JPH04366619A - Optical shaping method - Google Patents
Optical shaping methodInfo
- Publication number
- JPH04366619A JPH04366619A JP3141888A JP14188891A JPH04366619A JP H04366619 A JPH04366619 A JP H04366619A JP 3141888 A JP3141888 A JP 3141888A JP 14188891 A JP14188891 A JP 14188891A JP H04366619 A JPH04366619 A JP H04366619A
- Authority
- JP
- Japan
- Prior art keywords
- base
- layer
- cured
- pedestal
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 title claims description 19
- 238000007493 shaping process Methods 0.000 title abstract description 6
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 21
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 230000008602 contraction Effects 0.000 abstract description 3
- 238000010276 construction Methods 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229920002601 oligoester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は光硬化性樹脂に光束を照
射して目的形状の硬化体を製造する光学的造形法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical modeling method for producing a cured product having a desired shape by irradiating a photocurable resin with a beam of light.
【0002】0002
【従来の技術】光硬化性樹脂に光束を照射して、該照射
部分を硬化させ、この硬化部分を水平方向に連続させる
と共に、さらにその上側に光硬化性樹脂を供給して同様
にして硬化させることにより上下方向にも硬化体を連続
させ、これを繰り返すことにより目的形状の硬化体を製
造する光学的造形法は特開昭60−247515号、6
2−35966号、62−101408号などにより公
知である。光束を走査する代りにマスクを用いる方法も
公知である。[Prior Art] A light beam is irradiated onto a photocurable resin to cure the irradiated portion, and this cured portion is continued horizontally, and a photocurable resin is further supplied above it and cured in the same manner. An optical modeling method in which the cured body is made to continue in the vertical direction by repeating this process to produce a cured body in the desired shape is disclosed in JP-A No. 60-247515, 6.
It is publicly known from No. 2-35966, No. 62-101408, etc. It is also known to use a mask instead of scanning the beam.
【0003】この種の光学的造形法として、光硬化性樹
脂を収容する容器と、該容器内に光を照射する装置と、
該容器内において移動可能に設けられたベースを有する
ものがある。この光学的造形法について第3図を参照し
て説明する。This type of optical modeling method includes a container containing a photocurable resin, a device for irradiating light into the container,
Some have a base that is movable within the container. This optical modeling method will be explained with reference to FIG.
【0004】第3図において、容器11内は光硬化性樹
脂12が収容されている。容器11の底面には、石英ガ
ラス等の透光板よりなる透光窓13が設けられており、
該透光窓13に向けて光束14を照射するように、レン
ズを内蔵した光出射部15、光ファイバー16、光出射
部15を水平面内のX−Y方向(X,Yは直交する2方
向)に移動させるX−Y移動装置17、光シャッタ18
、光源20等よりなる光学系が設けられている。In FIG. 3, a photocurable resin 12 is contained in a container 11. As shown in FIG. A transparent window 13 made of a transparent plate such as quartz glass is provided on the bottom of the container 11.
The light emitting part 15 with a built-in lens, the optical fiber 16, and the light emitting part 15 are moved in the X-Y direction (X, Y are two orthogonal directions) in a horizontal plane so as to irradiate the light beam 14 toward the transparent window 13. X-Y moving device 17 and optical shutter 18 to move the
, a light source 20, etc., is provided.
【0005】容器11内にはベース21が設置され、該
ベース21はエレベータ22により昇降可能とされてい
る。これら移動装置17、エレベータ22はコンピュー
タ23により制御される。A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These moving device 17 and elevator 22 are controlled by a computer 23.
【0006】上記装置により硬化体を製造する場合、ま
ずベース21を透光窓13よりもわずか上方に位置させ
、光束14を目的形状物の水平断面に倣って走査させる
。この走査はコンピュータ制御されたX−Y移動装置1
7により行なわれる。When producing a cured body using the above-mentioned apparatus, first, the base 21 is positioned slightly above the light-transmitting window 13, and the light beam 14 is scanned along the horizontal cross section of the object. This scanning is carried out by a computer-controlled X-Y moving device 1.
7.
【0007】目的形状物の一つの水平断面(この場合は
底面又は上面に相当する部分)のすべてに光を照射した
後、ベース21を所定ピッチだけ上昇させ、硬化層24
と透光窓13との間に未硬化の光硬化性樹脂を流入させ
た後、上記と同様の光照射を行なう。この手順を繰り返
すことにより、目的形状の硬化体(造形体)が多層積層
体として得られる。[0007] After irradiating the entire horizontal cross section of the target shape (in this case, the portion corresponding to the bottom or top surface), the base 21 is raised by a predetermined pitch, and the cured layer 24
After flowing an uncured photocurable resin between the light-transmitting window 13 and the light-transmitting window 13, the same light irradiation as described above is performed. By repeating this procedure, a cured body (shaped body) having the desired shape is obtained as a multilayer laminate.
【0008】第3図に示す、光束14を容器11の底面
側から照射するものに対して、光束14を光硬化性樹脂
の液面の上方から照射する方法も公知である。この方法
は、第4図の如くベース21又はその上の硬化層24と
液面12aとの間に所定厚さとなるように光硬化性樹脂
を介在させた後、光束14を照射して目的形状物の一水
平断面の硬化層24を形成した後、ベース21を所定ピ
ッチだけ下降させるようにしたものであり、その他の操
作は第3図と同様である。In contrast to the method shown in FIG. 3 in which the luminous flux 14 is irradiated from the bottom side of the container 11, a method is also known in which the luminous flux 14 is irradiated from above the liquid level of the photocurable resin. In this method, as shown in FIG. 4, a photocurable resin is interposed between the base 21 or the cured layer 24 on it and the liquid surface 12a to a predetermined thickness, and then a light beam 14 is irradiated to form the desired shape. After forming the hardened layer 24 on one horizontal section of the object, the base 21 is lowered by a predetermined pitch, and other operations are the same as those in FIG. 3.
【0009】また、光出射部15をX−Y方向に移動さ
せる代わりに、光源からの光を造形部に向って反射する
ミラーを傾動させることにより光束を走査する方法も公
知である。A method is also known in which the light beam is scanned by tilting a mirror that reflects the light from the light source toward the modeling section, instead of moving the light emitting section 15 in the X-Y direction.
【0010】0010
【発明が解決しようとする課題】上記従来の方法におい
ては、造形する造形体の形状によっては、光硬化性樹脂
の硬化収縮による歪が発生し、得られる造形体の寸法精
度、形状精度が不良となったり、ベースと造形途中の硬
化物とが剥離して造形精度を狂わせたり、著しい場合に
は造形を継続することが不可能となる場合がある。[Problems to be Solved by the Invention] In the conventional method described above, depending on the shape of the object to be formed, distortion may occur due to curing shrinkage of the photocurable resin, resulting in poor dimensional accuracy and shape accuracy of the object. In some cases, the base and the cured product in the middle of modeling may peel off, disrupting the modeling accuracy, and in severe cases, it may become impossible to continue modeling.
【0011】即ち、光硬化性樹脂の硬化時の収縮により
、ベース上に積層形成される硬化層は収縮しようとする
が、ベースに接着する硬化層、即ち、最初に形成される
硬化層(以下、この硬化層を「第1層」と称し、第1層
の次に順次積層形成される硬化層を「第2層」、「第3
層」……と称する場合がある。)のベース接着面側は、
剛体であるベースに制約されてベース面方向において十
分に収縮することができない。この第1層のベース面方
向の不十分な収縮のために、第1層、第2層及び第3層
、更に高次の層にわたって、ベース面方向の収縮に差が
生じることから、得られる造形体には歪が発生する。こ
の場合、第1層とベースとの接着強度よりも収縮応力の
方が大きければ、第1層とベースとは剥離することとな
る。That is, due to the contraction of the photocurable resin during curing, the cured layer laminated on the base tends to shrink, but the cured layer that adheres to the base, that is, the first cured layer (hereinafter referred to as , this hardened layer is called the "first layer", and the hardened layers that are sequentially laminated after the first layer are called the "second layer" and the "third layer".
Sometimes referred to as "layer"... ), the base adhesive side is
Restricted by the base, which is a rigid body, it is not possible to sufficiently contract in the direction of the base surface. Due to the insufficient shrinkage of the first layer in the direction of the base surface, there is a difference in shrinkage in the direction of the base surface among the first layer, second layer, third layer, and even higher layers. Distortion occurs in the modeled object. In this case, if the shrinkage stress is greater than the adhesive strength between the first layer and the base, the first layer and the base will separate.
【0012】このような現象は、特に硬化収縮の大きい
中実物体を造形する場合に多発する。また、中空又は格
子状造形体、輪郭造形体であっても、その寸法が大きい
ものにあっては、硬化による収縮が大きいことから、上
記現象が生起する。[0012] Such a phenomenon occurs frequently especially when solid objects that undergo large curing shrinkage are to be modeled. Further, even if the shaped body is hollow or lattice-like or contour shaped, if the size thereof is large, the above phenomenon occurs because the shrinkage due to hardening is large.
【0013】本発明は上記従来の問題点を解決し、硬化
層の収縮による歪の発生及び造形途中の硬化物とベース
との剥離を防止して、所望形状の造形体を精度良く製造
することができる光学的造形法を提供することを目的と
する。The present invention solves the above-mentioned conventional problems, prevents the occurrence of distortion due to shrinkage of the cured layer, and prevents separation of the cured product from the base during modeling, thereby producing a shaped object having a desired shape with high precision. The purpose is to provide an optical modeling method that allows for
【0014】[0014]
【課題を解決するための手段】本発明の光学的造形法は
、容器内に移動自在なベースを設け、該容器内に収容さ
れた光硬化性樹脂に光を走査して照射することにより硬
化層をベース上に形成させ、次いでベースを所定ピッチ
で移動させ硬化層を光硬化性樹脂で被った後、光を照射
し、この工程を繰り返すことにより硬化層を順次積層し
て目的形状体を造形する光学的造形法において、前記目
的形状体の最初の硬化層と前記ベースとの間に、ベース
面方向に収縮変形可能な台座層を設け、該台座層上に前
記目的形状体を造形することにより、該目的形状体のベ
ース面方向への硬化収縮を許容するようにしたことを特
徴とする。[Means for Solving the Problems] The optical modeling method of the present invention provides a movable base in a container, and hardens the photocurable resin housed in the container by scanning and irradiating it with light. A layer is formed on the base, and then the base is moved at a predetermined pitch to cover the cured layer with a photocurable resin, and then light is irradiated. By repeating this process, the cured layers are sequentially laminated to form the desired shape. In the optical modeling method, a pedestal layer that can be contracted and deformed in the direction of the base surface is provided between the first hardened layer of the target-shaped body and the base, and the target-shaped body is modeled on the pedestal layer. This is characterized in that curing and shrinkage of the target shaped body in the direction of the base surface is allowed.
【0015】[0015]
【作用】かかる本発明の光学的造形法にあっては、第1
層とベースとの間に設けられた台座層が応力緩和層とし
て作用し、これにより、ベース面方向への第1層ないし
第2層以上の硬化収縮が許容されるようになる。即ち、
台座層は、ベース面方向に収縮変形可能であるため、第
1層(ないし第2層以上の硬化層)のベース面方向の硬
化収縮を比較的自由に行なわしめることができる。この
ため、各硬化層間の収縮差の発生が防止され、造形体全
体にわたる均等な硬化収縮により、歪のない造形体が得
られる。[Operation] In the optical modeling method of the present invention, the first
The pedestal layer provided between the layer and the base acts as a stress relaxation layer, thereby allowing curing shrinkage of the first layer, the second layer, or more in the direction of the base surface. That is,
Since the pedestal layer is capable of shrinking and deforming in the direction of the base surface, the first layer (or the second or higher cured layer) can be cured and shrunk in the direction of the base surface relatively freely. Therefore, the generation of shrinkage differences between the cured layers is prevented, and uniform curing and shrinkage over the entire shaped body results in a distortion-free shaped body.
【0016】[0016]
【実施例】以下、図面を用いて実施例について説明する
。第1図は本発明の一実施例を示すベース部分の断面図
、第2図は第1図■−■線に沿う断面図である。[Embodiment] An embodiment will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of a base portion showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line 1--2 in FIG.
【0017】本実施例の方法では、台座層10として、
中実の第1の台座層10Aと格子状の第2の台座層10
Bを、ベース21と第1層24aとの間に介在させて造
形を行なう。In the method of this embodiment, as the base layer 10,
Solid first pedestal layer 10A and grid-like second pedestal layer 10
Modeling is performed with B interposed between the base 21 and the first layer 24a.
【0018】第2の台座層10Bは、その水平断面が正
方格子状であり、ベース面方向に弾性的に変形可能とな
っている。The second pedestal layer 10B has a square lattice-like horizontal cross section and is elastically deformable in the direction of the base surface.
【0019】第1の台座層10Aは、中実の部分であり
、この第1の台座層10Aはベース21と台座層10と
の接着面積を大きくとることにより、ベース21と台座
層10との接着力を高めている。なお、第2の台座層1
0Bとベースとの接着力が十分に確保できる場合には、
第1の台座層10Aはなくしても良い。また、第2の台
座層10Bのベース面側の断面の格子の開口率を小さく
したものであっても良い。The first pedestal layer 10A is a solid portion, and the first pedestal layer 10A has a large adhesive area between the base 21 and the pedestal layer 10, so that the bond between the base 21 and the pedestal layer 10 is increased. Improves adhesive strength. Note that the second pedestal layer 1
If sufficient adhesion between 0B and the base can be secured,
The first pedestal layer 10A may be omitted. Alternatively, the aperture ratio of the lattice in the cross section on the base surface side of the second pedestal layer 10B may be reduced.
【0020】本実施例において、第1の台座層10Aに
よるベースへの接着力向上効果及び第2の台座層10B
による収縮応力緩和効果を十分に得るために、第1図、
第2図における各部の寸法は下記の通りとするのが好ま
しい。なお、以下において断面積とは、ベース面と平行
な面の断面積を指す。In this embodiment, the effect of improving the adhesive strength to the base by the first pedestal layer 10A and the effect of the second pedestal layer 10B
In order to fully obtain the effect of relieving shrinkage stress due to
The dimensions of each part in FIG. 2 are preferably as follows. Note that in the following, the cross-sectional area refers to the cross-sectional area of a plane parallel to the base surface.
【0021】台座層
断面積:硬化層の断面積の約1〜2倍
縦L及び横W:それぞれ、硬化層の縦及び横の1〜√2
倍
第1の台座層厚さd1 :n1 ×PZ mm、n1
=2〜5第2の台座層厚さd2 :n2 ×PZ mm
、n2 =10〜25
第2の台座層Z方向の格子ピッチPZ =0.1〜0.
4mm
第2の台座層X、Y方向の格子ピッチPX 、PY =
約0.5〜3mm
第2の台座層の格子開口部を含まない断面積Am:硬化
層の断面積Aに対してA/Am≦1.5〜3なお、第1
図及び第2図に示す台座層は、本発明に係る台座層の一
実施例であって、本発明においては他の形状の台座層、
例えば、第5図に示す全体として格子状の台座層30を
採用できる。台座の開口は正方形に限らず、円形や6角
形等とすることもできることは言うまでもない。Pedestal layer cross-sectional area: Approximately 1 to 2 times the cross-sectional area of the hardened layer Length L and width W: 1 to √2 of the hardened layer length and width, respectively
Double first pedestal layer thickness d1: n1 x PZ mm, n1
=2~5 Second pedestal layer thickness d2: n2 × PZ mm
, n2 = 10-25, second pedestal layer Z-direction lattice pitch PZ = 0.1-0.
4mm Second pedestal layer X, lattice pitch in Y direction PX, PY =
Approximately 0.5 to 3 mm Cross-sectional area Am of the second pedestal layer excluding the lattice openings: A/Am≦1.5-3 with respect to the cross-sectional area A of the hardened layer
The pedestal layer shown in the figures and FIG. 2 is an example of the pedestal layer according to the present invention, and the pedestal layer of other shapes,
For example, an overall grid-like pedestal layer 30 as shown in FIG. 5 can be employed. It goes without saying that the opening of the pedestal is not limited to a square shape, but can also be circular, hexagonal, or the like.
【0022】このような本発明の方法は、硬化による収
縮が大きい造形体の造形に効果的であるが、一般に、硬
化収縮による歪防止のために本発明の採用が有効な造形
体とは、次のようなものである。
■ 単純形状の中実造形体。例えば一辺が約30mm
以上の方形体
■ 中空ないし格子状造形体又は輪郭造形体。例えば
一辺が約150mm以上の方形体
本発明で使用される台座層は、予め、造形に用いる光硬
化性樹脂と同種の樹脂、或いは別の材料でプレス成形、
射出成形あるいは切削などで製造したものを、ベースに
接着して用いても良く、また、造形の開始にあたって、
まず、台座層部分を光学的造形法によって造形しても良
い。Although the method of the present invention is effective for forming shaped objects that undergo large shrinkage due to curing, generally, the shaped objects for which the present invention is effective in preventing distortion due to curing shrinkage are as follows: It is as follows. ■ A solid object with a simple shape. For example, one side is about 30mm
The above rectangular bodies ■ Hollow or lattice shaped bodies or contour shaped bodies. For example, the pedestal layer used in the present invention is a rectangular body with a side of about 150 mm or more.
It is also possible to use a product manufactured by injection molding or cutting, and glue it to the base.
First, the pedestal layer portion may be formed using an optical modeling method.
【0023】このような本発明の光学的造形法は、第3
図及び第4図に示す光学的造形装置に限らず、あらゆる
光学的造形装置に適用することが可能である。なお、光
束を走査するには、X−Y移動装置のほか、傾動ミラー
を用いることもできる。光束を走査する代わりにマスク
を用いて光を照射しても良い。[0023] Such an optical modeling method of the present invention is based on the third
It is possible to apply not only to the optical shaping apparatus shown in the figures and FIG. 4 but also to any optical shaping apparatus. In addition to the XY moving device, a tilting mirror can also be used to scan the light beam. Instead of scanning the light beam, a mask may be used to irradiate the light.
【0024】本発明において、前記光硬化性樹脂として
は、光照射により硬化する種々の樹脂を用いることがで
き、例えば変性ポリウレタンメタクリレート、オリゴエ
ステルアクリレート、ウレタンアクリレート、エポキシ
アクリレート、感光性ポリイミド、アミノアルキドを挙
げることができる。In the present invention, as the photocurable resin, various resins that are cured by light irradiation can be used, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. can be mentioned.
【0025】前記光としては、使用する光硬化性樹脂に
応じ、可視光、紫外光等種々の光を用いることができる
。該光は通常の光としても良いが、レーザ光とすること
により、エネルギーレベルを高めて造形時間を短縮し、
良好な集光性を利用して造形精度を向上させ得るという
利点を得ることができる。[0025] As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable resin used. The light may be normal light, but by using laser light, the energy level can be increased and the molding time can be shortened.
It is possible to obtain the advantage that modeling accuracy can be improved by utilizing good light convergence.
【0026】[0026]
【発明の効果】以上詳述した通り、本発明の光学的造形
法によれば、硬化層のベース面方向の硬化収縮が造形体
全体にわたって均等化され、歪のない、寸法精度、形状
精度に優れた造形体が製造される。また、不均等な硬化
収縮のために、造形途中の硬化物がベースから剥れるこ
とも防止される。Effects of the Invention As detailed above, according to the optical modeling method of the present invention, the curing shrinkage in the direction of the base surface of the cured layer is equalized over the entire modeled object, resulting in distortion-free dimensional accuracy and shape accuracy. An excellent shaped object is manufactured. Furthermore, peeling of the cured product from the base during modeling due to uneven curing shrinkage is also prevented.
【図1】第1図は本発明の一実施例を示す要部拡大断面
図である。FIG. 1 is an enlarged cross-sectional view of essential parts showing one embodiment of the present invention.
【図2】第2図は第1図の■−■線に沿う断面図である
。2] FIG. 2 is a sectional view taken along the line ■-■ in FIG. 1.
【図3】第3図は本発明に適用可能な光学的造形装置の
断面図である。FIG. 3 is a sectional view of an optical shaping device applicable to the present invention.
【図4】第4図は本発明に適用可能な光学的造形装置の
断面図である。FIG. 4 is a sectional view of an optical shaping device applicable to the present invention.
【図5】第5図は台座層の別の例を示す斜視図である。FIG. 5 is a perspective view showing another example of the pedestal layer.
10 台座層 10A 第1の台座層 10B 第2の台座層 12 光硬化性樹脂 13 透光窓 14 光束 15 光出射部 16 光ファイバー 20 光源 21 ベース 22 エレベータ 24 硬化層 10 Pedestal layer 10A First pedestal layer 10B Second pedestal layer 12 Photocurable resin 13 Translucent window 14 Luminous flux 15 Light output part 16 Optical fiber 20 Light source 21 Base 22 Elevator 24 Hardened layer
Claims (1)
容器内に収容された光硬化性樹脂に光を走査して照射す
ることにより硬化層をベース上に形成させ、次いでベー
スを所定ピッチで移動させ硬化層を光硬化性樹脂で被っ
た後、光を照射し、この工程を繰り返すことにより硬化
層を順次積層して目的形状体を造形する光学的造形法に
おいて、前記目的形状体の最初の硬化層と前記ベースと
の間に、ベース面方向に収縮変形可能な台座層を設け、
該台座層上に前記目的形状体を造形することにより、該
目的形状体のベース面方向への硬化収縮を許容するよう
にしたことを特徴とする光学的造形法。Claim 1: A movable base is provided in a container, a cured layer is formed on the base by scanning and irradiating the photocurable resin housed in the container with light, and then the base is moved at a predetermined pitch. In an optical modeling method in which the cured layer is covered with a photocurable resin, the cured layer is covered with a photocurable resin, and the process is repeated to sequentially stack the cured layers to form a target shape. A pedestal layer that can be contracted and deformed in the direction of the base surface is provided between the first hardened layer and the base,
An optical modeling method characterized in that by forming the target shape on the pedestal layer, curing and shrinkage of the target shape in the direction of the base surface is allowed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3141888A JPH04366619A (en) | 1991-06-13 | 1991-06-13 | Optical shaping method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3141888A JPH04366619A (en) | 1991-06-13 | 1991-06-13 | Optical shaping method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04366619A true JPH04366619A (en) | 1992-12-18 |
Family
ID=15302500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3141888A Pending JPH04366619A (en) | 1991-06-13 | 1991-06-13 | Optical shaping method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04366619A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018183930A (en) * | 2017-04-26 | 2018-11-22 | 花王株式会社 | Stage for three-dimensional shaping |
-
1991
- 1991-06-13 JP JP3141888A patent/JPH04366619A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018183930A (en) * | 2017-04-26 | 2018-11-22 | 花王株式会社 | Stage for three-dimensional shaping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5089185A (en) | Optical molding method | |
US7006887B2 (en) | Optical modeling method | |
CA2086157A1 (en) | Stereolithographic apparatus and method of use | |
JPH0757532B2 (en) | Three-dimensional shape forming method | |
JPS61114818A (en) | Apparatus for forming solid configuration | |
JPH0295830A (en) | Forming method of three dimensional shape | |
JP3095302B2 (en) | Molding method for three-dimensional shaped objects | |
JP2003139918A (en) | Method for manufacturing resin erecting lens array | |
JPH04366619A (en) | Optical shaping method | |
JPH0224121A (en) | Optical shaping method | |
JPH058307A (en) | Optically shaping method | |
JPH04366620A (en) | Optical shaping method | |
JPH05154924A (en) | Flat laminated sheet shaping method in photosetting shaping method | |
JPH05309747A (en) | Optical molding device and method | |
JPH05169551A (en) | Method of forming three-dimensional image | |
JPH058306A (en) | Optically shaping method | |
JPH0514839Y2 (en) | ||
JP2586953Y2 (en) | Stereolithography | |
JP2527021B2 (en) | Optical modeling | |
JPH058308A (en) | Optically shaping method | |
JPH0452042Y2 (en) | ||
JP2001018298A (en) | Molding method for three-dimensional molded article | |
JPH0224124A (en) | Optical shaping method | |
JPH07100937A (en) | Photosetting shaping method for reducing internal stress | |
JP3088046B2 (en) | Molding method for three-dimensional shaped objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000118 |