[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04359756A - Air cooled heat pump type freezer - Google Patents

Air cooled heat pump type freezer

Info

Publication number
JPH04359756A
JPH04359756A JP13476091A JP13476091A JPH04359756A JP H04359756 A JPH04359756 A JP H04359756A JP 13476091 A JP13476091 A JP 13476091A JP 13476091 A JP13476091 A JP 13476091A JP H04359756 A JPH04359756 A JP H04359756A
Authority
JP
Japan
Prior art keywords
oil cooler
pipe
oil
hot water
water operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13476091A
Other languages
Japanese (ja)
Other versions
JP2643654B2 (en
Inventor
Shinnosuke Yamamoto
慎之介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP13476091A priority Critical patent/JP2643654B2/en
Publication of JPH04359756A publication Critical patent/JPH04359756A/en
Application granted granted Critical
Publication of JP2643654B2 publication Critical patent/JP2643654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve a capability of hot water operation by utilizing heat of oil of high temperature during a hot water operation and to prevent a reduction of hot water operation through over-cooling of high pressure liquid refrigerant even in the case that an evaporating temperature is reduced due to a reduction in surrounding air temperature. CONSTITUTION:An oil cooler 3 is divided into the first oil cooler 3a and the second oil cooler 3b. The first cooling pipe 15 communicating with a liquid receiving device 6 is connected to the first oil cooler 3a. The second cooling pipe 17 having a valve 14 which is closed during a cold water operation and opened during a hot water operation is connected to the second oil cooler 3b. The second cooling pipe 17 is made to communicate with a cold water pipe 16 for a utilization side heat exchanger 5. An economizer pipe 21 of an intermediate cooler 12 disposed in a high pressure liquid pipe 20 passes through a three-way valve 18 and is sucked into the compressor 1. During a hot water operation, water passing through the second cooling pipe 17 is heat exchanged at the second oil cooler 3b to enable a capability of the hot water operation to be improved. During a hot water operation, since a high pressure liquid refrigerant can be over-cooled with an intermediate cooler 12, a reduction in capability of hot water operation caused by a reduction in the surrounding air temperature can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、空冷ヒートポンプ式冷
凍装置、詳しくは、圧縮機と該圧縮機の吐出側に設ける
油回収器と四路切換弁と油冷却器と利用側水熱交換器と
受液器と熱源側空気熱交換と利用側水熱交換器用膨張機
構及び熱源側空気熱交換器用膨張機構とを備え、冷水運
転と温水運転とを可能にした空冷ヒートポンプ式冷凍装
置に関する。
[Industrial Application Field] The present invention relates to an air-cooled heat pump type refrigeration system, and more specifically, a compressor, an oil recovery device provided on the discharge side of the compressor, a four-way switching valve, an oil cooler, and a user-side water heat exchanger. The present invention relates to an air-cooled heat pump type refrigeration system that includes a liquid receiver, an air heat exchanger on the heat source side, an expansion mechanism for the water heat exchanger on the usage side, and an expansion mechanism for the air heat exchanger on the heat source side, and enables cold water operation and hot water operation.

【0002】0002

【従来の技術】従来、温水運転を可能にした冷凍サイク
ルをもつ冷凍装置は、特開平2−287058号公報に
示され、かつ、図2に示すようにすでに知られている。 この冷凍装置は、圧縮機Cの吐出側に、油回収器D、凝
縮器E、受液器F、膨張機構G、及び蒸発器Hを順次接
続し、前記圧縮機Cから吐出する冷媒を実線矢印で示し
たように循環させる冷凍サイクルを構成すると共に、前
記油回収器Dと前記圧縮機Cの給油ポートIとを接続す
る油戻し管Jには油冷却器Kを介装して、この油冷却器
Kに、前記受液器Fの出口側に接続した高圧液管Sから
分岐する分岐管Mを膨張弁Qを介して接続し、前記分岐
管Mに接続する前記油冷器Kにおける冷媒冷却管Lを流
れる冷媒により、油を冷却するようにしている。尚、尚
、図2においてOは前記油冷却器Kにおける前記冷却管
Lの出口側に接続する連絡管で、前記圧縮機Cの中間ポ
ートNに接続している。また、Pは前記圧縮機Cの吸入
側に接続したアキュムレータ、Rは前記受液器Fのガス
域を前記圧縮機Cの中間ポートNとを接続する接続管で
ある。
2. Description of the Related Art Conventionally, a refrigeration system having a refrigeration cycle capable of hot water operation is disclosed in Japanese Patent Application Laid-Open No. 2-287058 and is already known as shown in FIG. In this refrigeration system, an oil recovery device D, a condenser E, a liquid receiver F, an expansion mechanism G, and an evaporator H are sequentially connected to the discharge side of the compressor C, and the refrigerant discharged from the compressor C is connected to the solid line. A refrigeration cycle is configured to circulate as shown by the arrow, and an oil cooler K is interposed in an oil return pipe J that connects the oil recovery device D and the oil supply port I of the compressor C. In the oil cooler K, a branch pipe M branching from a high-pressure liquid pipe S connected to the outlet side of the liquid receiver F is connected to the oil cooler K via an expansion valve Q. The oil is cooled by the refrigerant flowing through the refrigerant cooling pipe L. In addition, in FIG. 2, O is a communication pipe connected to the outlet side of the cooling pipe L in the oil cooler K, and is connected to the intermediate port N of the compressor C. Further, P is an accumulator connected to the suction side of the compressor C, and R is a connecting pipe connecting the gas region of the liquid receiver F to the intermediate port N of the compressor C.

【0003】0003

【発明が解決しようとする課題】ところが、以上の冷凍
装置において、前記圧縮機Cを駆動して温水を取出しす
る温水運転を行う場合、油冷却は前記油冷却器Kにおい
て受液器Fから出た液冷媒により行うようにしているた
め、暖房能力が減少することはないのであるが、吐出ガ
スとともに高温となる油の温度を温水形成に利用するも
のでないから、暖房能力を向上できないのである。
[Problems to be Solved by the Invention] However, in the above-mentioned refrigeration system, when hot water operation is performed in which hot water is taken out by driving the compressor C, the oil cooling is carried out in the oil cooler K from the liquid receiver F. Since heating is performed using a liquid refrigerant, the heating capacity does not decrease, but the heating capacity cannot be improved because the temperature of the oil, which becomes high temperature along with the discharged gas, is not used to generate hot water.

【0004】従って、外気温度が低下し、蒸発温度が低
下する場合、蒸発した冷媒ガスの比重量が小さくなるこ
とから冷媒循環量が減少し暖房能力が低下するのである
が、この暖房能力の低下を補償できない問題がある。
[0004] Therefore, when the outside air temperature decreases and the evaporation temperature decreases, the specific weight of the evaporated refrigerant gas decreases, resulting in a decrease in the amount of refrigerant circulation and a decrease in heating capacity. There is a problem that cannot be compensated for.

【0005】又一方、前記油冷却器Kにおいて油冷却に
用いる液冷媒は、前記膨張弁Qで減圧され高温の油と熱
交換して蒸発し、斯く蒸発したガス冷媒は前記連絡管O
を介して前記圧縮機Cの中間ポートNに吸入されること
になるのであるが、以上のように前記ガス冷媒を中間ポ
ートNから吸入するようにしているため、中間冷却器を
用い液冷媒を過冷却させて冷媒循環量を増大させること
もできないのである。即ち、高圧液管Sの途中にエコノ
マイザ配管をもつ中間冷却器を介装して、このエコノマ
イザ配管を中間ポート(エコノマイザポート)に接続し
、前記中間冷却器において液冷媒を過冷却させるように
したエコノマイザ機構を組込み、冷凍能力を向上するよ
うにしたものが知られているが、前記油冷却器Kを用い
、この油冷却器Kに配設する冷却管Lの出口側に接続す
る連絡管Oを前記中間ポートNに開口させる構成とする
場合、この連絡管Oとともに前記エコノマイザ配管を中
間ポートNに開口させる構成を併用することは、前記圧
縮機Cの性能から行えないのである。
On the other hand, the liquid refrigerant used for oil cooling in the oil cooler K is depressurized by the expansion valve Q, exchanges heat with the high-temperature oil, and evaporates, and the evaporated gas refrigerant flows into the connecting pipe O.
The gas refrigerant is sucked into the intermediate port N of the compressor C through the intermediate port N. However, since the gas refrigerant is sucked from the intermediate port N as described above, an intercooler is used to draw the liquid refrigerant into the intermediate port N. It is also impossible to increase the amount of refrigerant circulation by supercooling. That is, an intercooler having an economizer pipe is interposed in the middle of the high-pressure liquid pipe S, and this economizer pipe is connected to an intermediate port (economizer port), so that the liquid refrigerant is supercooled in the intercooler. It is known that an economizer mechanism is incorporated to improve the refrigerating capacity. In this case, the performance of the compressor C makes it impossible to use a configuration in which the economizer pipe is opened to the intermediate port N together with the communication pipe O.

【0006】従って、以上の如く油冷却を冷媒を用いて
行う場合には、前記中間冷却器を用い液冷媒を過冷却さ
せ、冷凍能力を向上させることもできないのである。
Therefore, when oil cooling is performed using a refrigerant as described above, it is not possible to supercool the liquid refrigerant using the intercooler and improve the refrigerating capacity.

【0007】本発明は、吐出ガス冷媒とともに高温にな
る油の温度を温水形成に利用することにより、外気温度
が低下する場合でも暖房能力の低下を補償できることと
、冷水により油冷却を行うことにより中間冷却器を用い
ることができることとに着目して発明したものであって
、第1の目的は、温水運転時冷却する油の熱を有効に利
用して温水運転の能力を向上させると共に、外気温度が
低下して蒸発温度が低下した場合でも、冷媒循環量が少
なくなることによる温水運転の能力低下を防止できるよ
うにする点である。
[0007] The present invention is capable of compensating for a decrease in heating capacity even when the outside air temperature decreases by utilizing the temperature of oil that becomes high temperature together with the discharged gas refrigerant to form hot water, and by performing oil cooling with cold water. This invention focused on the ability to use an intercooler, and the first purpose is to improve the performance of hot water operation by effectively utilizing the heat of the oil cooled during hot water operation, and also to improve the ability of hot water operation. Even when the temperature drops and the evaporation temperature drops, it is possible to prevent a drop in hot water operation capacity due to a decrease in the amount of refrigerant circulation.

【0008】また、第2の目的は、前記した目的を達成
できながら、冷水運転時、油を冷却するのに余剰がある
とき、中間冷却器を利用して冷水運転の能力も向上でき
るようにする点である。
[0008] The second objective is to achieve the above-mentioned objectives while also improving the ability of chilled water operation by using an intercooler when there is a surplus to cool the oil during chilled water operation. This is the point.

【0009】[0009]

【課題を解決するための手段】上記目的を得るため、第
1発明では、圧縮機1と該圧縮機1の吐出側に設ける油
回収器2と四路切換弁4と油冷却器3と利用側水熱交換
器5と受液器6と熱源側空気熱交換7と利用側水熱交換
器用膨張機構10及び熱源側空気熱交換器用膨張機構1
1とを備え、冷水運転と温水運転とを可能にした空冷ヒ
ートポンプ式冷凍装置において、前記油冷却器3を第1
油冷却器3aと第2油冷却器3bとに分割して、前記第
1油冷却器3aに前記受液器6の液域と連通する第1冷
却管15を接続すると共に、前記第2油冷却器3bに冷
水運転時閉じ温水運転時開く開閉弁14,14をもち、
前記利用側水熱交換器5への冷温水配管16,16と連
通する第2冷却管17を接続する一方、前記圧縮機1に
エコノマイザポート19を設けると共に、高圧液管20
にエコノマイザ配管21をもつ中間冷却器12を介装し
て、前記エコノマイザ配管21と前記第1冷却管15の
前記第1油冷却器3aに対する二次側配管22とを、前
記エコノマイザポート19に、切換機構18を介して択
一的に接続したのである。
[Means for Solving the Problems] In order to achieve the above object, the first invention utilizes a compressor 1, an oil recovery device 2 provided on the discharge side of the compressor 1, a four-way switching valve 4, and an oil cooler 3. Side water heat exchanger 5, liquid receiver 6, heat source side air heat exchange 7, usage side water heat exchanger expansion mechanism 10, and heat source side air heat exchanger expansion mechanism 1
1, the air-cooled heat pump type refrigeration system is capable of cold water operation and hot water operation.
It is divided into an oil cooler 3a and a second oil cooler 3b, and a first cooling pipe 15 communicating with the liquid area of the liquid receiver 6 is connected to the first oil cooler 3a. The cooler 3b has on-off valves 14, 14 that close during cold water operation and open during hot water operation,
A second cooling pipe 17 communicating with cold and hot water pipes 16, 16 to the user-side water heat exchanger 5 is connected, while an economizer port 19 is provided in the compressor 1, and a high-pressure liquid pipe 20 is connected to the compressor 1.
An intercooler 12 having an economizer pipe 21 is interposed therein, and the economizer pipe 21 and the secondary side pipe 22 of the first cooling pipe 15 to the first oil cooler 3a are connected to the economizer port 19. The connection was made alternatively via the switching mechanism 18.

【0010】また、第2発明では、前記油冷却器3を第
1油冷却器3aと第2油冷却器3bとに分割して、前記
第1油冷却器3aに前記受液器6の液域と連通する第1
冷却管15を接続すると共に、前記第2油冷却器3bに
冷水運転時閉じ温水運転時開く開閉弁14,14をもち
、前記利用側水熱交換器5への冷温水配管16,16と
連通する第2冷却管17を接続する一方、前記圧縮機1
にエコノマイザポート19を設けると共に、高圧液管2
0にエコノマイザ配管21をもつ中間冷却器12を介装
して、前記エコノマイザ配管21と前記第1冷却管15
の前記第1油冷却器3aに対する二次側配管22とを、
開度比を調整可能とした三方弁13を介して前記エコノ
マイザポート19に接続し、かつ、冷水運転時、前記第
1油冷却器3aでの油冷却能力を検出し、能力の余剰に
対応して第1冷却管側ポートbの開度を減少し、エコノ
マイザ配管側ポートaの開度を増加する開度制御手段を
設けたのである。
Further, in the second invention, the oil cooler 3 is divided into a first oil cooler 3a and a second oil cooler 3b, and the liquid in the liquid receiver 6 is supplied to the first oil cooler 3a. The first area that communicates with the area
In addition to connecting the cooling pipe 15, the second oil cooler 3b has on-off valves 14, 14 that close during cold water operation and open during hot water operation, and communicate with cold and hot water pipes 16, 16 to the user side water heat exchanger 5. The second cooling pipe 17 is connected to the compressor 1.
An economizer port 19 is provided in the high pressure liquid pipe 2.
An intercooler 12 having an economizer pipe 21 is interposed between the economizer pipe 21 and the first cooling pipe 15.
and the secondary side piping 22 for the first oil cooler 3a,
It is connected to the economizer port 19 through a three-way valve 13 whose opening ratio can be adjusted, and detects the oil cooling capacity of the first oil cooler 3a during cold water operation to cope with excess capacity. Therefore, an opening degree control means is provided for decreasing the opening degree of the first cooling pipe side port b and increasing the opening degree of the economizer piping side port a.

【0011】[0011]

【作用】第1発明では、温水運転時、前記第2冷却管1
7の前記開閉弁14,14は開くと共に、前記切換機構
18の切換えにより、前記エコノマイザ配管21と前記
エコノマイザポート19とを連通させ、前記油回収器2
から前記油冷却器3へ流れる油を、第2油冷却器3bに
おいて前記第2冷却管17を流れる水と熱交換させ、前
記油を冷却すると共に水も加熱するのであって、前記油
冷却器3を流れる油の熱を有効に利用して温水を得るこ
とができ、温水運転の能力を向上させることができる。
[Operation] In the first invention, during hot water operation, the second cooling pipe 1
The on-off valves 14, 14 of No. 7 are opened, and the switching mechanism 18 is switched to connect the economizer pipe 21 and the economizer port 19, and the oil recovery device 2 is opened.
The oil flowing from the oil cooler 3 to the oil cooler 3 is exchanged with the water flowing through the second cooling pipe 17 in the second oil cooler 3b to cool the oil and also heat the water. Hot water can be obtained by effectively utilizing the heat of the oil flowing through 3, and the ability of hot water operation can be improved.

【0012】また、温水運転時、前記第2油冷却器3b
において油を冷却するのであるから、前記エコノマイザ
配管21を利用することができ、前記中間冷却器12に
おいて前記受液器6から前記熱源側空気熱交換器7へ前
記高圧液管20を流れる液冷媒の過冷却を行うことによ
り、冷媒循環量を増加させることができるのである。従
って、外気が低温になって前記熱源側空気熱交換器7に
おける蒸発温度が低下しても、冷媒循環量が少なくなる
のを防止し、温水運転の能力が低下するのを防止するこ
とができる。
[0012] Also, during hot water operation, the second oil cooler 3b
Since the oil is cooled in the intermediate cooler 12, the economizer piping 21 can be used, and the liquid refrigerant flowing through the high-pressure liquid pipe 20 from the liquid receiver 6 to the heat source side air heat exchanger 7 in the intercooler 12 By supercooling the amount of refrigerant, it is possible to increase the amount of refrigerant circulated. Therefore, even if the outside air becomes low temperature and the evaporation temperature in the heat source side air heat exchanger 7 decreases, the amount of refrigerant circulation can be prevented from decreasing, and the ability of hot water operation can be prevented from decreasing. .

【0013】第2発明では、第1発明の作用と同様の作
用を行いながら、冷水運転時、前記第1油冷却器3aに
おいて油冷却能力に余剰が生じたとき、前記開度制御手
段により、前記第1油冷却器3aにおける油冷却能力の
余剰の程度に対応して、前記三方弁13における前記第
1冷却管側ポートbの開度が減少する一方、前記三方弁
13における前記エコノマイザ配管側ポートaの開度が
増加し、前記第1冷却管15には前記第1油冷却器3a
において油を冷却するのに必要な量以上の余分な冷媒が
流れるのを防止して、前記中間冷却器12を利用するこ
とができる。従って、冷水運転時、油冷却を冷媒で行い
ながら、油冷却の余剰分を中間冷却器12に利用して液
冷媒を過冷却できるから、冷水運転の能力も向上させる
ことができる。
In the second invention, while performing the same effect as the first invention, when there is a surplus in the oil cooling capacity in the first oil cooler 3a during cold water operation, the opening degree control means: Corresponding to the degree of surplus oil cooling capacity in the first oil cooler 3a, the opening degree of the first cooling pipe side port b in the three-way valve 13 decreases, while the opening degree of the first cooling pipe side port b in the three-way valve 13 decreases. The opening degree of port a increases, and the first oil cooler 3a is connected to the first cooling pipe 15.
The intercooler 12 can be used while preventing the flow of excess refrigerant in excess of the amount required to cool the oil. Therefore, during chilled water operation, the liquid refrigerant can be supercooled by using the surplus of oil cooling in the intercooler 12 while oil cooling is performed using the refrigerant, so that the capability of chilled water operation can also be improved.

【0014】[0014]

【実施例】図1に示す空冷ヒートポンプ式冷凍装置は、
圧縮機1の吐出側に接続した油回収器2と、前記圧縮機
1の吸入側に接続したアキュムレータ8とを四路切換弁
4の固定ポートに接続する一方、この四路切換弁4の切
換ポート間には、利用側水熱交換器5、受液器6、熱源
側空気熱交換器7を順次介装している。
[Example] The air-cooled heat pump type refrigeration system shown in Fig. 1 is
An oil recovery device 2 connected to the discharge side of the compressor 1 and an accumulator 8 connected to the suction side of the compressor 1 are connected to a fixed port of the four-way switching valve 4, while the four-way switching valve 4 is switched. A water heat exchanger 5 on the usage side, a liquid receiver 6, and an air heat exchanger 7 on the heat source side are successively installed between the ports.

【0015】また、前記利用側水熱交換器5と前記受液
器6との間には、膨張弁から成る利用側水熱交換器用膨
張機構10を、また、前記熱源側空気熱交換器7と前記
受液器6との間には、膨張弁から成る前記熱源側空気熱
交換器用膨張機構11をそれぞれ介装し、前記四路切換
弁4の切換えで、前記圧縮機1から吐出する冷媒を、前
記利用側水熱交換器5から前記熱源側空気熱交換器7へ
流す温水運転と、逆に、前記熱源側空気熱交換器7から
前記利用側水熱交換器5へ流す冷水運転とを行えるよう
にしている。
[0015] Furthermore, an expansion mechanism 10 for the usage side water heat exchanger consisting of an expansion valve is provided between the usage side water heat exchanger 5 and the liquid receiver 6; An expansion mechanism 11 for the heat source side air heat exchanger consisting of an expansion valve is interposed between the liquid receiver 6 and the refrigerant discharged from the compressor 1 by switching the four-way switching valve 4. A hot water operation in which the water is flowed from the user side water heat exchanger 5 to the heat source side air heat exchanger 7, and conversely, a cold water operation in which it is flowed from the heat source side air heat exchanger 7 to the user side water heat exchanger 5. We are making it possible to do this.

【0016】また、前記油回収器2に付設した油溜り槽
2aには後記する第1及び第2油冷却器3a,3bから
成る油冷却器3を介装した給油配管30を接続し、前記
圧縮機1の吸入側に設けた給油ポート31に給油する油
を前記油冷却器3において冷却するようにしている。
Furthermore, an oil supply pipe 30 interposed with an oil cooler 3 consisting of first and second oil coolers 3a and 3b, which will be described later, is connected to the oil reservoir tank 2a attached to the oil recovery device 2. The oil supplied to the oil supply port 31 provided on the suction side of the compressor 1 is cooled in the oil cooler 3.

【0017】しかして、以上のごとく構成する空冷ヒー
トポンプ式冷凍装置において、前記油冷却器3を第1油
冷却器3aと第2油冷却器3bとに分割して、前記第1
油冷却器3aに前記受液器6の液域と連通する第1冷却
管15を接続すると共に、前記第2油冷却器3bに冷水
運転時閉じ温水運転時開く開閉弁14,14をもち、前
記利用側水熱交換器5への冷温水配管17,17と連通
する第2冷却管17を接続する一方、前記圧縮機1にエ
コノマイザポート19を設けると共に、高圧液管20に
エコノマイザ配管21をもつ中間冷却器12を介装して
、前記エコノマイザ配管21と前記第1冷却管15の前
記第1油冷却器3aに対する二次側配管22とを、前記
エコノマイザポート19に、切換機構18を介して択一
的に接続するのである。
In the air-cooled heat pump type refrigeration system constructed as described above, the oil cooler 3 is divided into a first oil cooler 3a and a second oil cooler 3b.
A first cooling pipe 15 communicating with the liquid region of the liquid receiver 6 is connected to the oil cooler 3a, and the second oil cooler 3b has on-off valves 14, 14 that close during cold water operation and open during hot water operation, A second cooling pipe 17 that communicates with cold and hot water pipes 17, 17 to the user-side water heat exchanger 5 is connected, while an economizer port 19 is provided in the compressor 1, and an economizer pipe 21 is connected to the high-pressure liquid pipe 20. The economizer pipe 21 and the secondary pipe 22 of the first cooling pipe 15 to the first oil cooler 3a are connected to the economizer port 19 via the switching mechanism 18 by interposing an intercooler 12 with a It is connected selectively.

【0018】図1に示した実施例では、前記油溜り槽2
aの出口32と、前記圧縮機1の前記給油ポート31と
を、前記給油配管30で接続し、前記油溜り槽2aの冷
媒が前記第1及び第2油冷却器3a,3bを通過して前
記給油ポート31に流れるようにするのである。
In the embodiment shown in FIG.
The outlet 32 of a and the oil supply port 31 of the compressor 1 are connected by the oil supply pipe 30, and the refrigerant in the oil reservoir tank 2a passes through the first and second oil coolers 3a and 3b. This allows the oil to flow into the oil supply port 31.

【0019】また、前記第1油冷却器3aに配管した伝
熱管(図示しない)には、一端側を前記受液器6の液域
に開口させた前記第1冷却管15を接続し、該第1冷却
管15には前記第1油冷却器3aで冷却する油の温度を
調節する油温調節弁9を介装すると共に、前記第2油冷
却器3bに配管した伝熱管(図示しない)には、前記利
用側水熱交換器5に接続する冷温水配管16,16に接
続した前記第2冷却管17を接続して、この第2冷却管
17には、冷水運転時閉じ、かつ、温水運転時開く開閉
弁14,14を介装し、温水運転時にのみ前記第2油冷
却器3bにおいて、前記油回収器2から流入する油を前
記第2冷却管17を流れる水と熱交換させて温水を得る
ようにする。
Furthermore, the first cooling pipe 15 having one end opened into the liquid region of the liquid receiver 6 is connected to the heat transfer tube (not shown) piped to the first oil cooler 3a. The first cooling pipe 15 is equipped with an oil temperature control valve 9 for adjusting the temperature of the oil cooled by the first oil cooler 3a, and a heat transfer tube (not shown) piped to the second oil cooler 3b. , the second cooling pipe 17 connected to the cold and hot water pipes 16, 16 connected to the user-side water heat exchanger 5 is connected, and the second cooling pipe 17 is closed during cold water operation, and On-off valves 14, 14 that open during hot water operation are interposed, and the oil flowing from the oil recovery device 2 is heat exchanged with the water flowing through the second cooling pipe 17 in the second oil cooler 3b only during hot water operation. to get hot water.

【0020】また、前記圧縮機1には一対のエコノマイ
ザポート19を設けると共に、前記受液器6と前記熱源
側空気熱交換器7との間の前記高圧液管20には、伝熱
管(図示しない)を配管した前記中間冷却器12を介装
し、この伝熱管の一端側に後記する三方弁13に接続す
る前記エコノマイザ配管21を接続すると共に、この伝
熱管の他端側には前記中間冷却器12と前記受液器6と
の間の前記高圧液管20から分岐し、かつ、エコノマイ
ザ配管21を流れる冷媒ガスの過熱度を調整する流量制
御弁38を介装した分岐管33を接続し、前記中間冷却
器12において、前記分岐管33から前記エコノマイザ
配管21へ流れる冷媒と、温水運転時前記受液器6から
前記熱源側空気熱交換器7へ流れる高圧の液冷媒とを熱
交換させ、この高圧の液冷媒を過冷却できるようにする
Further, the compressor 1 is provided with a pair of economizer ports 19, and the high pressure liquid pipe 20 between the liquid receiver 6 and the heat source side air heat exchanger 7 is provided with a heat transfer pipe (not shown). One end of this heat transfer tube is connected to the economizer pipe 21 which is connected to a three-way valve 13 (to be described later), and the other end of this heat transfer tube is connected to the intermediate cooler 12. A branch pipe 33 that branches from the high-pressure liquid pipe 20 between the cooler 12 and the liquid receiver 6 and is equipped with a flow control valve 38 that adjusts the degree of superheat of the refrigerant gas flowing through the economizer pipe 21 is connected. In the intercooler 12, heat is exchanged between the refrigerant flowing from the branch pipe 33 to the economizer pipe 21 and the high-pressure liquid refrigerant flowing from the liquid receiver 6 to the heat source side air heat exchanger 7 during hot water operation. This allows this high-pressure liquid refrigerant to be supercooled.

【0021】更に、前記エコノマイザポート19に連通
する連通管34と、前記エコノマイザ配管21と、前記
第1冷却管15の前記第1油冷却器3aに対して二次側
となる前記二次側配管22とは、前記三方弁13を介し
て接続するのであって、該三方弁13の固定ポートcに
は前記連通管34を接続する一方、前記三方弁13の一
方の切換ポートである第1冷却管側ポートbには前記二
次側配管22を、また、他方の切換ポートであるエコノ
マイザ配管側ポートaには前記エコノマイザ配管21を
それぞれ接続し、温水運転時には、前記第1冷却管側ポ
ートbが全閉、前記エコノマイザ配管側ポートaが全開
となるように、また、冷水運転時には、前記第1冷却管
側ポートbが全開、前記エコノマイザ配管側ポートaが
全閉となるように前記切換機構18を構成するのであっ
て、温水運転時には、前記エコノマイザ配管21を通過
する冷媒が、また、冷水運転には、前記第1冷却管15
を通過する冷媒が、前記エコノマイザポート19を介し
て前記圧縮機1にインジェクションされるようにするの
である。
Furthermore, a communication pipe 34 communicating with the economizer port 19, the economizer pipe 21, and the secondary side pipe which is the secondary side of the first cooling pipe 15 with respect to the first oil cooler 3a. 22 is connected via the three-way valve 13, and the communication pipe 34 is connected to the fixed port c of the three-way valve 13, while the first cooling port which is one switching port of the three-way valve 13 The secondary side piping 22 is connected to the pipe side port b, and the economizer piping 21 is connected to the economizer piping side port a, which is the other switching port. During hot water operation, the first cooling pipe side port b is connected to the economizer piping 21. is fully closed and the economizer piping side port a is fully open, and during cold water operation, the switching mechanism is configured such that the first cooling pipe side port b is fully open and the economizer piping side port a is fully closed. 18, the refrigerant passes through the economizer pipe 21 during hot water operation, and the refrigerant passes through the first cooling pipe 15 during cold water operation.
The refrigerant passing through is injected into the compressor 1 via the economizer port 19.

【0022】尚、35は前記圧縮機1の吸入側に設けた
逆止弁であり、36及び37は、それぞれ前記膨張機構
10及び11に併設した逆止弁である。
Note that 35 is a check valve provided on the suction side of the compressor 1, and 36 and 37 are check valves provided in the expansion mechanisms 10 and 11, respectively.

【0023】以上のように構成する空冷ヒートポンプ式
冷凍装置において、温水運転するときは、前記四路切換
弁4を実線位置に切換えて前記圧縮機1から吐出する冷
媒を実線矢印方向に循環させるのであって、前記圧縮機
1から吐出する冷媒は、前記利用側水熱交換器5におい
て前記冷温水配管16を流れる冷水と熱交換し、冷媒は
凝縮して液冷媒となると共に、この冷水を加熱して温水
を得るのである。そして、この冷水を加熱して凝縮した
液冷媒は、前記受液器6及び前記中間冷却器12を通過
し、前記熱源側空気熱交換器用膨張機構11で減圧され
、前記熱源側空気熱交換器7において蒸発してから前記
四路切換弁4を経て前記アキュムレータ8に戻るように
循環するのである。
In the air-cooled heat pump type refrigeration system constructed as described above, when operating hot water, the four-way switching valve 4 is switched to the solid line position to circulate the refrigerant discharged from the compressor 1 in the direction of the solid line arrow. The refrigerant discharged from the compressor 1 exchanges heat with the cold water flowing through the cold/hot water pipe 16 in the user-side water heat exchanger 5, and the refrigerant condenses to become a liquid refrigerant and heats this cold water. to obtain hot water. The liquid refrigerant heated and condensed from this cold water passes through the liquid receiver 6 and the intercooler 12, is depressurized by the heat source side air heat exchanger expansion mechanism 11, and is transferred to the heat source side air heat exchanger. After being evaporated at step 7, it is circulated through the four-way switching valve 4 and back to the accumulator 8.

【0024】このような温水運転時には、前記第2冷却
管17の前記開閉弁14,14が開くと共に、前記三方
弁13が実線位置に切換えられ、前記エコノマイザ配管
側ポートaを固定ポートcに全開にする一方、前記第1
冷却管側ポートbを全閉にし、前記エコノマイザ配管2
1と前記エコノマイザポート19とを連通させるのであ
る。従って、前記油回収器2から前記給油ポート31へ
流れる油は、前記第2油冷却器3bにおいて前記第2冷
却管17を流れる冷水と熱交換して冷却されるのであっ
て、換言すると、前記第2冷却管17を流れる冷水は前
記油により加熱されるのである。従って、前記第2油冷
却器3bを流れる油の熱を有効に利用して温水を得るこ
とができるのであって、前記第2油冷却器3bにおける
冷水への放熱により、温水運転の能力を前記利用側水熱
交換器5のみを用いた場合に比較して向上させることが
できる。
During such hot water operation, the on-off valves 14, 14 of the second cooling pipe 17 are opened, the three-way valve 13 is switched to the solid line position, and the economizer piping side port a is fully opened to the fixed port c. while the first
Fully close the cooling pipe side port b, and connect the economizer pipe 2.
1 and the economizer port 19 are communicated with each other. Therefore, the oil flowing from the oil recovery device 2 to the oil supply port 31 is cooled by exchanging heat with the cold water flowing through the second cooling pipe 17 in the second oil cooler 3b. The cold water flowing through the second cooling pipe 17 is heated by the oil. Therefore, hot water can be obtained by effectively utilizing the heat of the oil flowing through the second oil cooler 3b, and by dissipating heat to the cold water in the second oil cooler 3b, the capability of hot water operation can be increased. This can be improved compared to the case where only the user-side water heat exchanger 5 is used.

【0025】また、温水運転時、前記したように前記エ
コノマイザ配管21は、前記三方弁13の切換えにより
、該三方弁13を介して前記連通管34、即ち、前記エ
コノマイザポート19に連通することになるから、前記
エコノマイザ配管21を利用して前記エコノマイザポー
ト19を介して中間圧の冷媒を前記圧縮機1にインジェ
クションすることができ、従って、前記中間冷却器12
において前記受液器6から前記熱源側空気熱交換器7へ
前記高圧液管20を流れる液冷媒の過冷却を行うことが
できるのである。この結果、外気温度が低下して前記熱
源側空気熱交換器7における冷媒の蒸発温度が低下し、
ガス冷媒の比重量が少なくなっても、冷媒循環量を増加
させることができるから、冷媒循環量が少なくなるのを
防止できるのであって、前記した高温の油による冷水へ
の放熱と相俟って温水運転の能力が低下するのを防止す
ることができる。
Further, during hot water operation, as described above, the economizer pipe 21 is connected to the communication pipe 34, that is, the economizer port 19 via the three-way valve 13 by switching the three-way valve 13. Therefore, intermediate pressure refrigerant can be injected into the compressor 1 through the economizer port 19 using the economizer piping 21, and therefore the intercooler 12
In this case, the liquid refrigerant flowing through the high-pressure liquid pipe 20 from the liquid receiver 6 to the heat source side air heat exchanger 7 can be supercooled. As a result, the outside air temperature decreases and the evaporation temperature of the refrigerant in the heat source side air heat exchanger 7 decreases,
Even if the specific weight of the gas refrigerant decreases, the amount of refrigerant circulation can be increased, so it is possible to prevent the amount of refrigerant circulation from decreasing. This can prevent the hot water operation ability from decreasing.

【0026】また、冷水運転するときは、前記四路切換
弁4を点線位置に切換えて前記圧縮機1から吐出する冷
媒を点線矢印方向に循環させるのであって、前記熱源側
空気熱交換器7において空気と熱交換して凝縮した液冷
媒は、前記中間冷却器12及び前記受液器6を通過し、
前記利用側水熱交換器用膨張機構10で減圧され、前記
利用側水熱交換器5に流入し、該利用側水熱交換器5に
おいて前記冷温水配管16を流れる温水と熱交換し、冷
媒は蒸発してガス冷媒となると共に、この温水を冷却し
て冷水を得るのである。そして、温水を冷却して蒸発し
たガス冷媒は、前記四路切換弁4を経て前記アキュムレ
ータ8に戻るように循環するのである。
Furthermore, when performing cold water operation, the four-way switching valve 4 is switched to the dotted line position to circulate the refrigerant discharged from the compressor 1 in the direction of the dotted line arrow, and the refrigerant is circulated in the direction of the dotted line arrow. The liquid refrigerant condensed by exchanging heat with air passes through the intercooler 12 and the liquid receiver 6,
The refrigerant is depressurized by the expansion mechanism 10 for the user-side water heat exchanger, flows into the user-side water heat exchanger 5, and exchanges heat with the hot water flowing through the cold/hot water pipe 16 in the user-side water heat exchanger 5. It evaporates to become a gas refrigerant and cools this hot water to obtain cold water. Then, the gas refrigerant that has cooled the hot water and evaporated is circulated through the four-way switching valve 4 and back to the accumulator 8.

【0027】このような冷水運転時には、前記三方弁1
3を点線位置に切換えるのであって、この切換えにより
前記エコノマイザ配管側ポートaを固定ポートcに対し
全閉にする一方、前記第1冷却管側ポートbを全開にし
、前記二次側配管22と前記エコノマイザポート19と
を連通させるのである。従って、前記油回収器2から前
記給油ポート31へ流れる油は前記第油冷却器3aにお
いて第1冷却管15を流れる冷媒と熱交換して冷却され
るのであり、前記油を冷却して蒸発した冷媒は、前記三
方弁13から前記エコノマイザポート19へ流れるので
ある。
During such cold water operation, the three-way valve 1
3 to the dotted line position, and by this switching, the economizer piping side port a is fully closed with respect to the fixed port c, while the first cooling pipe side port b is fully opened, and the secondary side piping 22 and It communicates with the economizer port 19. Therefore, the oil flowing from the oil recovery device 2 to the oil supply port 31 is cooled by exchanging heat with the refrigerant flowing through the first cooling pipe 15 in the oil cooler 3a, and the oil is cooled and evaporated. The refrigerant flows from the three-way valve 13 to the economizer port 19.

【0028】尚、以上の実施例では、前記三方弁13を
用い、該三方弁13の前記エコノマイザ配管側ポートa
と前記第1冷却管側ポートbと択一的に前記連通管34
に対して連通するようにしたが、前記二次側配管22及
び前記エコノマイザ配管21に、例えば、電磁弁から成
る開閉弁をそれぞれ介装して、これら開閉弁を択一的に
開閉するようにしてもよい。
In the above embodiment, the three-way valve 13 is used, and the economizer piping side port a of the three-way valve 13 is
and the first cooling pipe side port b and alternatively the communication pipe 34.
However, the secondary side piping 22 and the economizer piping 21 are each provided with an on-off valve consisting of, for example, a solenoid valve, so that these on-off valves are selectively opened and closed. You can.

【0029】また、次に第2発明の実施例を説明する。 前記した実施例では前記三方弁13を、その固定ポート
cを前記した切換側の各ポートa,bの一方に択一的に
開閉するようにしたのに対し、第2発明では、前記三方
弁13の前記エコノマイザ配管側ポートaと前記第1冷
却管側ポートbとの固定ポートcに対する開度比を調整
可能にしたものである。尚、この構成以外は図1に示し
た第1発明の実施例と基本的には同一であって、第1発
明と相違している点について説明する。
Next, an embodiment of the second invention will be explained. In the embodiment described above, the fixed port c of the three-way valve 13 is selectively opened and closed to one of the ports a and b on the switching side, whereas in the second invention, the three-way valve The opening ratio of the economizer piping side port a and the first cooling pipe side port b of No. 13 to the fixed port c can be adjusted. Note that other than this configuration, this embodiment is basically the same as the embodiment of the first invention shown in FIG. 1, and the differences from the first invention will be explained.

【0030】即ち、前記したように、前記三方弁13の
前記第1冷却管側ポートbとエコノマイザ配管側ポート
aとの固定ポートcに対する開度比を調整可能にした上
で、図1に示したように、前記第1油冷却器3aに、冷
水運転時、該第1油冷却器3aにおける油冷却能力を検
出する冷却能力検出器40を設けると共に、主としてマ
イクロコンピュータを内蔵したコントローラ41から成
り、その入力側に該冷却能力検出器40を、また、出力
側に前記三方弁13を接続して構成する開度制御手段を
設け、冷水運転時、前記冷却能力検出器40の検出に基
づいて出力する前記コントローラ41の出力により、前
記第1油冷却器3aにおける油冷却能力の余剰に対応し
て第1冷却管側ポートbの開度を減少し、エコノマイザ
配管側ポートaの開度を増加するように構成するのであ
る。
That is, as described above, after making it possible to adjust the opening ratio of the first cooling pipe side port b and the economizer piping side port a of the three-way valve 13 to the fixed port c, as shown in FIG. As described above, the first oil cooler 3a is provided with a cooling capacity detector 40 for detecting the oil cooling capacity of the first oil cooler 3a during cold water operation, and is mainly composed of a controller 41 having a built-in microcomputer. , an opening control means configured by connecting the cooling capacity detector 40 to the input side and the three-way valve 13 to the output side is provided, and during cold water operation, based on the detection of the cooling capacity detector 40, Based on the output of the controller 41, the opening degree of the first cooling pipe side port b is decreased and the opening degree of the economizer piping side port a is increased in response to the surplus oil cooling capacity in the first oil cooler 3a. It is configured to do so.

【0031】以上のように構成すると、前記した第1発
明の実施例と同様の効果を得ながら、冷水運転時、前記
第1油冷却器3aにおいて油冷却能力に余剰が生じたと
き、前記冷却能力検出器40による油冷却能力の余剰の
検出により、前記コントローラ41が出力することによ
り、前記第1油冷却器3aにおける油冷却能力の余剰の
程度に対応して、前記三方弁13における前記第1冷却
管側ポートbの開度が減少する一方、前記三方弁13に
おける前記エコノマイザ配管側ポートaの開度が増加し
、前記第1冷却管15には前記第1油冷却器3aにおい
て油を冷却するのに必要な量以上の余分な冷媒が流れる
のを防止して、前記中間冷却器12を利用できる。従っ
て、冷水運転時、前記中間冷却器12を利用して液冷媒
を過冷却できるのであるから、冷水運転の能力を向上さ
せることができる。
[0031] With the above configuration, while obtaining the same effect as the embodiment of the first invention described above, when there is a surplus in the oil cooling capacity in the first oil cooler 3a during cold water operation, the cooling Upon detection of surplus oil cooling capacity by the capacity detector 40, the controller 41 outputs an output to increase the amount of water in the three-way valve 13 corresponding to the degree of surplus oil cooling capacity in the first oil cooler 3a. While the opening degree of the first cooling pipe side port b decreases, the opening degree of the economizer piping side port a of the three-way valve 13 increases, and the first cooling pipe 15 is filled with oil in the first oil cooler 3a. The intercooler 12 can be used by preventing excess refrigerant in excess of the amount required for cooling from flowing. Therefore, during cold water operation, the liquid refrigerant can be supercooled using the intercooler 12, so that the ability of cold water operation can be improved.

【0032】[0032]

【発明の効果】以上説明したように、本発明の第1発明
では、圧縮機1と該圧縮機1の吐出側に設ける油回収器
2と四路切換弁4と油冷却器3と利用側水熱交換器5と
受液器6と熱源側空気熱交換7と利用側水熱交換器用膨
張機構10及び熱源側空気熱交換器用膨張機構11とを
備え、冷水運転と温水運転とを可能にした空冷ヒートポ
ンプ式冷凍装置において、前記油冷却器3を第1油冷却
器3aと第2油冷却器3bとに分割して、前記第1油冷
却器3aに前記受液器6の液域と連通する第1冷却管1
5を接続すると共に、前記第2油冷却器3bに冷水運転
時閉じ温水運転時開く開閉弁14,14をもち、前記利
用側水熱交換器5への冷温水配管16,16と連通する
第2冷却管17を接続する一方、前記圧縮機1にエコノ
マイザポート19を設けると共に、高圧液管20にエコ
ノマイザ配管21をもつ中間冷却器12を介装して、前
記エコノマイザ配管21と前記第1冷却管15の前記第
1油冷却器3aに対する二次側配管22とを、前記エコ
ノマイザポート19に、切換機構18を介して択一的に
接続しているから、温水運転時、前記第2冷却管17の
前記開閉弁14,14は開くと共に、前記切換機構18
の切換えにより、前記エコノマイザ配管21と前記エコ
ノマイザポート19とを連通させ、前記油回収器2から
前記油冷却器3へ流れる油を、第2油冷却器3bにおい
て前記第2冷却管17を流れる冷水と熱交換させ、前記
油を冷却し、逆に冷水を加熱することができる。従って
、前記油冷却器3を流れる高温の油の熱を有効に利用し
て、温水を得ることができ、前記利用側水熱交換器5の
みで温水を得る場合に比較して、温水運転の能力を向上
させることができる。
As explained above, in the first aspect of the present invention, the compressor 1, the oil recovery device 2 provided on the discharge side of the compressor 1, the four-way switching valve 4, the oil cooler 3, and the use side Equipped with a water heat exchanger 5, a liquid receiver 6, a heat source side air heat exchanger 7, a usage side water heat exchanger expansion mechanism 10, and a heat source side air heat exchanger expansion mechanism 11, enabling cold water operation and hot water operation. In the air-cooled heat pump type refrigeration system, the oil cooler 3 is divided into a first oil cooler 3a and a second oil cooler 3b, and the liquid area of the liquid receiver 6 and the liquid area of the liquid receiver 6 are connected to the first oil cooler 3a. Communicating first cooling pipe 1
5, and the second oil cooler 3b has on-off valves 14, 14 that close during cold water operation and open during hot water operation, and communicate with cold and hot water pipes 16, 16 to the user side water heat exchanger 5. 2 cooling pipes 17 are connected, while an economizer port 19 is provided in the compressor 1, and an intercooler 12 having an economizer pipe 21 is interposed in the high-pressure liquid pipe 20, so that the economizer pipe 21 and the first cooling pipe are connected to each other. Since the secondary side piping 22 of the pipe 15 to the first oil cooler 3a is selectively connected to the economizer port 19 via the switching mechanism 18, during hot water operation, the second cooling pipe 17, the on-off valves 14, 14 open, and the switching mechanism 18
By switching the economizer piping 21 and the economizer port 19, the oil flowing from the oil recovery device 2 to the oil cooler 3 is changed to the cold water flowing through the second cooling pipe 17 in the second oil cooler 3b. The oil can be cooled and the cold water can be heated by exchanging heat with the oil. Therefore, hot water can be obtained by effectively utilizing the heat of the high-temperature oil flowing through the oil cooler 3, and compared to the case where hot water is obtained only by the user-side water heat exchanger 5, hot water operation is improved. ability can be improved.

【0033】また、温水運転時、前記第2油冷却器3b
において油を冷却するのであるから、前記エコノマイザ
配管21を利用することができ、前記中間冷却器12に
おいて前記受液器6から前記熱源側空気熱交換器7へ前
記高圧液管20を流れる液冷媒の過冷却を行うことがで
き、冷媒循環量を増加させることができる。従って、外
気が低温になって前記熱源側空気熱交換器7における蒸
発温度が低下しても、冷媒循環量が少なくなるのを防止
できるのであって、前記油による冷水の加熱と相俟って
外気温度の低下時でも、温水運転の能力が低下するのを
防止することができる。
[0033] Also, during hot water operation, the second oil cooler 3b
Since the oil is cooled in the intermediate cooler 12, the economizer piping 21 can be used, and the liquid refrigerant flowing through the high-pressure liquid pipe 20 from the liquid receiver 6 to the heat source side air heat exchanger 7 in the intercooler 12 It is possible to perform supercooling and increase the amount of refrigerant circulation. Therefore, even if the outside air becomes low temperature and the evaporation temperature in the heat source side air heat exchanger 7 decreases, the amount of refrigerant circulation can be prevented from decreasing, and together with the heating of the cold water by the oil, Even when the outside air temperature decreases, it is possible to prevent the hot water operation ability from decreasing.

【0034】第2発明では、第1発明における前記切換
機構18に代えて、開度比を調整可能とした三方弁13
を用い、前記エコノマイザ配管21と前記第1冷却管1
5の前記第1油冷却器3aに対する二次側配管22とを
、前記三方弁13を介して前記エコノマイザポート19
に接続し、かつ、冷水運転時、前記第1油冷却器3aで
の油冷却能力を検出し、能力の余剰に対応して第1冷却
管側ポートbの開度を減少し、エコノマイザ配管側ポー
トaの開度を増加する開度制御手段を設けたから、前記
した第1発明と同様の効果を得ながら、冷水運転時、前
記第1油冷却器3aにおいて油冷却能力に余剰が生じた
とき、前記開度制御手段により前記第1油冷却器3aに
おける油冷却能力の余剰の程度に対応して、前記三方弁
13における前記第1冷却管側ポートbの開度が減少す
る一方、前記三方弁13における前記エコノマイザ配管
側ポートaの開度が増加し、前記第1冷却管15には前
記第1油冷却器3aにおいて油を冷却するのに必要な量
以上の余分な冷媒が流れるのを防止して、前記中間冷却
器12を利用することができるのである。従って、冷水
運転時、前記中間冷却器12を利用して液冷媒を過冷却
できるから冷水運転の能力を向上させることができる。
In the second invention, in place of the switching mechanism 18 in the first invention, a three-way valve 13 whose opening ratio can be adjusted is provided.
using the economizer pipe 21 and the first cooling pipe 1.
The secondary side piping 22 for the first oil cooler 3a of No. 5 is connected to the economizer port 19 via the three-way valve 13.
and, during cold water operation, detects the oil cooling capacity of the first oil cooler 3a, reduces the opening degree of the first cooling pipe side port b in response to excess capacity, and Since the opening degree control means for increasing the opening degree of port a is provided, while obtaining the same effect as the above-mentioned first invention, when a surplus occurs in the oil cooling capacity in the first oil cooler 3a during cold water operation. , the opening degree control means reduces the opening degree of the first cooling pipe side port b of the three-way valve 13 in accordance with the degree of excess oil cooling capacity in the first oil cooler 3a; The degree of opening of the economizer piping side port a in the valve 13 is increased, and the excess refrigerant in excess of the amount required to cool the oil in the first oil cooler 3a flows into the first cooling pipe 15. Therefore, the intercooler 12 can be used. Therefore, during cold water operation, the intercooler 12 can be used to supercool the liquid refrigerant, thereby improving the ability of cold water operation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の空冷ヒートポンプ式冷凍装置の配管系
統図である。
FIG. 1 is a piping system diagram of an air-cooled heat pump type refrigeration apparatus of the present invention.

【図2】従来例を示す配管系統図である。FIG. 2 is a piping system diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1    圧縮機 2    油回収器 3    油冷却器 3a  第1油冷却器 3b  第2油冷却器 4    四路切換弁 5    利用側水熱交換器 6    受液器 7    熱源側空気熱交換器 10    利用側水熱交換器用膨張機構11    
熱源側空気熱交換器用膨張機構12    中間冷却器 13    三方弁 14    開閉弁 15    第1冷却管 16    冷温水配管 17    第2冷却管 19    エコノマイザポート 20    高圧液管 21    エコノマイザ配管 22    二次側配管 a  …エコノマイザ配管側ポート b  …第1冷却管側ポート
1 Compressor 2 Oil recovery device 3 Oil cooler 3a First oil cooler 3b Second oil cooler 4 Four-way switching valve 5 User side water heat exchanger 6 Liquid receiver 7 Heat source side air heat exchanger 10 User side water Expansion mechanism 11 for heat exchanger
Heat source side air heat exchanger expansion mechanism 12 Intercooler 13 Three-way valve 14 Open/close valve 15 First cooling pipe 16 Cold/hot water pipe 17 Second cooling pipe 19 Economizer port 20 High pressure liquid pipe 21 Economizer pipe 22 Secondary side pipe a...Economizer Piping side port b...First cooling pipe side port

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  圧縮機1と該圧縮機1の吐出側に設け
る油回収器2と四路切換弁4と油冷却器3と利用側水熱
交換器5と受液器6と熱源側空気熱交換7と利用側水熱
交換器用膨張機構10及び熱源側空気熱交換器用膨張機
構11とを備え、冷水運転と温水運転とを可能にした空
冷ヒートポンプ式冷凍装置において、前記油冷却器3を
第1油冷却器3aと第2油冷却器3bとに分割して、前
記第1油冷却器3aに前記受液器6の液域と連通する第
1冷却管15を接続すると共に、前記第2油冷却器3b
に冷水運転時閉じ温水運転時開く開閉弁14,14をも
ち、前記利用側水熱交換器5への冷温水配管16,16
と連通する第2冷却管17を接続する一方、前記圧縮機
1にエコノマイザポート19を設けると共に、高圧液管
20にエコノマイザ配管21をもつ中間冷却器12を介
装して、前記エコノマイザ配管21と前記第1冷却管1
5の前記第1油冷却器3aに対する二次側配管22とを
、前記エコノマイザポート19に、切換機構18を介し
て択一的に接続していることを特徴とする空冷ヒートポ
ンプ式冷凍装置。
Claim 1: A compressor 1, an oil recovery device 2 provided on the discharge side of the compressor 1, a four-way switching valve 4, an oil cooler 3, a water heat exchanger 5 on the user side, a liquid receiver 6, and air on the heat source side. In an air-cooled heat pump type refrigeration system that includes a heat exchanger 7, an expansion mechanism 10 for a water heat exchanger on the user side, and an expansion mechanism 11 for an air heat exchanger on the heat source side, and enables cold water operation and hot water operation, the oil cooler 3 is It is divided into a first oil cooler 3a and a second oil cooler 3b, and a first cooling pipe 15 communicating with the liquid area of the liquid receiver 6 is connected to the first oil cooler 3a. 2 oil cooler 3b
It has on-off valves 14, 14 that close during cold water operation and open during hot water operation, and connects cold and hot water pipes 16, 16 to the water heat exchanger 5 on the user side.
At the same time, an economizer port 19 is provided in the compressor 1, and an intercooler 12 having an economizer pipe 21 is interposed in the high pressure liquid pipe 20, so that the economizer pipe 21 and the economizer pipe 21 are connected to each other. Said first cooling pipe 1
An air-cooled heat pump type refrigeration system characterized in that a secondary side pipe 22 for the first oil cooler 3a of No. 5 is selectively connected to the economizer port 19 via a switching mechanism 18.
【請求項2】  圧縮機1と該圧縮機1の吐出側に設け
る油回収器2と四路切換弁4と油冷却器3と利用側水熱
交換器5と受液器6と熱源側空気熱交換7と利用側水熱
交換器用膨張機構10及び熱源側空気熱交換器用膨張機
構11とを備え、冷水運転と温水運転とを可能にした空
冷ヒートポンプ式冷凍装置において、前記油冷却器3を
第1油冷却器3aと第2油冷却器3bとに分割して、前
記第1油冷却器3aに前記受液器6の液域と連通する第
1冷却管15を接続すると共に、前記第2油冷却器3b
に冷水運転時閉じ温水運転時開く開閉弁14,14をも
ち、前記利用側水熱交換器5への冷温水配管16,16
と連通する第2冷却管17を接続する一方、前記圧縮機
1にエコノマイザポート19を設けると共に、高圧液管
20にエコノマイザ配管21をもつ中間冷却器12を介
装して、前記エコノマイザ配管21と前記第1冷却管1
5の前記第1油冷却器3aに対する二次側配管22とを
、開度比を調整可能とした三方弁13を介して前記エコ
ノマイザポート19に接続し、かつ、冷水運転時、前記
第1油冷却器3aでの油冷却能力を検出し、能力の余剰
に対応して第1冷却管側ポートbの開度を減少し、エコ
ノマイザ配管側ポートaの開度を増加する開度制御手段
を設けていることを特徴とする空冷ヒートポンプ式冷凍
装置。
2. A compressor 1, an oil recovery device 2 provided on the discharge side of the compressor 1, a four-way switching valve 4, an oil cooler 3, a water heat exchanger 5 on the user side, a liquid receiver 6, and air on the heat source side. In an air-cooled heat pump type refrigeration system that includes a heat exchanger 7, an expansion mechanism 10 for a water heat exchanger on the user side, and an expansion mechanism 11 for an air heat exchanger on the heat source side, and enables cold water operation and hot water operation, the oil cooler 3 is It is divided into a first oil cooler 3a and a second oil cooler 3b, and a first cooling pipe 15 communicating with the liquid area of the liquid receiver 6 is connected to the first oil cooler 3a. 2 oil cooler 3b
It has on-off valves 14, 14 that close during cold water operation and open during hot water operation, and connects cold and hot water pipes 16, 16 to the water heat exchanger 5 on the user side.
At the same time, an economizer port 19 is provided in the compressor 1, and an intercooler 12 having an economizer pipe 21 is interposed in the high-pressure liquid pipe 20, so that the economizer pipe 21 and Said first cooling pipe 1
The secondary side piping 22 for the first oil cooler 3a of No. 5 is connected to the economizer port 19 via a three-way valve 13 whose opening ratio can be adjusted, and during cold water operation, the first oil An opening control means is provided for detecting the oil cooling capacity of the cooler 3a, and reducing the opening degree of the first cooling pipe side port b and increasing the opening degree of the economizer piping side port a in response to the excess capacity. An air-cooled heat pump type refrigeration system characterized by:
JP13476091A 1991-06-06 1991-06-06 Air-cooled heat pump refrigeration system Expired - Fee Related JP2643654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13476091A JP2643654B2 (en) 1991-06-06 1991-06-06 Air-cooled heat pump refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13476091A JP2643654B2 (en) 1991-06-06 1991-06-06 Air-cooled heat pump refrigeration system

Publications (2)

Publication Number Publication Date
JPH04359756A true JPH04359756A (en) 1992-12-14
JP2643654B2 JP2643654B2 (en) 1997-08-20

Family

ID=15135922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13476091A Expired - Fee Related JP2643654B2 (en) 1991-06-06 1991-06-06 Air-cooled heat pump refrigeration system

Country Status (1)

Country Link
JP (1) JP2643654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206815A (en) * 2001-01-09 2002-07-26 Daikin Ind Ltd Freezer device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206815A (en) * 2001-01-09 2002-07-26 Daikin Ind Ltd Freezer device

Also Published As

Publication number Publication date
JP2643654B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JP2662647B2 (en) Refrigeration apparatus and operation method thereof
US20090113911A1 (en) Hot Water Supply Device
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
JPS58115273A (en) Heat-pump type water heater circuit
JP2011220616A (en) Refrigeration apparatus
CN107367125B (en) Refrigerator and refrigerator control method
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
CN111251805A (en) Vehicle, thermal management system of vehicle and control method of thermal management system
CN111251809B (en) Thermal management system of vehicle and vehicle
US11754320B2 (en) Refrigeration system with multiple heat absorbing heat exchangers
JP2017026171A (en) Air conditioner
JP3719592B2 (en) Combined air conditioning unit
EP0216629B1 (en) Air-cooled absorption type water cooling/heating apparatus
JPH10220893A (en) Heat pump device
CN111251812A (en) Thermal management system of vehicle and vehicle
JPH04359756A (en) Air cooled heat pump type freezer
KR100755008B1 (en) Cooling apparatus equipped with branch pipe for early collection of vaporized refrigerant
CN111251810B (en) Thermal management system of vehicle and vehicle
CN106949670B (en) Refrigerating system and control method
JPH07151413A (en) Separate type air conditioner
JPH05133635A (en) Cold accumulation type air conditioning apparatus
CN220119600U (en) Plate pipe evaporative cooling type quadruple supply unit device and quadruple supply equipment
JP2013084073A (en) Automatic vending machine
JPH0820139B2 (en) Heat storage type heat pump device
JPS592832B2 (en) Heat recovery air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees