber according to the present invention. In the drawing, 1 is a porous base material, 2 is a support rod, 3 is a furnace tube, 4 is a ceramic layer, 5 is a heating element, 6 is a furnace body, and 7 and 8 are supply ports.
Claims (1)
し、フツ素化合物を含む雰囲気中で上記ガラス母
材を脱水焼結する装置において、加熱炉を具え、
該加熱炉に石英炉心管が内装され、該石英炉心管
の内壁に融点が石英より高くかつフツ素ガスに対
して耐蝕性を有するセラミツクスがコーテイング
されていることを特徴とする光フアイバ用母材の
製造装置。 2 特許請求の範囲第1項において、上記石英管
は銅の混入割合が0.5ppm以下の高純度石英管で
あることを特徴とする光フアイバ用母材の製造装
置。 3 特許請求の範囲第1項において、上記石英炉
心管の内壁にはボロンナイトライドが予め下地層
としてコーテイングされており、上記セラミツク
スは該下地層の上面に形成されていることを特徴
とする光フアイバ用母材の製造装置。[Claims] 1. An apparatus for inserting a porous glass preform into a core tube of a heating furnace and dehydrating and sintering the glass preform in an atmosphere containing a fluorine compound, comprising a heating furnace;
A base material for an optical fiber, characterized in that the heating furnace is equipped with a quartz core tube, and the inner wall of the quartz core tube is coated with a ceramic having a melting point higher than that of quartz and having corrosion resistance against fluorine gas. manufacturing equipment. 2. The apparatus for manufacturing an optical fiber base material according to claim 1, wherein the quartz tube is a high-purity quartz tube with a copper content of 0.5 ppm or less. 3. The light according to claim 1, wherein the inner wall of the quartz furnace tube is coated with boron nitride as a base layer in advance, and the ceramic is formed on the upper surface of the base layer. Fiber base material manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7184A JPS60145923A (en) | 1984-01-05 | 1984-01-05 | Device for production of base material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7184A JPS60145923A (en) | 1984-01-05 | 1984-01-05 | Device for production of base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60145923A JPS60145923A (en) | 1985-08-01 |
JPH0436100B2 true JPH0436100B2 (en) | 1992-06-15 |
Family
ID=11463945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7184A Granted JPS60145923A (en) | 1984-01-05 | 1984-01-05 | Device for production of base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60145923A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3885184T2 (en) * | 1987-02-16 | 1994-04-14 | Sumitomo Electric Industries | OVEN FOR HEATING GLASS MATERIALS FOR OPTICAL FIBERS AND METHOD FOR THE PRODUCTION THEREOF. |
DE3855370T2 (en) * | 1987-02-16 | 1997-01-02 | Sumitomo Electric Industries | Oven for heating a glass preform for optical fiber and method for producing a glass preform |
JPH03131544A (en) * | 1989-06-29 | 1991-06-05 | Sumitomo Electric Ind Ltd | Furnace for glass perform for optical fiber and production thereof |
JP2622210B2 (en) * | 1991-07-23 | 1997-06-18 | 信越化学工業株式会社 | Target support member for manufacturing optical fiber preform |
JP2622214B2 (en) * | 1991-09-26 | 1997-06-18 | 信越化学工業株式会社 | Support member for stretching optical fiber preform |
-
1984
- 1984-01-05 JP JP7184A patent/JPS60145923A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60145923A (en) | 1985-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950014101B1 (en) | Heating furnace for glass materials for optical fiber and method of manufacturing same | |
US5306322A (en) | Process for thermal treatment of glass fiber preform | |
JP2004203736A (en) | Method of manufacturing high purity fused silica | |
KR920010088B1 (en) | Furnace for heating highly pure quartz preform for optical fiber | |
AU593724B2 (en) | Furnace for heating glass preform for optical fiber and method for producing glass preform | |
EP0170249A2 (en) | Method for producing glass preform for optical fiber | |
JP2808857B2 (en) | Heating furnace and manufacturing method of glass preform for optical fiber | |
JPH0436100B2 (en) | ||
EP0466109A1 (en) | Process for producing a silicon carbide-base complex | |
EP0164127A2 (en) | Method for producing glass preform for optical fibers | |
JPH03109223A (en) | Quartz glass and production thereof | |
JPS59137334A (en) | Manufacturing apparatus of base material for optical fiber | |
JPH0442341B2 (en) | ||
JPH0425212B2 (en) | ||
JPS62153130A (en) | Production of parent material for optical fiber glass | |
KR930000773B1 (en) | Process for thermal treatment of glass fiber preform | |
JP2561103B2 (en) | Method for manufacturing glass article | |
JPH0450130A (en) | Production of preform for optical fiber | |
JPS6036343A (en) | Production of glass material for optical transmission | |
CA1323193C (en) | Furnace for heating glass preform for optical fiber and method for producing glass preform | |
JPH0536372B2 (en) | ||
JP2677293B2 (en) | Manufacturing method of preform for optical fiber | |
JPH03103332A (en) | Furnace for heating glass matrix for optical fiber and production thereof | |
JPS62143834A (en) | Production of preform for optical fiber | |
JPH0559850B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |