JPH04350925A - Automatic focusing device - Google Patents
Automatic focusing deviceInfo
- Publication number
- JPH04350925A JPH04350925A JP3153858A JP15385891A JPH04350925A JP H04350925 A JPH04350925 A JP H04350925A JP 3153858 A JP3153858 A JP 3153858A JP 15385891 A JP15385891 A JP 15385891A JP H04350925 A JPH04350925 A JP H04350925A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- stage
- exposed area
- face
- lens system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 48
- 238000001514 detection method Methods 0.000 claims abstract description 41
- 238000005259 measurement Methods 0.000 claims description 62
- 230000007246 mechanism Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 abstract 3
- 235000012431 wafers Nutrition 0.000 description 96
- 230000009467 reduction Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 10
- 238000005452 bending Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F9/00—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
- G03F9/70—Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
- G03F9/7003—Alignment type or strategy, e.g. leveling, global alignment
- G03F9/7023—Aligning or positioning in direction perpendicular to substrate surface
- G03F9/7026—Focusing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は自動焦点合せ装置に関し
、特に半導体デバイス製造用の縮小投影露光装置(ステ
ッパー)において、ウエハーステージ上に載置された半
導体ウエハーの各被露光領域を、縮小投影レンズ系(投
影光学系)の焦平面に合焦せしめる為に使用される自動
焦点合せ装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic focusing apparatus, and in particular, in a reduction projection exposure apparatus (stepper) for manufacturing semiconductor devices, each exposed area of a semiconductor wafer placed on a wafer stage is The present invention relates to an automatic focusing device used to focus on the focal plane of a lens system (projection optical system).
【0002】0002
【従来の技術】現在、超LSIの高集積化に応じて回路
パターンの微細化が進んでおり、これに伴なってステッ
パーの縮小投影レンズ系は、より高NA化されて、これ
に伴ない回路パターンの転写工程におけるレンズ系の許
容深度がより狭くなっている。又、縮小投影レンズ系に
より露光するべき被露光領域の大きさも大型化される傾
向にある。[Prior Art] Currently, circuit patterns are becoming finer in line with the increasing integration of VLSIs, and along with this, stepper reduction projection lens systems are becoming higher in NA. The allowable depth of the lens system in the circuit pattern transfer process is becoming narrower. Furthermore, the size of the exposed area to be exposed by the reduction projection lens system also tends to increase.
【0003】このようなことにより大型化された被露光
領域全体に亘って良好な回路パターンの転写を可能にす
る為には、縮小投影レンズ系の許容深度内に確実に、ウ
エハーの被露光領域(ショット)全体を位置付ける必要
がある。In order to make it possible to transfer a good circuit pattern over the entire enlarged exposed area, it is necessary to ensure that the exposed area of the wafer is within the allowable depth of the reduction projection lens system. (Shot) You have to position the whole thing.
【0004】これを達成する為には、ウエハー表面の縮
小投影レンズ系の焦平面、即ちレチクルの回路パターン
像がフォーカスする平面に対する位置と傾きを高精度に
検出し、ウエハー表面の位置や傾きを調整してやること
が重要となってくる。In order to achieve this, the position and inclination of the wafer surface with respect to the focal plane of the reduction projection lens system, that is, the plane on which the circuit pattern image of the reticle is focused, is detected with high precision, and the position and inclination of the wafer surface are determined. It is important to make adjustments.
【0005】ステッパーにおけるウエハー表面の位置の
検出方法としては、エアマイクロセンサを用いてウエハ
ー表面の複数箇所の面位置を検出し、その結果に基づい
てウエハー表面の位置を求める方法、或はウエハー表面
に光束を斜め方向から入射させ、ウエハー表面からの反
射光の反射点の位置ずれをセンサ上への反射光の位置ず
れとして検出する検出光学系を用いて、ウエハー表面の
位置を検出する方法等が知られている。[0005] As a method for detecting the position of the wafer surface in a stepper, there is a method of detecting the surface positions of a plurality of points on the wafer surface using an air microsensor, and determining the position of the wafer surface based on the results. A method of detecting the position of the wafer surface using a detection optical system that makes a light beam incident on the wafer surface from an oblique direction and detects the positional deviation of the reflection point of the reflected light from the wafer surface as the positional deviation of the reflected light on the sensor. It has been known.
【0006】従来のステッパーは、ウエハーステージの
変位量をレーザ干渉計により測定しながら、ウエハース
テージをサーボ駆動により目標位置まで移動させること
により、ウエハー上の被露光領域を投影レンズ系の真下
に送り込み、ウエハーステージ停止後、前述のような方
法で被露光領域の表面の面位置を検出し、被露光領域表
面の位置を調整している。即ち、ウエハーステージの駆
動−停止−面位置の検出−面位置の調整といった動作を
順次行なっていた。Conventional steppers move the wafer stage to a target position using servo drive while measuring the amount of displacement of the wafer stage using a laser interferometer, thereby sending the exposed area on the wafer directly below the projection lens system. After the wafer stage is stopped, the surface position of the surface of the exposed region is detected by the method described above, and the position of the surface of the exposed region is adjusted. That is, operations such as driving the wafer stage, stopping the wafer stage, detecting the surface position, and adjusting the surface position are sequentially performed.
【0007】[0007]
【発明が解決しようとする課題】しかしながらウエハー
表面形状を検出する検出器はセンサ(受光素子)の取付
け位置でしかウエハー表面の位置を検出することができ
ない。そのため露光を行ないたいショット全面を検出す
ることができないという問題点があった。例えばセンサ
の計測ポイントが極めて小さい場合、ウエハー表面の微
細な凹凸形状の影響で正確にショットの面形状を計算す
ることができなくなる。However, a detector for detecting the shape of the wafer surface can only detect the position of the wafer surface at the mounting position of the sensor (light receiving element). Therefore, there is a problem in that the entire surface of the shot to be exposed cannot be detected. For example, if the measurement point of the sensor is extremely small, it becomes impossible to accurately calculate the surface shape of the shot due to the influence of minute irregularities on the wafer surface.
【0008】又、ウエハを載せているウエハーステージ
の駆動−停止−面位置の検出−面位置の調整といった一
連の動作を順次行なった場合、投影レンズ系の焦平面に
被露光領域を合焦させるまでに費やす時間が比較的長く
、縮小投影露光装置が単位時間に処理可能なウエハ枚数
(スループット)を落す要因となっていた。Furthermore, when a series of operations such as driving the wafer stage on which the wafer is placed, stopping it, detecting the surface position, and adjusting the surface position are performed in sequence, the exposed area is brought into focus on the focal plane of the projection lens system. The amount of time it takes to complete the process is relatively long, which causes a reduction in the number of wafers that can be processed per unit time (throughput) by the reduction projection exposure apparatus.
【0009】更に被露光領域が変更された場合、測定点
の変更ができないといった問題点があった。Furthermore, there is a problem in that when the exposed area is changed, the measurement point cannot be changed.
【0010】本発明は平板状物体の所定面の面形状を高
精度に計測し、該所定面を所定位置に短時間で動作を完
了し、合焦動作させることができる自動焦点合せ装置の
提供を目的とする。[0010] The present invention provides an automatic focusing device that can measure the surface shape of a predetermined surface of a flat object with high accuracy, complete the operation to move the predetermined surface to a predetermined position in a short time, and perform a focusing operation. With the goal.
【0011】[0011]
【課題を解決するための手段】本発明の自動焦点合せ装
置は平板状物体を搭載したまま投影レンズ系(投影光学
系)の光軸と直交する方向に沿って移動させ、平板状物
体の所定面を前記投影レンズ系の像面側に送り込む2次
元的に移動可能なステージと、前記所定面の前記光軸方
向に関する位置及び傾きのうち少なくとも一方の面形状
を検出すると共に、該ステージ移動と協働して該面形状
を計測可能な検出手段とを有している。[Means for Solving the Problems] The automatic focusing device of the present invention moves a flat object mounted thereon along a direction perpendicular to the optical axis of a projection lens system (projection optical system), and focuses the flat object at a predetermined position. a two-dimensionally movable stage that sends a surface to the image plane side of the projection lens system; a surface shape of at least one of the position and inclination of the predetermined surface with respect to the optical axis direction; and a detection means that can cooperate with each other to measure the surface shape.
【0012】そして前記検出手段による検出を前記ステ
ージの移動中に行ない、該検出手段により求められた面
形状に基づいて前記所定面を前記投影レンズ系の焦点面
に合焦させている。更に、前記検出手段はステージ静止
状態においても面形状が計測できるように検出手段に可
動機構を設けている。Detection by the detection means is performed while the stage is moving, and the predetermined surface is focused on the focal plane of the projection lens system based on the surface shape determined by the detection means. Furthermore, the detection means is provided with a movable mechanism so that the surface shape can be measured even when the stage is stationary.
【0013】又、被露光領域が変更された場合でも移動
計測による面形状計測が可能なスキャン光学系をもった
検出手段を利用して被露光領域の変更に対応している。Further, even when the exposed area is changed, a detection means having a scanning optical system capable of measuring the surface shape by moving measurement is used to cope with the change in the exposed area.
【0014】[0014]
【実施例】図1は本発明の自動焦点合せ装置を備えた縮
小投影露光装置の一部分の要部概略図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic diagram of a part of a reduction projection exposure apparatus equipped with an automatic focusing device according to the present invention.
【0015】図1において、1は縮小投影レンズ系であ
り、その光軸は図中AXで示している。縮小投影レンズ
系1はレチクル(不図示)の回路パターンを例えば1/
5倍に縮小して投影し、その焦平面に回路パターン像を
形成している。又光軸AXは図中のz軸方向と平行な関
係にある。2は表面にレジストを塗布したウエハーであ
り、先の露光工程で互いに同じパターンが形成された多
数個の被露光領域(ショット)が配列してある。In FIG. 1, reference numeral 1 denotes a reduction projection lens system, the optical axis of which is indicated by AX in the figure. The reduction projection lens system 1 converts the circuit pattern of the reticle (not shown) into a 1/
A circuit pattern image is formed on the focal plane by projecting the image at a 5-fold reduction. Further, the optical axis AX is parallel to the z-axis direction in the figure. 2 is a wafer whose surface is coated with resist, and a large number of exposed areas (shots) in which the same pattern has been formed in the previous exposure process are arranged.
【0016】3はウエハーを載置するウエハーステージ
である。ウエハー2はウエハーステージ3に吸着され固
定している。ウエハーステージ3はx軸方向に動くXス
テージと、y軸方向に動くYステージと、z軸方向及び
x,y,z軸方向に平行な軸のまわりに回転するZステ
ージで構成している。又x,y,z軸は互いに直交する
ように設定してある。従って、ウエハーステージ3を駆
動することにより、ウエハー2の表面の位置を縮小投影
レンズ系1の光軸AX方向及び光軸AXに直交する平面
に沿った方向に調整し、更に焦平面、即ち回路パターン
像に対する傾きも調整している。3 is a wafer stage on which a wafer is placed. The wafer 2 is attracted and fixed to the wafer stage 3. The wafer stage 3 includes an X stage that moves in the x-axis direction, a Y stage that moves in the y-axis direction, and a Z stage that rotates around axes parallel to the z-axis direction and the x, y, and z-axis directions. Furthermore, the x, y, and z axes are set to be orthogonal to each other. Therefore, by driving the wafer stage 3, the position of the surface of the wafer 2 is adjusted in the direction of the optical axis AX of the reduction projection lens system 1 and in the direction along the plane orthogonal to the optical axis AX. The tilt with respect to the pattern image is also adjusted.
【0017】図1における符番4〜11はウエハー2の
表面位置及び傾きを検出する為に設けた検出手段の各要
素を示している。4は発光ダイオードであり、例えば半
導体レーザなどの高輝度な光源である。5は照明用レン
ズである。Reference numerals 4 to 11 in FIG. 1 indicate each element of a detection means provided for detecting the surface position and inclination of the wafer 2. 4 is a light emitting diode, which is a high-intensity light source such as a semiconductor laser. 5 is an illumination lens.
【0018】光源4から射出した光は照明用レンズ5に
よって平行な光束となり、複数個(7個)のピンホール
を形成したマスク6を照明する。マスク6の各ピンホー
ルを通過した複数個の光束は、結像レンズ7を経て折曲
げミラー8に入射し、折曲げミラー8で方向を変えた後
、ウエハー2の表面に入射している。The light emitted from the light source 4 is turned into a parallel beam by the illumination lens 5, and illuminates a mask 6 in which a plurality of (seven) pinholes are formed. The plurality of light beams that have passed through each pinhole in the mask 6 pass through an imaging lens 7 and enter a bending mirror 8, and after being changed in direction by the bending mirror 8, they enter the surface of the wafer 2.
【0019】ここで結像レンズ7と折曲げミラー8はウ
エハー2上にマスク6の複数個のピンホールの像を形成
している。複数個のピンホールを通過した光束は、図2
に示すようにウエハー2の被露光領域100の中央部を
含む7箇所(21〜27)を照射し、各々の箇所で反射
される。即ち、本実施例ではマスク6にピンホールを7
個形成し、被露光領域100内で、後述するようにその
中央部を含む7箇所の測定点(21〜27)の位置を測
定している。Here, the imaging lens 7 and the bending mirror 8 form images of the plurality of pinholes in the mask 6 on the wafer 2. The light flux passing through multiple pinholes is shown in Figure 2.
As shown in FIG. 2, seven locations (21 to 27) including the center of the exposed region 100 of the wafer 2 are irradiated, and the light is reflected at each location. That is, in this embodiment, seven pinholes are formed in the mask 6.
The positions of seven measurement points (21 to 27) including the central portion are measured within the exposed area 100, as will be described later.
【0020】図2において照射位置26,27が斜め方
向に他の測定点と段差を持つ形で内側にずれているのは
、後述するステージ移動と協働してウエハー2の広範囲
の領域の面形状を計測することができるように最も適し
た状態で配置したためである。このような配置によって
ウエハー2の面形状が広範囲にわたりステージ移動と共
に正確に求められる。又照射位置24,25の位置はス
テージ静止状態でも使用される。照射位置21,22,
23,24,25の配置によって最も広い範囲で計測し
ている。尚、照射位置24,25の位置からの検出値を
ステージ移動の計測時に使用するようにしてもよい。In FIG. 2, the irradiation positions 26 and 27 are shifted inward in a diagonal direction with a step difference from other measurement points because the surface of a wide area of the wafer 2 is shifted in cooperation with the stage movement described later. This is because they were placed in the most suitable state so that their shapes could be measured. With such an arrangement, the surface shape of the wafer 2 can be accurately determined over a wide range as the stage moves. Further, the irradiation positions 24 and 25 are used even when the stage is stationary. Irradiation positions 21, 22,
By arranging 23, 24, and 25, measurements are made over the widest range. Note that the detected values from the irradiation positions 24 and 25 may be used when measuring stage movement.
【0021】ウエハー2の各測定点(21〜27)で反
射した光束は折曲げミラー9により方向を変えた後、検
出レンズ10を介して素子を2次元的に配置した位置検
出素子11上に入射する。ここで検出レンズ10は結像
レンズ7、折曲げミラー8、ウエハー2、折曲げミラー
9と協働してマスク6のピンホールの像を位置検出素子
11上に形成している。即ちマスク6とウエハー2と位
置検出素子11は互いに光学的に共役な位置にある。図
1では模式的に示してあるが、光学配置上困難な場合に
は位置検出素子11を各ピンホールに対応して複数個配
置しても良い。The light beam reflected at each measurement point (21 to 27) on the wafer 2 is changed in direction by a bending mirror 9, and then passes through a detection lens 10 onto a position detection element 11 in which elements are arranged two-dimensionally. incident. Here, the detection lens 10 cooperates with the imaging lens 7, the bending mirror 8, the wafer 2, and the bending mirror 9 to form an image of the pinhole of the mask 6 on the position detection element 11. That is, the mask 6, the wafer 2, and the position detection element 11 are located at mutually optically conjugate positions. Although shown schematically in FIG. 1, if optical arrangement is difficult, a plurality of position detection elements 11 may be arranged corresponding to each pinhole.
【0022】位置検出素子11は2次元的なCCDなど
から成り、複数個のピンホールを介した複数の光束の位
置検出素子11の受光面への入射位置を各々独立に検知
することが可能となっている。ウエハー2の縮小投影レ
ンズ系1の光軸AX方向の位置の変化は、位置検出素子
11上の複数の光束の入射位置のズレとして検出できる
為、ウエハー2上の被露光領域100内の7つの測定点
21〜27における、ウエハー表面の光軸AX方向の位
置が、位置検出素子11からの出力信号に基づいて検出
できる。又、この位置検出素子11からの出力信号は信
号線を介して制御装置13へ入力している。The position detection element 11 is composed of a two-dimensional CCD or the like, and is capable of independently detecting the incident positions of a plurality of light beams onto the light receiving surface of the position detection element 11 via a plurality of pinholes. It has become. A change in the position of the reduction projection lens system 1 on the wafer 2 in the optical axis AX direction can be detected as a shift in the incident position of a plurality of light beams on the position detection element 11. The position of the wafer surface in the optical axis AX direction at the measurement points 21 to 27 can be detected based on the output signal from the position detection element 11. Further, the output signal from the position detection element 11 is input to the control device 13 via a signal line.
【0023】ウエハーステージ3のx軸及びy軸方向の
変位はウエハーステージ上に設けた基準ミラーとレーザ
干渉計とを用いて周知の方法により測定しウエハーステ
ージ3の変位量を示す信号をレーザ干渉計から信号線を
介して制御装置13へ入力している。またウエハーステ
ージ3の移動はステージ駆動装置12により制御され、
ステージ駆動装置12は、信号線を介して制御装置13
からの指令信号を受け、この信号に応答してウエハース
テージ3をサーボ駆動している。The displacement of the wafer stage 3 in the x-axis and y-axis directions is measured by a well-known method using a reference mirror provided on the wafer stage and a laser interferometer, and a signal indicating the amount of displacement of the wafer stage 3 is detected by laser interference. The signal is input from the meter to the control device 13 via a signal line. Further, the movement of the wafer stage 3 is controlled by a stage drive device 12,
The stage drive device 12 is connected to the control device 13 via a signal line.
The wafer stage 3 is servo driven in response to a command signal from the wafer stage 3.
【0024】ステージ駆動装置12は第1駆動手段と第
2駆動手段を有し、第1駆動手段によりウエハー2の光
軸AXと直交する面内における位置(x,y)と回転(
θ)とを調整し、第2駆動手段によりウエハー2の光軸
AX方向の位置(z)と傾き(φx,y )とを調整し
ている。The stage driving device 12 has a first driving means and a second driving means, and the first driving means controls the position (x, y) and rotation (of the wafer 2 in a plane perpendicular to the optical axis AX).
θ), and the position (z) and inclination (φx, y) of the wafer 2 in the optical axis AX direction are adjusted by the second driving means.
【0025】制御装置13は位置検出素子11からの出
力信号(面位置データ)を後述する方法で処理し、ウエ
ハー2の表面の位置を検出する。そしてこの検出結果に
基づいて所定の指令信号をステージ駆動装置12に入力
する。この指令信号に応答して、ステージ駆動装置12
の第2駆動手段が作動し、第2駆動手段がウエハー2の
光軸AX方向の位置と傾きを調整する。The control device 13 processes the output signal (surface position data) from the position detection element 11 by a method described later, and detects the position of the surface of the wafer 2. Then, a predetermined command signal is input to the stage drive device 12 based on this detection result. In response to this command signal, the stage drive device 12
The second driving means operates, and the second driving means adjusts the position and inclination of the wafer 2 in the optical axis AX direction.
【0026】次に本実施例におけるウエハー2の面形状
の検出方法について順をおって説明する。Next, the method of detecting the surface shape of the wafer 2 in this embodiment will be explained in order.
【0027】最初に図2に示すように被露光領域100
内に7つの測定点21〜27を設定する。測定点21は
被露光領域100のほぼ中央部にあり、面位置検出時に
は光軸AXと交わる。又、残りの測定点22〜25は被
露光領域100の周辺部にあり、測定点21がx−y座
標上の点(x,y)にあるとすると、各測定点22〜2
5の位置は各々(x+Δx,y+Δy)、(x−Δx,
y+Δy)、(x−Δx,y−Δy)、(x+Δx,y
−Δy)なる点にあることになる。First, as shown in FIG.
Seven measurement points 21 to 27 are set within the area. The measurement point 21 is located approximately at the center of the exposed region 100, and intersects with the optical axis AX during surface position detection. Further, the remaining measurement points 22 to 25 are located at the periphery of the exposed area 100, and assuming that the measurement point 21 is located at the point (x, y) on the x-y coordinates, each of the measurement points 22 to 2
The positions of 5 are (x+Δx, y+Δy), (x−Δx,
y+Δy), (x-Δx, y-Δy), (x+Δx, y
−Δy).
【0028】測定点26は なる点にある。Measurement point 26 is It is at the point where it becomes.
【0029】又、被露光領域100は図3に示すように
ウエハー2上にx軸及びy軸に沿って規則正しく並べら
れている。Further, as shown in FIG. 3, the exposed regions 100 are regularly arranged on the wafer 2 along the x-axis and the y-axis.
【0030】次にウエハーステージ3を目標位置まで移
動させて、ウエハー2上の被露光領域(ショット)10
0をレチクルパターンに位置合わせしたとき、被露光領
域100の各測定点21〜27上にマスク6の各ピンホ
ールの像が投射されるように、図1の検出手段(4〜1
1)のセッティングを行なう。このとき、被露光領域1
00は縮小投影レンズ系1の真下に位置付けられており
、測定点21は光軸AXと交差している。Next, the wafer stage 3 is moved to the target position, and the exposed area (shot) 10 on the wafer 2 is
The detection means (4 to 1) shown in FIG.
Perform the settings in 1). At this time, exposed area 1
00 is positioned directly below the reduction projection lens system 1, and the measurement point 21 intersects the optical axis AX.
【0031】本実施例ではウエハー2上の第1被露光領
域100aが縮小投影レンズ系1の真下にくるようにウ
エハーステージ3を動かし、レチクルパターンに対して
第1被露光領域100aを位置合わせする。位置合わせ
終了後、検出手段(4〜11)により第1被露光領域1
00aの5つの測定点(21〜25)の面位置検出を行
ない、位置検出素子11からの出力信号に基づいて制御
装置13内で各測定点の面位置データを形成する。この
とき測定点26,27は使用しない。In this embodiment, the wafer stage 3 is moved so that the first exposed area 100a on the wafer 2 is directly below the reduction projection lens system 1, and the first exposed area 100a is aligned with the reticle pattern. . After the alignment is completed, the first exposed area 1 is detected by the detection means (4 to 11).
The surface position of five measurement points (21 to 25) of 00a is detected, and surface position data of each measurement point is formed in the control device 13 based on the output signal from the position detection element 11. At this time, measurement points 26 and 27 are not used.
【0032】制御装置13は、この5個の面位置データ
Zi(i=1〜5)に基づいて第1被露光領域100a
の最小自乗平面(の位置)を求め、この最小自乗平面と
レチクルパターン像との光軸AX方向の間隔及びウエハ
ー2の傾き方向と傾き量を算出する。The control device 13 controls the first exposed area 100a based on the five surface position data Zi (i=1 to 5).
The distance between this least squares plane and the reticle pattern image in the optical axis AX direction, and the direction and amount of tilt of the wafer 2 are calculated.
【0033】尚、最小自乗平面の位置zは[0033]The position z of the least squares plane is
【0034】[0034]
【数1】 を満たすものである。[Math 1] It satisfies the following.
【0035】制御装置13はこの算出結果に応じた指令
信号をステージ駆動装置12へ入力し、ステージ駆動装
置によりウエハーステージ3上のウエハー2の光軸AX
方向の位置と傾きを調整(補正)している。これによっ
てステージ移動中に、ウエハー2の表面、即ち第1被露
光領域100aを縮小投影レンズ系1の最良結像面(焦
平面)に位置付けている。その後、ウエハーステージ3
の目標位置への移動が完了する。そして、この面位置の
調整終了後、第1被露光領域100aを露光して回路パ
ターン像の転写を行なう。The control device 13 inputs a command signal according to the calculation result to the stage drive device 12, and the stage drive device directs the optical axis AX of the wafer 2 on the wafer stage 3.
The position and tilt of the direction are adjusted (corrected). This positions the surface of the wafer 2, that is, the first exposed region 100a, at the best imaging plane (focal plane) of the reduction projection lens system 1 while the stage is moving. After that, wafer stage 3
movement to the target position is completed. After this surface position adjustment is completed, the first exposed area 100a is exposed to transfer the circuit pattern image.
【0036】第1被露光領域100aに対する露光が終
了したら、ウエハー2上の第2被露光領域100bが縮
小投影レンズ系1の真下にくるようにウエハーステージ
3を駆動する。When the exposure of the first exposed area 100a is completed, the wafer stage 3 is driven so that the second exposed area 100b on the wafer 2 is located directly below the reduction projection lens system 1.
【0037】本実施例では第1被露光領域100aから
第2被露光領域100bに移行する直前で測定点24,
25を廃止し、測定点26,27を使用するように切り
換えている。更に計測モードを移動計測モードに切り換
える。このモードの切り換えは制御装置13により行な
っている。In this embodiment, the measurement point 24, just before transitioning from the first exposed area 100a to the second exposed area 100b,
25 has been abolished and the measurement points 26 and 27 have been switched to use. Furthermore, the measurement mode is switched to the moving measurement mode. This mode switching is performed by the control device 13.
【0038】ステージ移動と測定点の関係を図4に示す
。図4(A),(B)では矢印で測定点の軌跡を示して
いる。ステージ移動中は逐次ウエハー表面の位置計測を
行ない、ステージ移動完了まで続ける。測定点を変更し
たことにより、測定点21,22の中間と測定点21,
24の中間の位置での測定を可能としている。即ち、5
点の測定点で5列の測定を行なっている。FIG. 4 shows the relationship between stage movement and measurement points. In FIGS. 4(A) and 4(B), arrows indicate the loci of measurement points. While the stage is moving, the position of the wafer surface is measured sequentially until the stage movement is completed. By changing the measurement point, the middle of measurement points 21 and 22 and the measurement point 21,
It is possible to measure at a position between 24 and 24. That is, 5
Five rows of measurements are taken at the measurement points.
【0039】次に第1被露光領域100aから第2被露
光領域100bへ移行したとき、例えば測定点21は第
2被露光領域100bにおいて範囲21bが未測定であ
る。しかし、ステージ移動中に第1被露光領域100a
のショット内の範囲21aで測定済である。同一プロセ
スを経て処理されてきたウエハーの隣接ショットで面形
状が大きく変動することは殆どない。Next, when moving from the first exposed area 100a to the second exposed area 100b, for example, the measuring point 21 has an unmeasured area 21b in the second exposed area 100b. However, while the stage is moving, the first exposed area 100a
The measurement has been completed in the range 21a within the shot. The surface shapes of adjacent shots of wafers that have been processed through the same process rarely vary greatly.
【0040】従って未測定部21bの範囲を範囲21a
でおきかえることは十分可能である。これにより本実施
例ではステージ移動と協働して測定点21は第2被露光
領域100bのショットのステージ移動方向の全てを測
定可能にしている。このことは測定点22,24,26
,27でも同様である。Therefore, the range of the unmeasured part 21b is defined as the range 21a.
It is quite possible to replace it with As a result, in this embodiment, in cooperation with the stage movement, the measurement point 21 can measure all shots of the second exposed area 100b in the stage movement direction. This means that measurement points 22, 24, 26
, 27 as well.
【0041】ステージ移動中のショット内のウエハー表
面の計測を行なうタイミングに合わせてステージ位置を
記憶しておく。例えば第1被露光領域100aから第2
被露光領域100bへ移動中に5回計測した場合、第2
被露光領域100bの測定点をプロットすると、図4(
B)のようになる。このときの値Zxy(x=1〜5、
y=1〜5)に基づいて露光領域100bの最小自乗平
面を求め、露光面とウエハーの傾き量を算出する。得ら
れた傾き量は第1被露光領域100aのショットで行な
われたのと同様に傾きが調整されてレチクル上の回路パ
ターンの転写を行なう。ここではX方向の移動について
述べたがY方向の移動についても同様である。The stage position is stored in synchronization with the timing of measuring the wafer surface within the shot while the stage is moving. For example, from the first exposed area 100a to the second exposed area 100a,
If measurements are taken five times while moving to the exposed area 100b, the second
When the measurement points of the exposed area 100b are plotted, FIG.
B). At this time, the value Zxy (x=1 to 5,
y=1 to 5), the least squares plane of the exposure area 100b is determined, and the amount of inclination between the exposure surface and the wafer is calculated. The obtained inclination amount is adjusted in the same manner as in the shot of the first exposed area 100a, and the circuit pattern on the reticle is transferred. Although the movement in the X direction has been described here, the same applies to movement in the Y direction.
【0042】図5は本実施例のフローチャートである。
ステップS501でウエハー2はウエハーステージ3上
へ搬入されウエハチャックに固定される。ステップS5
02で第1ショットの面計算、傾き駆動、露光等を行な
う。このときのフローチャートは図6に示している。FIG. 5 is a flowchart of this embodiment. In step S501, the wafer 2 is carried onto the wafer stage 3 and fixed to the wafer chuck. Step S5
In step 02, surface calculation, tilt driving, exposure, etc. for the first shot are performed. A flowchart at this time is shown in FIG.
【0043】次に図6のフローチャートについて説明す
る。第1ショットの場合、隣接ショットからの送り込み
でないこともあるので移動計測は行なわない。ステップ
SB521でステージ移動が完了したら、ステップSB
522で測定点21,22,23,24,25を用いて
ウエハ表面の位置を測定する。ステップSB523で測
定された値から最小自乗平面計算を行ない投影レンズ系
1の焦平面とウエハー2の間隔及び傾きが検出される。
ステップSB524で制御装置13は間隔、傾きに応じ
た指令信号をステージ駆動装置12に入力し、傾き駆動
を行なう。Next, the flowchart shown in FIG. 6 will be explained. In the case of the first shot, movement measurement is not performed because the feed may not be from an adjacent shot. When the stage movement is completed in step SB521, step SB521
At 522, the position of the wafer surface is measured using measurement points 21, 22, 23, 24, and 25. A least squares plane calculation is performed from the measured values in step SB523, and the distance and inclination between the focal plane of the projection lens system 1 and the wafer 2 are detected. In step SB524, the control device 13 inputs a command signal corresponding to the interval and inclination to the stage driving device 12, and performs inclination driving.
【0044】ステップSB525で駆動が終了し、ウエ
ハーとレンズの焦平面の差が補正されたのち露光を行な
う。[0044] At step SB525, the driving is completed, and after the difference in focal plane between the wafer and the lens is corrected, exposure is performed.
【0045】次に図5のフローチャートに戻りステップ
S502で第1ショットの露光が終了したら制御装置1
3のモードを移動計測モードに移行し、測定点21,2
2,24,26,27に切換える。ステップSB504
でその後ステージ3を駆動を開始し、カウンタjを1に
初期化する。ステップS505で移動計測モードでは所
定の時間間隔でフォーカス測定を行ないZji(i=2
1,22,24,26,27)とステージ位置Pjを制
御装置13のメモリに記憶する。Next, returning to the flowchart of FIG. 5, in step S502, when the exposure of the first shot is completed, the control device 1
3 mode to moving measurement mode, measuring points 21 and 2.
Switch to 2, 24, 26, 27. Step SB504
After that, the stage 3 is started to be driven, and the counter j is initialized to 1. In step S505, focus measurement is performed at predetermined time intervals in the moving measurement mode, and Zji (i=2
1, 22, 24, 26, 27) and the stage position Pj are stored in the memory of the control device 13.
【0046】ステップS507でステージ3が所定位置
を通過するまでステップS505を繰り返しカウンタj
を加算する。ステップS508で所定位置通過後Zji
とPjから最小自乗平面が制御装置13内で計算される
。
ステップS509で縮小投影レンズ系1とウエハー2と
の間隔と、傾きが求められる。この値は制御装置13に
送られ傾き駆動される。In step S507, step S505 is repeated until the stage 3 passes a predetermined position.
Add. After passing the predetermined position in step S508, Zji
A least squares plane is calculated in the control device 13 from Pj and Pj. In step S509, the distance and inclination between the reduction projection lens system 1 and the wafer 2 are determined. This value is sent to the control device 13 to drive the tilt.
【0047】ステップS510で同時に移動中であった
ステージの移動が完了された時、ステップS511で縮
小投影レンズ1とウエハー2の焦平面の差はすでに補正
されているので露光が行なわれる。ステップS512で
もしも全てのショットの露光が終了していなければステ
ップS504へ移行しステップS504〜S512を繰
り返す。最終ショットの露光終了でステップS513で
ウエハー2はウエハチャックからはずされウエハー2は
搬出される。When the movement of the stages that were being moved at the same time is completed in step S510, exposure is performed in step S511 since the difference in focal plane between the reduction projection lens 1 and the wafer 2 has already been corrected. If the exposure of all shots is not completed in step S512, the process moves to step S504 and steps S504 to S512 are repeated. When the exposure of the final shot is completed, the wafer 2 is removed from the wafer chuck in step S513, and the wafer 2 is carried out.
【0048】本実施例では7点の測定点を予め固定し、
7本の光束をウエハに照射する構成について説明した。
そして静止状態と移動計測の2つのモードで測定点を選
択しているが測定点23,26の測定用の光ビームと測
定点25,27の測定用の光ビームを各々1本の光ビー
ムとして計測してもよい。その場合ピンホールを設けた
マスク6の位置を移動させるか、あるいは結像レンズ7
の光ビームの位置を変更させる機構により測定点の位置
を変れば良い。In this example, seven measurement points were fixed in advance,
A configuration in which seven light beams are irradiated onto a wafer has been described. The measurement points are selected in two modes: stationary state and moving measurement, but the measurement light beams for measurement points 23 and 26 and the measurement light beam for measurement points 25 and 27 are each treated as one light beam. You can also measure it. In that case, the position of the mask 6 provided with the pinhole should be moved, or the imaging lens 7 should be moved.
The position of the measurement point may be changed using a mechanism that changes the position of the light beam.
【0049】更に第1ショットの計測は静止計測用の測
定点を選ばず、第1ショットの露光の場合も移動計測が
可能である。その場合ウエハ2をのせたウエハーステー
ジ3の動作は例えば第1被露光領域100aのショット
の前に隣接ショットである第2被露光領域100bのシ
ョットを通り移動を完了させれば良い。この場合、測定
用光ビームは5本でもかまわない。即ち測定点23,2
5は用いなくても良い。Furthermore, for the measurement of the first shot, a measurement point for static measurement is not selected, and moving measurement is also possible for the exposure of the first shot. In this case, the operation of the wafer stage 3 on which the wafer 2 is placed may be completed by passing through the shot of the second exposed area 100b, which is an adjacent shot, before the shot of the first exposed area 100a. In this case, the number of measurement light beams may be five. That is, measurement point 23,2
5 may not be used.
【0050】本実施例では光源4としてLEDを用いて
マスク6上の7つ又は5つのピンホールを照明し、7本
或は5本の光ビームを形成する場合を述べたが、このL
EDを各ピンホール毎に個別に設けて対応するピンホー
ルを照明するようにしても良い。In this embodiment, a case has been described in which an LED is used as the light source 4 to illuminate seven or five pinholes on the mask 6 to form seven or five light beams.
An ED may be individually provided for each pinhole to illuminate the corresponding pinhole.
【0051】図7は本発明の自動焦点合せ装置を備えた
縮小投影露光装置の実施例2の一部分の要部概略図であ
る。図中、601はレーザ或は高輝度LED等の光源、
602はスキャン光学系(走査光学系)である。例えば
ポリゴンミラー、ガルバノミラー等を有している。この
スキャン光学系602は制御装置13で制御している。
他の構成は図1の実施例と同様である。FIG. 7 is a schematic diagram of a part of a second embodiment of a reduction projection exposure apparatus equipped with an automatic focusing device of the present invention. In the figure, 601 is a light source such as a laser or high-intensity LED;
602 is a scanning optical system (scanning optical system). For example, it has a polygon mirror, a galvano mirror, etc. This scanning optical system 602 is controlled by the control device 13. The other configurations are similar to the embodiment shown in FIG.
【0052】光源601から発せられたレーザ光はスキ
ャン光学系602でスキャンされ、図8に示すようにウ
エハー表面に光のスポットがY方向にスキャンされる。
これではショット内の2次元的な面形状は測定できない
が、前述したようにステージを移動させながらレーザ光
をスキャンさせると図9に示すようにショット内の全面
を光のスポットで走査できるようになる。これによって
図4(B)で示すような位置での各点での測定が実施で
きる。後の面形状の計算、傾きの駆動は先の実施例で述
べたのと同様である。スキャン光学系602をY方向だ
けでなくX方向にもスキャン可能とすると2次元にスキ
ャンできる。この場合、静止状態での面形状計測ができ
る。更に移動計測の場合、Y方向のステージ移動時にも
使用できる。A laser beam emitted from a light source 601 is scanned by a scanning optical system 602, and a spot of light is scanned on the wafer surface in the Y direction as shown in FIG. This method cannot measure the two-dimensional surface shape within the shot, but by scanning the laser beam while moving the stage as described above, it is possible to scan the entire surface within the shot with a spot of light, as shown in Figure 9. Become. This allows measurement at each point in the position shown in FIG. 4(B). The subsequent calculation of the surface shape and driving of the inclination are the same as those described in the previous embodiment. If the scanning optical system 602 is made capable of scanning not only in the Y direction but also in the X direction, two-dimensional scanning is possible. In this case, the surface shape can be measured in a stationary state. Furthermore, in the case of movement measurement, it can also be used when moving the stage in the Y direction.
【0053】又、被露光領域の範囲が変更された場合、
スキャン光学系のスキャン幅を変えることにより対応す
ることができる。又、これはスキャン光学系内にスキャ
ンする幅を制御するブレードを設け、その開閉によって
対応してもよい。このブレードの位置は被測定面と共役
となる位置に配置すると良い。あるいは光を検出する2
次元CCDセンサー11の検査、処理領域を被露光領域
に合わせてもよい。[0053] Furthermore, when the range of the exposed area is changed,
This can be handled by changing the scan width of the scan optical system. Alternatively, this may be achieved by providing a blade in the scanning optical system to control the scanning width and opening/closing the blade. The position of this blade is preferably placed at a position conjugate with the surface to be measured. Or detect light 2
The inspection and processing area of the dimensional CCD sensor 11 may be aligned with the exposed area.
【0054】尚、以上の各実施例における位置検出素子
にはエアーセンサー、光学式センサーが使用できること
はもちろんのこと、静電容量センサーや他の形態の光学
式センサー等、周知の各種センサーが使用される。尚、
平板状物体の所定面の傾きを検出する為には、エアーセ
ンサーや光学式センサーを複数個用いて、所定面上の相
異なる点に関する高さ(面位置)を測定したり、所定面
上に平行光を照射し、所定面で反射した平行光を集光し
、集光された光の光検出器への入射位置を測定したりし
ても良い。[0054] As the position detection element in each of the above embodiments, it is possible to use not only an air sensor and an optical sensor, but also various well-known sensors such as a capacitance sensor and other types of optical sensors. be done. still,
In order to detect the inclination of a predetermined surface of a flat object, multiple air sensors or optical sensors are used to measure the height (surface position) of different points on the predetermined surface. Alternatively, parallel light may be irradiated, the parallel light reflected from a predetermined surface may be collected, and the incident position of the collected light on the photodetector may be measured.
【0055】又、上記各実施例において、露光を行なう
まで検出手段(4〜11)あるいは(601,602,
7〜11)を常に駆動しておき露光の対象となっている
被露光領域の面位置をモニターし続けておくのが好まし
い。Furthermore, in each of the above embodiments, the detection means (4 to 11) or (601, 602,
7 to 11) are preferably constantly driven to continuously monitor the surface position of the exposed area that is the object of exposure.
【0056】上記各実施例ではウエハー2の表面の面位
置及び傾きを検出し、補正しているが、本発明はウエハ
ー2の表面の面位置を検出し、補正するだけの装置や、
逆にウエハー2の表面の傾きを検出し、補正するだけの
装置にも同様に適用される。In each of the above embodiments, the surface position and inclination of the surface of the wafer 2 are detected and corrected, but the present invention provides an apparatus that only detects and corrects the surface position of the surface of the wafer 2,
Conversely, the present invention is similarly applied to an apparatus that only detects and corrects the inclination of the surface of the wafer 2.
【0057】又、ウエハー2の表面の面位置や傾きを検
出する位置検出素子は、図1に示す検出手段(4〜11
)或は図6に示される検出光学系(601,602,7
〜11)以外の周知の位置検出素子を使用することもで
きる。更にウエハー2の表面を投影レンズ系の焦平面に
合焦させる機構も、ウエハーステージ3のZステージを
動かす以外に、投影レンズ系1の焦点距離を変えたり、
投影レンズ系1と不図示のレチクルとを光軸AX方向に
上下動させたりする機構も採り得る。Further, the position detection element for detecting the surface position and inclination of the surface of the wafer 2 includes the detection means (4 to 11) shown in FIG.
) or the detection optical system (601, 602, 7) shown in FIG.
-11) Well-known position detection elements other than those described above can also be used. Furthermore, the mechanism for focusing the surface of the wafer 2 on the focal plane of the projection lens system includes, in addition to moving the Z stage of the wafer stage 3, changing the focal length of the projection lens system 1.
A mechanism may also be adopted in which the projection lens system 1 and a reticle (not shown) are moved up and down in the direction of the optical axis AX.
【0058】以上説明した各実施例では、本発明を縮小
投影露光装置に適用しているが、本発明は図1に示した
装置以外のタイプの露光装置、例えば投影ミラー系によ
りパターン像を投影する装置や、レンズ及びミラーで構
成した投影光学系によりパターン像を投影する装置等に
も同様に適用できる。又、本発明は光学式の露光装置以
外の例えば電子ビームと電子レンズとを使用して、回路
パターンを描画したり或は回路パターンを投影したりす
る電子ビーム露光装置やX線露光装置にも同様に適用す
ることができる。In each of the embodiments described above, the present invention is applied to a reduction projection exposure apparatus, but the present invention also applies to an exposure apparatus of a type other than the apparatus shown in FIG. The present invention can be similarly applied to devices that project pattern images using a projection optical system composed of lenses and mirrors. Furthermore, the present invention is applicable to other than optical exposure devices, such as electron beam exposure devices and X-ray exposure devices that use an electron beam and an electron lens to draw a circuit pattern or project a circuit pattern. The same can be applied.
【0059】又、本発明は露光装置以外の自動焦点合わ
せが要求される光学機器にも同様に適用することができ
る。Furthermore, the present invention can be similarly applied to optical equipment other than exposure apparatuses that require automatic focusing.
【0060】[0060]
【発明の効果】以上、本発明によればウエハー等の平板
状物体を載置するステージの移動中に平板状物体の表面
の位置検出や傾き検出を行なうので、合焦動作の短縮化
を図れる。しかも測定点の配置がショット内の平面の全
てを観察できるため極めて正確な2次元の平面形状を検
出することができる。又ステージの移動中に、平板状物
体の表面の位置や傾きの調整を行なうことにより、合焦
動作が更に短縮化できる。更にスキャン光学系を持つ検
出器により被露光領域の変更にも対応できるといった特
長を有する自動焦点合せ装置を達成することができる。[Effects of the Invention] As described above, according to the present invention, since the position and inclination of the surface of a flat object such as a wafer are detected while the stage on which the flat object such as a wafer is placed is moved, the focusing operation can be shortened. . Moreover, since the measurement points are arranged so that all planes within the shot can be observed, an extremely accurate two-dimensional plane shape can be detected. Further, by adjusting the position and inclination of the surface of the flat object while the stage is moving, the focusing operation can be further shortened. Furthermore, it is possible to achieve an automatic focusing device that has the feature of being able to respond to changes in the exposed area by using a detector having a scanning optical system.
【図1】 本発明を適用した縮小投影露光装置の実施
例1の要部概略図[Fig. 1] A schematic diagram of the main parts of Embodiment 1 of a reduction projection exposure apparatus to which the present invention is applied.
【図2】 被露光領域中に設定した各測定点の配置を
示す説明図[Figure 2] Explanatory diagram showing the arrangement of each measurement point set in the exposed area
【図3】 ウエハー上の被露光領域(ショット)の配
列状態を示す平面図[Figure 3] Plan view showing the arrangement of exposed areas (shots) on a wafer
【図4】 ウエハーステージ移動中の各測距点の軌跡
と移動測定により得られた測定点の例を示す図[Figure 4] Diagram showing an example of the trajectory of each distance measurement point while the wafer stage is moving and the measurement points obtained by movement measurement
【図5】
図1の装置による合焦動作の一例を示すフローチャ
ート図[Figure 5]
A flowchart diagram showing an example of a focusing operation by the device of FIG. 1.
【図6】 図1の装置による合焦動作の一例を示すフ
ローチャート図[Figure 6] Flowchart diagram showing an example of focusing operation by the device in Figure 1.
【図7】 本発明を適用した縮小投影露光装置の実施
例2の要部概略図[Fig. 7] A schematic diagram of main parts of a second embodiment of a reduction projection exposure apparatus to which the present invention is applied.
【図8】 図7のスキャン光学系における被露光領域
の光スポットの説明図[Fig. 8] An explanatory diagram of the light spot of the exposed area in the scanning optical system of Fig. 7
【図9】 図7のスキャン光学系における被露光領域
の光スポットの説明図[Figure 9] An explanatory diagram of the light spot of the exposed area in the scanning optical system in Figure 7
1 縮小投影レンズ系 2 ウエハー 3 ウエハーステージ 4 高輝度光源 5 照明用レンズ 6 ピンホールをもつマスク 7 結像レンズ 8,9 折曲げミラー 10 検出レンズ 11 2次元位置検出素子 12 ステージ駆動装置 13 制御装置 21〜27 測定点 100 被露光領域(ショット) 601 レーザ光源 602 スキャン光学系 1. Reduction projection lens system 2 Wafer 3 Wafer stage 4 High brightness light source 5.Lens for lighting 6. Mask with pinholes 7 Imaging lens 8,9 Folding mirror 10 Detection lens 11 Two-dimensional position detection element 12 Stage drive device 13 Control device 21-27 Measurement points 100 Exposed area (shot) 601 Laser light source 602 Scan optical system
Claims (4)
の光軸と略直交する方向に沿って移動し、該平板状物体
の所定面を前記投影光学系の像面側に送り込む2次元方
向に移動可能なステージと、前記所定面の前記光軸方向
に関する位置及び傾きの少なくとも一方を前記ステージ
と協働しながら又は/及び静止中に検出する為の検出手
段とを有し、該検出手段による検出に基づいて前記所定
面を前記投影光学系の焦平面に合焦させることを特徴と
する自動焦点合せ装置。1. A two-dimensional device in which a flat object is placed and moved along a direction substantially perpendicular to the optical axis of the projection optical system, and a predetermined surface of the flat object is sent to the image plane side of the projection optical system. a stage movable in the optical axis direction, and a detection means for detecting at least one of the position and inclination of the predetermined surface with respect to the optical axis direction while cooperating with the stage and/or while stationary, the detection means An automatic focusing device, characterized in that the predetermined surface is focused on a focal plane of the projection optical system based on detection by means.
を前記投影光学系の焦平面に合焦せしめる動作を開始す
ることを特徴とする請求項1の自動焦点合せ装置。2. The automatic focusing device according to claim 1, wherein an operation for focusing the predetermined surface on the focal plane of the projection optical system is started while the stage is moving.
前記合焦せしめる動作が完了することを特徴とする請求
項2の自動焦点合せ装置。3. Before the movement of the stage is completed,
3. The automatic focusing device according to claim 2, wherein said focusing operation is completed.
点を移動させる機構を有することを特徴とする請求項1
、2又は3の自動焦点合せ装置。4. Claim 1, further comprising a mechanism for moving a measurement point of the detection means for measuring a surface shape.
, 2 or 3 automatic focusing devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3153858A JP2884830B2 (en) | 1991-05-28 | 1991-05-28 | Automatic focusing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3153858A JP2884830B2 (en) | 1991-05-28 | 1991-05-28 | Automatic focusing device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04350925A true JPH04350925A (en) | 1992-12-04 |
JP2884830B2 JP2884830B2 (en) | 1999-04-19 |
Family
ID=15571645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3153858A Expired - Fee Related JP2884830B2 (en) | 1991-05-28 | 1991-05-28 | Automatic focusing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2884830B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0927448A (en) * | 1995-07-11 | 1997-01-28 | Nikon Corp | Projection exposure device |
US6195154B1 (en) | 1994-05-18 | 2001-02-27 | Nikon Corporation | Projection exposure apparatus for transferring mask pattern onto photosensitive substrate |
US6287734B2 (en) | 1995-07-13 | 2001-09-11 | Nikon Corporation | Exposure method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1991
- 1991-05-28 JP JP3153858A patent/JP2884830B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6195154B1 (en) | 1994-05-18 | 2001-02-27 | Nikon Corporation | Projection exposure apparatus for transferring mask pattern onto photosensitive substrate |
JPH0927448A (en) * | 1995-07-11 | 1997-01-28 | Nikon Corp | Projection exposure device |
US6287734B2 (en) | 1995-07-13 | 2001-09-11 | Nikon Corporation | Exposure method |
US6624879B2 (en) | 1995-07-13 | 2003-09-23 | Nikon Corporation | Exposure apparatus and method for photolithography |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2884830B2 (en) | 1999-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6081614A (en) | Surface position detecting method and scanning exposure method using the same | |
US5323016A (en) | Focusing method | |
JP3181050B2 (en) | Projection exposure method and apparatus | |
KR100471524B1 (en) | Exposure method | |
TWI397778B (en) | Exposure apparatus and device manufacturing method | |
KR100266729B1 (en) | Surface position detecting method and scanning exposure method using the same | |
JPH1123225A (en) | Inspection device and aligner using it | |
JP3453818B2 (en) | Apparatus and method for detecting height position of substrate | |
JP3880155B2 (en) | Positioning method and positioning device | |
US5361122A (en) | Autofocusing device and projection exposure apparatus with the same | |
US5124562A (en) | Surface position detecting method at a predetermined and plurality of adjacent points | |
KR102294481B1 (en) | Method for controlling moving body, exposure method, method for manufacturing device, moving body apparatus, and exposure apparatus | |
JP2884830B2 (en) | Automatic focusing device | |
JP6267530B2 (en) | Exposure apparatus and article manufacturing method | |
US6816239B2 (en) | Exposure apparatus, method of controlling same, and method of manufacturing devices | |
JP2910327B2 (en) | Surface position detecting device and method of manufacturing semiconductor device using the same | |
JP2886957B2 (en) | Automatic focusing device | |
JP2705778B2 (en) | Projection exposure equipment | |
JPH09236425A (en) | Face position detector | |
JP3428825B2 (en) | Surface position detection method and surface position detection device | |
JP6436856B2 (en) | Exposure apparatus, exposure method, and article manufacturing method | |
JPH065495A (en) | Method and equipment for position detection | |
JPH0982264A (en) | Pattern inspection device and scanning electron microscope | |
JP2787711B2 (en) | Projection exposure equipment | |
JPH1050593A (en) | Projection aligner and manufacture of semiconductor device using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080212 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090212 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100212 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100212 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110212 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |