[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04359108A - Inclination measuring mechanism - Google Patents

Inclination measuring mechanism

Info

Publication number
JPH04359108A
JPH04359108A JP16107291A JP16107291A JPH04359108A JP H04359108 A JPH04359108 A JP H04359108A JP 16107291 A JP16107291 A JP 16107291A JP 16107291 A JP16107291 A JP 16107291A JP H04359108 A JPH04359108 A JP H04359108A
Authority
JP
Japan
Prior art keywords
probe
sample
inclination angle
electric current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16107291A
Other languages
Japanese (ja)
Other versions
JP2939006B2 (en
Inventor
Takayuki Yagi
隆行 八木
Shunichi Shito
俊一 紫藤
Kunihiro Sakai
酒井 邦裕
Toshihiko Miyazaki
俊彦 宮▲崎▼
Takahiro Oguchi
小口 高広
Toshimitsu Kawase
俊光 川瀬
Hideyuki Kawagishi
秀行 河岸
Harunori Kawada
河田 春紀
Keisuke Yamamoto
敬介 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16107291A priority Critical patent/JP2939006B2/en
Publication of JPH04359108A publication Critical patent/JPH04359108A/en
Application granted granted Critical
Publication of JP2939006B2 publication Critical patent/JP2939006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To detect the inclination angle between a probe surface and a sample surface. CONSTITUTION:When an inclination angle is detected, a probe 3 is made to approach a sample 2 by a course driving part 7 for probe, and a certain voltage is applied between the sample 2 and the probe 3 by a voltage controller 4, and a tunnel electric current flows. An electric current detecting circuit 5 detects the tunnel electric current through the vibration in the vertical direction to the probe 3 by a fine driving part 6 for probe. When the probe surface and the sample surface are not in parallel, the tunnel electric current varies during the vibration of the probe 3, therefore the distance between the sample 2 and the probe 3 is calculated by a distance detecting circuit 9, and further the inclination angle is calculated by an inclination angle calculating circuit 11, and the inclination angle is corrected by a driving part control circuit 10 and the course driving part 7 for probe. After the correction, the image information of the sample 2 is read out by using the tunnel electric current.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば試料と探針間を
流れるトンネル電流等を利用する装置における傾斜測定
機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tilt measuring mechanism in an apparatus that utilizes, for example, a tunnel current flowing between a sample and a probe.

【0002】0002

【従来の技術】近年、物質表面及び表面近傍の電子構造
を直接観察できる走査型トンネル顕微鏡(以下STMと
云う)が開発され[G.Binnig et al.,
Helvetica Physica Acta,55
,726(1982)]、単結晶、非結晶を問わず高分
解能で実空間像の観測ができるようになっている。この
STMは試料物質に電流による損傷を殆ど与えずに低電
力で測定できる利点をも有し、更には超高真空中のみな
らず大気中、溶液中でも動作し、種々の材料に対して適
用できるため広汎な応用が期待されている。
BACKGROUND OF THE INVENTION In recent years, a scanning tunneling microscope (hereinafter referred to as STM) that can directly observe the electronic structure on and near the surface of a material has been developed [G. Binnig et al. ,
Helvetica Physica Acta, 55
, 726 (1982)], it has become possible to observe real space images with high resolution regardless of whether they are single crystal or amorphous. This STM has the advantage of being able to perform measurements with low power without causing almost any damage to the sample material due to the current.Furthermore, it can operate not only in ultra-high vacuum, but also in the atmosphere and in solutions, and can be applied to a variety of materials. Therefore, wide-ranging applications are expected.

【0003】STMは金属の探針と導電性試料との間に
電圧を印加して約1nm程度の距離まで近付けると、ト
ンネル電流が発生する現象を利用している。最近では、
例えば特開昭63−161552号公報、同16155
3号公報に開示されるように、このSTMの原理を応用
し超高密度記録・再生を主とした情報処理装置を構成す
る提案が数多くなされている。即ち、STMの探針に相
当するプローブ電極により試料に相当する記録媒体上に
物理的変形を与え、又は媒体表面の電子状態を変化させ
て電気抵抗の低い部分を生成して情報を記録し、両者間
を流れるトンネル電流により記録ビットの情報を再生す
る方法を用いれば、分子・原子オーダの高密度で大規模
情報を記録再生できるとされている。
[0003] STM utilizes the phenomenon that a tunnel current is generated when a voltage is applied between a metal probe and a conductive sample and the probe is brought close to a distance of about 1 nm. recently,
For example, JP-A-63-161552, JP-A-16155
As disclosed in Publication No. 3, many proposals have been made to apply this STM principle to configure information processing apparatuses mainly for ultra-high density recording and reproduction. That is, information is recorded by physically deforming the recording medium, which corresponds to the sample, using a probe electrode, which corresponds to the STM probe, or by changing the electronic state of the medium surface to generate a low electrical resistance area. It is said that by using a method of reproducing information from recorded bits using a tunnel current flowing between the two, it is possible to record and reproduce large-scale information at a high density on the order of molecules or atoms.

【0004】0004

【発明が解決しようとする課題】上述の情報処理装置で
は、探針を試料面に近接して掃引し、トンネル電流の変
化から像情報を得るため、探針の移動範囲内で探針が試
料面と垂直に、つまり探針面が試料面と平行に保持され
る必要があり、特に探針の掃引が広領域に及ぶ場合や、
情報処理速度を向上するために並設した多数の探針を同
時使用する場合には、その平行保持がより厳密に要求さ
れる。
[Problems to be Solved by the Invention] In the above-mentioned information processing device, the probe is swept close to the sample surface and image information is obtained from changes in tunneling current. The probe surface must be held perpendicular to the sample surface, that is, the probe surface must be held parallel to the sample surface, especially when the probe sweeps over a wide area,
When a large number of probes arranged in parallel are used simultaneously to improve information processing speed, their parallelism is more strictly required.

【0005】本発明の目的は、探針面と試料面との傾斜
角度を検知し、それを平行にするように補正して探針を
試料の接近させることを可能にする傾斜測定機構を提供
することにある。
An object of the present invention is to provide an inclination measurement mechanism that detects the inclination angle between the probe surface and the sample surface, corrects the inclination angle to make them parallel, and allows the probe to approach the sample. It's about doing.

【0006】[0006]

【課題を解決するための手段】上述の目的を達成するた
めの本発明に係る傾斜測定機構は、試料から情報を検出
するプローブと、該試料面内で前記プローブを1個所で
振動させる探針振動手段と、前記探針振動手段によって
前記プローブを振動しながら前記プローブで検出した信
号から前記プローブと試料面との傾斜角度を算出する傾
斜角度算出回路とを有することを特徴とするものである
[Means for Solving the Problems] A tilt measurement mechanism according to the present invention for achieving the above object includes a probe that detects information from a sample, and a probe that vibrates the probe at one location within the surface of the sample. The apparatus is characterized by comprising: a vibration means; and an inclination angle calculation circuit that calculates an inclination angle between the probe and a sample surface from a signal detected by the probe while vibrating the probe by the probe vibration means. .

【0007】[0007]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は本発明による探針接近機構をSTMに適用
した第1の実施例の構成図を示し、固定基台1上に載置
された試料2の上方には、探針3が試料2に対向して設
けられており、試料2及び探針3には電圧制御装置4、
電流検出回路5が接続され、探針3には後述する探針微
駆動部6、ステッピングモータにより構成されて広範囲
動作を行う探針粗駆動部7が接続されている。一方、装
置全体の制御のためにシーケンス制御回路8が設けられ
、電流検出回路5の出力はシーケンス制御回路8に接続
され、シーケンス制御回路8の出力は電圧制御装置4、
距離検出回路9、駆動部制御回路10に接続され、距離
検出回路9の出力は駆動部制御回路10、傾斜角度算出
回路11に接続され、駆動部制御回路10の出力は探針
微駆動部6、探針駆動部7、傾斜角度算出回路11に接
続され、更に傾斜角度算出回路11の出力は制御回路8
に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail based on the illustrated embodiments. FIG. 1 shows a configuration diagram of a first embodiment in which the probe approach mechanism according to the present invention is applied to STM.A probe 3 is placed above a sample 2 placed on a fixed base 1. The sample 2 and the probe 3 are provided with a voltage control device 4,
A current detection circuit 5 is connected, and the probe 3 is connected to a probe fine drive unit 6, which will be described later, and a probe coarse drive unit 7, which is constituted by a stepping motor and performs a wide range operation. On the other hand, a sequence control circuit 8 is provided to control the entire device, the output of the current detection circuit 5 is connected to the sequence control circuit 8, and the output of the sequence control circuit 8 is connected to the voltage control device 4,
The output of the distance detection circuit 9 is connected to the drive control circuit 10 and the tilt angle calculation circuit 11, and the output of the drive control circuit 10 is connected to the probe fine drive unit 6. , the probe drive unit 7, and the tilt angle calculation circuit 11, and the output of the tilt angle calculation circuit 11 is connected to the control circuit 8.
It is connected to the.

【0008】図2は探針3及び探針微駆動部6の拡大図
を示し、探針微駆動部6は円筒型圧電素子6aに電極6
x、6y、6zを取り付けた構成であって、電極6zに
電圧を印加して探針3のz軸方向の位置制御を行い、電
極6x及び電極6yに電圧を印加して探針3のx軸及び
y軸方向の位置制御を行うものであり、探針3はz方向
に0.2μm、x、y軸方向に0.1μmの範囲で移動
可能とされている(G.Binnig et al.,
Rev.Sci.Instrum.,57(8),Au
gust,1986,PP1688 )。
FIG. 2 shows an enlarged view of the probe 3 and the probe fine drive section 6. The probe fine drive section 6 has an electrode 6 on a cylindrical piezoelectric element 6a.
x, 6y, and 6z, a voltage is applied to the electrode 6z to control the position of the probe 3 in the z-axis direction, and a voltage is applied to the electrode 6x and the electrode 6y to control the x of the probe 3. It performs position control in the axial and y-axis directions, and the probe 3 is movable within a range of 0.2 μm in the z direction and 0.1 μm in the x and y axes directions (G. Binnig et al. ,
Rev. Sci. Instrument. ,57(8),Au
gust, 1986, PP1688).

【0009】電圧制御装置4によって試料2、探針3間
に一定電圧を印加しながら、探針微駆動部6によって探
針3を試料2に接近してゆくと、両者間にトンネル電流
が流れ始める。このトンネル電流の大きさは両者間の距
離に依存する。例えば、図3は試料2としてHOPG(
グラファイト)を用い、探針3に1mmφの白金ワイヤ
を切断したものを使用した場合に、試料2を基準とした
探針3のz軸方向の相対位置と、トンネル電流値との関
係を示すグラフ図であり、探針3、試料2間の距離が5
オングストローム変化すると、トンネル電流は約4桁変
化することが読み取れる。従って、使用する試料2、探
針3に対して、この情報を予め距離検出回路9に記憶し
ておけば、電流検出回路5で検出したトンネル電流に基
づいて両者間の距離を算出することができる。
When the probe 3 is brought closer to the sample 2 by the probe fine drive section 6 while applying a constant voltage between the sample 2 and the probe 3 by the voltage controller 4, a tunnel current flows between the two. start. The magnitude of this tunnel current depends on the distance between the two. For example, in Figure 3, HOPG (
Graph showing the relationship between the relative position of the probe 3 in the z-axis direction with respect to the sample 2 and the tunneling current value when using a cut platinum wire with a diameter of 1 mm as the probe 3. The distance between the probe 3 and the sample 2 is 5.
It can be seen that when changing by angstrom, the tunnel current changes by about 4 orders of magnitude. Therefore, if this information is stored in advance in the distance detection circuit 9 for the sample 2 and probe 3 to be used, the distance between them can be calculated based on the tunnel current detected by the current detection circuit 5. can.

【0010】傾斜角度測定時には、探針微駆動部6の出
力を電極6yに加えて、図4に示すように探針3をy軸
方向に一定振幅で振動してトンネル電流を測定する。探
針3のy軸が試料2の面と平行である場合には、探針3
の振動中も探針3と試料2間の距離は一定であってトン
ネル電流値は変化しないが、非平行の場合にはトンネル
電流値が変化することになる。
When measuring the inclination angle, the output of the probe fine drive unit 6 is applied to the electrode 6y, and the probe 3 is vibrated with a constant amplitude in the y-axis direction as shown in FIG. 4 to measure the tunnel current. When the y-axis of the probe 3 is parallel to the surface of the sample 2, the probe 3
Even during vibration, the distance between the probe 3 and the sample 2 is constant and the tunneling current value does not change, but if they are non-parallel, the tunneling current value will change.

【0011】図5は図3のグラフ図の測定時と同一の試
料2、探針3を使用し、探針3をy軸方向で基準位置か
ら±0.05μm振動させてトンネル電流を測定した際
の測定結果である。この図5から探針3のy軸方向の0
.10μmの移動によってトンネル電流は4桁程度変化
しており、このトンネル電流変化量は図3によって探針
3のz軸方向の5オングストロームの位置変化に相当す
ることが読み取れる。
[0011] Figure 5 shows the tunnel current measured by using the same sample 2 and probe 3 as in the measurement of the graph in Figure 3, and by vibrating the probe 3 in the y-axis direction by ±0.05 μm from the reference position. These are the actual measurement results. From this figure, 0 in the y-axis direction of the probe 3
.. The tunnel current changes by about four orders of magnitude with a movement of 10 μm, and it can be seen from FIG. 3 that the amount of change in tunnel current corresponds to a change in the position of the probe 3 in the z-axis direction of 5 angstroms.

【0012】従って、図6に示すようにこの場合の試料
2の面と探針3のy軸との傾斜角度θは、次式で算出さ
れる。   θ=Tan−1 (5[オングストローム]/0.
1[μm])    =Tan−1 (1/200)=
0.29°
Therefore, as shown in FIG. 6, the inclination angle θ between the surface of the sample 2 and the y-axis of the probe 3 in this case is calculated by the following equation. θ=Tan-1 (5 [angstroms]/0.
1 [μm]) = Tan-1 (1/200) =
0.29°

【0013】実際の装置内での処理は制御回
路8により制御されており、駆動部制御回路10によっ
て、先ず探針3を試料2に接近させ、探針微駆動部6で
探針3をy軸方向に振動しながら、電圧制御装置4によ
り試料2、探針3間に一定電圧を印加し、両者間にトン
ネル電流を流す。このトンネル電流を電流検出回路5で
検出し、距離検出回路9で両者間距離を検出し、傾斜角
度算出回路11により傾き角度を算出する。この傾斜角
度は制御回路8に入力され、制御回路8を介して駆動部
制御回路10を駆動して、探針微駆動部6、探針粗駆動
部7によって探針3の傾斜角度補正を行う。補正後に試
料2の像情報を読み取る方法は従来例と同様である。
The actual processing within the apparatus is controlled by a control circuit 8. First, a drive unit control circuit 10 causes the probe 3 to approach the sample 2, and a probe fine drive unit 6 moves the probe 3 to y. While vibrating in the axial direction, a constant voltage is applied between the sample 2 and the probe 3 by the voltage control device 4, causing a tunnel current to flow between them. This tunnel current is detected by the current detection circuit 5, the distance between the two is detected by the distance detection circuit 9, and the inclination angle is calculated by the inclination angle calculation circuit 11. This inclination angle is input to the control circuit 8, which drives the drive unit control circuit 10, and the probe fine drive unit 6 and coarse probe drive unit 7 correct the inclination angle of the probe 3. . The method of reading the image information of the sample 2 after correction is the same as in the conventional example.

【0014】この傾斜角度補正を行うことにより、試料
2と探針3との平行を調整した後に試料2上を広範囲に
走査したところ、1mm角の全ての領域でトンネル電流
測定を行うことができた。無調整の場合40μm角であ
った。上述の説明においては、探針3をy軸方向に振動
してトンネル電流測定を行ったが、x軸方向でも支障な
く、またxy平面上で回転円運動を行ってもよい。
By performing this inclination angle correction, when the sample 2 was scanned over a wide area after adjusting the parallelism between the sample 2 and the probe 3, it was possible to measure the tunnel current in the entire 1 mm square area. Ta. In the case of no adjustment, it was 40 μm square. In the above description, the tunneling current was measured by vibrating the probe 3 in the y-axis direction, but the probe 3 may also be used in the x-axis direction without any problem, or may be rotated in a circular motion on the xy plane.

【0015】図7は第2の実施例によるカンチレバー型
探針12を示している。図8の断面図を示すように、カ
ンチレバー12Aは、上側から2分割電極12a、12
b、圧電体12c、中間電極12d、圧電体12e、2
分割電極12f、12gを積層した圧電体バイモルフに
よって構成されている。カンチレバー12Aはシリコン
基板12Bの異方性エッチングにより除去した一部分に
固定されて片持ち支持され、カンチレバー12Aの上端
に探針3が装着されている。つまり、シリコン基板12
B上には、探針3、2分割電極12a、12b、12f
、12g、中間電極12dにそれぞれ接続された引出し
電極12h〜12nが形成されている。このカンチレバ
ー型探針12は図1の装置に組込まれて使用され、引出
し電極12h〜12nは駆動部制御回路10に接続され
ている。
FIG. 7 shows a cantilever probe 12 according to a second embodiment. As shown in the cross-sectional view of FIG. 8, the cantilever 12A has two divided electrodes 12a, 12 from the top.
b, piezoelectric body 12c, intermediate electrode 12d, piezoelectric body 12e, 2
It is constituted by a piezoelectric bimorph in which divided electrodes 12f and 12g are laminated. The cantilever 12A is fixed to a portion of the silicon substrate 12B removed by anisotropic etching and is supported in a cantilever manner, and the probe 3 is attached to the upper end of the cantilever 12A. In other words, the silicon substrate 12
On B, there are the probe 3 and the two-part electrodes 12a, 12b, 12f.
, 12g, and lead electrodes 12h to 12n connected to the intermediate electrode 12d are formed. This cantilever type probe 12 is used by being incorporated into the apparatus shown in FIG.

【0016】探針3のxz軸方向の移動は、引出し電極
12i〜12mの印加電圧を制御することにより行われ
る。例えば、圧電体12c、12eの右領域を収縮、左
領域を伸長して、図9に示すように探針3をx軸方向に
移動する。或いは、図示は省略しているが、例えば圧電
体12cを収縮し、圧電体12eを伸長して、探針3を
z軸方向移動することが可能とされている。傾斜角度検
出時には、圧電体12c、12eの左右領域を交互に収
縮、伸長して探針3をx軸方向で振動させ、引出し電極
12hを用いてトンネル電流を測定する。なお、カンチ
レバー12Aの積層構造は、例えばT.R.Albre
cht,Proseedingus of 4th I
nternational Conference o
n STM/STS,’89,S10−2に示される方
法を用いて作成することができる。
Movement of the probe 3 in the xz-axis directions is performed by controlling the voltages applied to the extraction electrodes 12i to 12m. For example, the right regions of the piezoelectric bodies 12c and 12e are contracted and the left regions are expanded, and the probe 3 is moved in the x-axis direction as shown in FIG. Alternatively, although not shown, it is possible to move the probe 3 in the z-axis direction by, for example, contracting the piezoelectric body 12c and expanding the piezoelectric body 12e. When detecting the inclination angle, the left and right regions of the piezoelectric bodies 12c and 12e are alternately contracted and expanded to vibrate the probe 3 in the x-axis direction, and the tunnel current is measured using the extraction electrode 12h. The laminated structure of the cantilever 12A is, for example, T. R. Albre
cht, Proseedingus of 4th I
international conference o
n STM/STS, '89, S10-2.

【0017】圧電体に、0.3μmの厚さのZnO電極
に0.1μmのAuを使用して作成した幅150μm、
長さ300μmのカンチレバー12Aでは、印加電圧±
5Vでx軸方向変位量±130オングストロームであり
、260オングストローム幅の振動が可能であることが
実験によって確認されている。また、試料2にHOPG
を、探針3にAgペーストを使用した実験では、トンネ
ル電流値の2桁程度の変化量が測定され、傾斜角度θ=
0.4°が検出された。
[0017] The piezoelectric material has a width of 150 μm and is made using a 0.3 μm thick ZnO electrode and 0.1 μm Au.
For a cantilever 12A with a length of 300 μm, the applied voltage ±
It has been confirmed through experiments that at 5V, the displacement in the x-axis direction is ±130 angstroms, and vibration with a width of 260 angstroms is possible. In addition, HOPG was added to sample 2.
In an experiment using Ag paste for the probe 3, a change of about two orders of magnitude in the tunneling current value was measured, and the inclination angle θ=
0.4° was detected.

【0018】図10は本発明を情報処理装置に適用した
第3の実施例の構成図であり、図1と同一符号は同一部
材を示している。この実施例においては、図11に示す
ように、第2の実施例で説明した複数個のカンチレバー
型探針12を基台13上に片持ちによって並設した記録
・再生ヘッド14を使用している。試料として用いる記
録媒体15は、電圧を印加するために下面に下地電極1
6が取り付けられ、傾き補正機構17に固設された記録
媒体ホルダ18によって把持されており、この記録媒体
15に探針3を下向きに対向して、記録・再生ヘッド1
4が例えばステッピングモータ、差動マイクロメータ、
ボイスコイル、インチフォーム等の機構で構成された粗
動駆動部19に固設されている。
FIG. 10 is a block diagram of a third embodiment in which the present invention is applied to an information processing apparatus, and the same reference numerals as in FIG. 1 indicate the same members. In this embodiment, as shown in FIG. 11, a recording/reproducing head 14 is used in which a plurality of cantilever probes 12 described in the second embodiment are arranged side by side on a base 13 in a cantilevered manner. There is. A recording medium 15 used as a sample has a base electrode 1 on the bottom surface for applying a voltage.
6 is attached and held by a recording medium holder 18 fixed to the tilt correction mechanism 17.
4 is, for example, a stepping motor, a differential micrometer,
It is fixedly installed in a coarse movement drive section 19 composed of mechanisms such as a voice coil and an inch form.

【0019】図10には1個の探針3のみ図示している
が、個々の探針3と記録媒体15には電圧制御装置4、
電流検出回路5がそれぞれ接続され、電圧制御装置4は
データ変調回路20を介して又は介さずにCPU21と
接続され、電流検出回路5は距離検出回路9に接続され
、データ復調回路22を介してCPU21に接続されて
いる。また、距離検出回路9は第1の実施例と同様に、
傾斜角度算出回路11を介して又は介さずにCPU21
と接続され、更に傾斜角度算出回路11は傾斜角度補正
回路23を介して傾き補正機構17に接続され、駆動部
制御回路10はCPU21、記録・再生ヘッド14の複
数のカンチレバー型探針12からの引出し電極、粗動駆
動部19に接続されている。
Although only one probe 3 is shown in FIG. 10, each probe 3 and recording medium 15 are equipped with a voltage control device 4,
The current detection circuits 5 are connected to each other, the voltage control device 4 is connected to the CPU 21 with or without the data modulation circuit 20, and the current detection circuit 5 is connected to the distance detection circuit 9, and the voltage control device 4 is connected to the CPU 21 via the data demodulation circuit 22. It is connected to the CPU 21. Further, the distance detection circuit 9 is similar to the first embodiment,
CPU 21 with or without inclination angle calculation circuit 11
Further, the tilt angle calculation circuit 11 is connected to the tilt correction mechanism 17 via the tilt angle correction circuit 23, and the drive unit control circuit 10 is connected to the CPU 21 and the plurality of cantilever probes 12 of the recording/reproducing head 14. The extraction electrode is connected to the coarse movement drive section 19.

【0020】傾斜角度検出方法は第2の実施例と全く同
様であり、粗動駆動部19によって探針3を記録媒体1
5に概略近接した後に、両者間に一定電圧を印加し、探
針3を例えばx軸方向に振動しながらトンネル電流を電
流検出回路5で検流し、距離検出回路9、傾斜角度算出
回路11によって傾斜角度を算出する。この傾斜角度は
傾斜角度補正回路23に入力され、傾き補正機構17が
移動されて補正が行われる。傾き補正機構17には、例
えば図2に示した円筒型圧電素子又は記録媒体ホルダ1
8の四隅に取り付けた積層型圧電体素子が適当であり、
傾斜角度検出は最低1個の探針3に対して行えばよく、
全ての探針3に対して行う必要はない。また、データ記
録、再生中に複数回の検出を実施すれば、外部振動、試
料2の熱膨張等によって傾斜角度が時間変動する場合に
も対処できる。
The method of detecting the inclination angle is exactly the same as that in the second embodiment, and the coarse movement drive unit 19 moves the probe 3 to the recording medium 1.
5, a constant voltage is applied between them, the tunnel current is galvanized by the current detection circuit 5 while the probe 3 is vibrated in the x-axis direction, and the tunnel current is detected by the distance detection circuit 9 and the inclination angle calculation circuit 11. Calculate the tilt angle. This tilt angle is input to the tilt angle correction circuit 23, and the tilt correction mechanism 17 is moved to perform correction. The tilt correction mechanism 17 includes, for example, the cylindrical piezoelectric element or the recording medium holder 1 shown in FIG.
Laminated piezoelectric elements attached to the four corners of 8 are suitable;
Inclination angle detection only needs to be performed for at least one probe 3.
It is not necessary to perform this for all probes 3. Furthermore, if detection is performed multiple times during data recording and reproduction, it is possible to cope with the case where the inclination angle changes over time due to external vibrations, thermal expansion of the sample 2, etc.

【0021】データの記録・再生は従来例に述べた周知
の方法を用いることができる。記録時には、粗動駆動部
19によって探針3を記録媒体15に所定間隔で近接し
てxy平面走査を行いながら、データ変調回路20で変
調されたパルス電圧を電圧制御装置4によって探針3、
記録媒体15間に印加すると、両者間にトンネル電流が
流れる。このトンネル電流によって記録媒体15は局所
的に物理的変形が加えられ、或いは表面に電子状態が変
化され、電気抵抗の低い部分が形成されてデータ列の記
録が行われる。再生時には、同様に近接した探針3、記
録媒体15間に一定電圧を印加しながら、データ列に沿
ってxy平面走査を行うと、パルス電圧により記録され
た部所の抵抗に対応して変化するトンネル電流が検出さ
れ、これをデータ復調回路22で復調してCPU21に
伝送する。
The well-known method described in the conventional example can be used for recording and reproducing data. During recording, the probe 3 is brought close to the recording medium 15 at a predetermined interval by the coarse movement drive unit 19 to scan the xy plane, and the pulse voltage modulated by the data modulation circuit 20 is applied to the probe 3 by the voltage control device 4.
When applied between the recording medium 15, a tunnel current flows between the two. This tunneling current applies local physical deformation to the recording medium 15 or changes the electronic state on the surface, forming a portion with low electrical resistance and recording a data string. During playback, when an xy plane scan is performed along the data string while applying a constant voltage between the probe 3 and the recording medium 15 that are close to each other, the pulse voltage changes the resistance at the recorded location. A tunnel current is detected, which is demodulated by the data demodulation circuit 22 and transmitted to the CPU 21.

【0022】なお、記録媒体15の表面は探針3の掃引
範囲内で必ずしも平坦であるとは限らず、一般にデータ
に無関係な微小凹凸が存在する。そこで、距離検出回路
9により電流検出回路5の信号から情報ビットの有無に
よる高周波振動成分を除去した信号を算出し、その信号
値を一定に保持するように、つまり記録媒体15と探針
3との間隔を一定に保持するように、CPU21、距離
検出回路9を介してカンチレバーをz軸方向に移動する
制御を行っている。
It should be noted that the surface of the recording medium 15 is not necessarily flat within the sweep range of the probe 3, and generally has minute irregularities unrelated to the data. Therefore, the distance detection circuit 9 calculates a signal from which the high frequency vibration component due to the presence or absence of information bits is removed from the signal of the current detection circuit 5, and maintains the signal value constant. The cantilever is controlled to move in the z-axis direction via the CPU 21 and the distance detection circuit 9 so as to keep the distance constant.

【0023】記録媒体15の材質には、トンネル電流に
よって表面形状を凸型に変形する(staufen,A
ppl.Phys.Letters,51(4),27
,July,1987,pp244)、或いは凹型に変
形する(Heinzelmann,Appl.Phys
.Letters,Vol.53,No.24,Dec
.,1988,pp2447 )ことが可能な金属、半
導体、酸化物、有材薄膜等が知られている。また、電気
特性を変化させて記録を行うものとしては、特開昭63
−161552号公報、同161553号公報に開示さ
れるように、ラングミュア・ブロジェット法(LB法)
により形成される有機薄膜が好ましく、例えば石英ガラ
ス基板上に、下地電極16として真空装着方法によって
Crを50オングストローム堆積させ、その上に同じ方
法によってAuを300オングストローム被着し、更に
LB法によってSOAZ(スクアリリウム−ビス−6−
オクチルアズレン)を4層積層したものが挙げられる。 記録時に印加するパルス電圧は、使用する記録媒体15
によっても異なるが、例えば電圧3V、幅50nSの矩
形状パルス電圧等が、また再生時の印加電圧は記録電圧
よりも低く例えば200mVの直流電圧が適当である。
The material of the recording medium 15 has a surface shape that is deformed into a convex shape by a tunnel current (Staufen, A.
ppl. Phys. Letters, 51(4), 27
, July, 1987, pp244) or concavely deformed (Heinzelmann, Appl. Phys.
.. Letters, Vol. 53, No. 24, Dec
.. , 1988, pp. 2447) are known as metals, semiconductors, oxides, thin films of materials, etc. In addition, as a device for recording by changing the electrical characteristics, there is
-Langmuir-Blodgett method (LB method) as disclosed in Publications No. 161552 and No. 161553
For example, on a quartz glass substrate, 50 angstroms of Cr is deposited as the base electrode 16 by a vacuum mounting method, 300 angstroms of Au is deposited thereon by the same method, and then SOAZ is deposited by the LB method. (Squarylium-bis-6-
For example, a four-layer stack of octyl azulene) may be used. The pulse voltage applied during recording depends on the recording medium 15 used.
For example, a rectangular pulse voltage with a voltage of 3 V and a width of 50 nS is appropriate, although the voltage applied during reproduction is lower than the recording voltage, such as a DC voltage of 200 mV, although it varies depending on the voltage.

【0024】上述の実施例は全てトンネル電流を用いて
いるが、原子間力、容量、磁束、磁力等の他の物理量を
用いた装置にも応用できる。
Although all of the embodiments described above use tunnel current, they can also be applied to devices using other physical quantities such as atomic force, capacitance, magnetic flux, and magnetic force.

【0025】[0025]

【発明の効果】以上説明したように本発明に係る傾斜測
定機構は、プローブと直交する平面に平行な面内でプロ
ーブを振動しながら検出したトンネル電流から、探針面
と試料面との傾斜角度を算出するので、この傾斜角度を
補正した後に探針を試料に接近するなどして、試料上の
像情報が正確に得られる。
As explained above, the inclination measurement mechanism according to the present invention measures the inclination of the probe surface and the sample surface from the tunnel current detected while vibrating the probe in a plane parallel to the plane orthogonal to the probe. Since the angle is calculated, image information on the sample can be accurately obtained by, for example, approaching the probe to the sample after correcting this inclination angle.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】探針微駆動部及び探針の斜視図である。FIG. 2 is a perspective view of a probe fine drive unit and a probe.

【図3】探針z軸相対位置とトンネル電流との関係のグ
ラフ図である。
FIG. 3 is a graph of the relationship between the probe z-axis relative position and tunnel current.

【図4】探針の振動方法の説明図である。FIG. 4 is an explanatory diagram of a method of vibrating the probe.

【図5】探針y軸位置とトンネル電流との関係のグラフ
図である。
FIG. 5 is a graph of the relationship between the probe y-axis position and tunneling current.

【図6】傾斜角度算出方法の説明図である。FIG. 6 is an explanatory diagram of an inclination angle calculation method.

【図7】第2の実施例によるカンチレバー型探針の斜視
図である。
FIG. 7 is a perspective view of a cantilever probe according to a second embodiment.

【図8】断面図である。FIG. 8 is a cross-sectional view.

【図9】探針の移動方向の説明図である。FIG. 9 is an explanatory diagram of the moving direction of the probe.

【図10】第3の実施例の構成図である。FIG. 10 is a configuration diagram of a third embodiment.

【図11】記録・再生ヘッドの斜視図である。FIG. 11 is a perspective view of a recording/reproducing head.

【符号の説明】[Explanation of symbols]

2  試料 3  探針 4  電圧制御装置 5  電流検出回路 6  探針微駆動部 7  探針粗駆動部 9  距離検出回路 10  駆動部制御回路 11  傾斜角度算出回路 12  カンチレバー型探針 14  記録・再生ヘッド 15  記録媒体 17  傾き補正機構 19  粗動駆動部 23  傾斜角度補正回路 2 Sample 3 Probe 4 Voltage control device 5 Current detection circuit 6 Probe fine drive section 7 Probe rough drive section 9 Distance detection circuit 10 Drive unit control circuit 11 Inclination angle calculation circuit 12 Cantilever probe 14 Recording/playback head 15 Recording medium 17 Tilt correction mechanism 19 Coarse movement drive section 23 Tilt angle correction circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  試料から情報を検出するプローブと、
該試料面内で前記プローブを1個所で振動させる探針振
動手段と、前記探針振動手段によって前記プローブを振
動しながら前記プローブで検出した信号から前記プロー
ブと試料面との傾斜角度を算出する傾斜角度算出回路と
を有することを特徴とする傾斜測定機構。
[Claim 1] A probe that detects information from a sample;
A probe vibrating means vibrates the probe at one location within the sample surface, and an inclination angle between the probe and the sample surface is calculated from a signal detected by the probe while the probe is vibrated by the probe vibrating means. An inclination measuring mechanism characterized by having an inclination angle calculation circuit.
JP16107291A 1991-06-05 1991-06-05 Tilt measuring mechanism Expired - Fee Related JP2939006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16107291A JP2939006B2 (en) 1991-06-05 1991-06-05 Tilt measuring mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16107291A JP2939006B2 (en) 1991-06-05 1991-06-05 Tilt measuring mechanism

Publications (2)

Publication Number Publication Date
JPH04359108A true JPH04359108A (en) 1992-12-11
JP2939006B2 JP2939006B2 (en) 1999-08-25

Family

ID=15728093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16107291A Expired - Fee Related JP2939006B2 (en) 1991-06-05 1991-06-05 Tilt measuring mechanism

Country Status (1)

Country Link
JP (1) JP2939006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194154A (en) * 1992-09-22 1994-07-15 Internatl Business Mach Corp <Ibm> Method and apparatus for two-dimensional profile description with contact force and atomic force microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194154A (en) * 1992-09-22 1994-07-15 Internatl Business Mach Corp <Ibm> Method and apparatus for two-dimensional profile description with contact force and atomic force microscope

Also Published As

Publication number Publication date
JP2939006B2 (en) 1999-08-25

Similar Documents

Publication Publication Date Title
JP3450349B2 (en) Cantilever probe
JP2923813B2 (en) Cantilever displacement element, scanning tunneling microscope using the same, and information processing apparatus
JP3030574B2 (en) Micro-displacement information detecting probe element, scanning tunnel microscope, atomic force microscope, and information processing apparatus using the same
JP2802828B2 (en) Information record carrier and information processing apparatus using the same
US5414690A (en) Moving apparatus, a moving method and an information detection and/or input apparatus using the same
US5412597A (en) Slope detection method, and information detection/writing apparatus using the method
JPH0894647A (en) Probe, scanning probe microscope using the probe, and recording and reproducing apparatus using the probe
JPH05120742A (en) Cantilever type probe and information processor and information processing method using the same
JPH0798892A (en) Device for recording and reproducing information
US5371728A (en) Information recording/reproducing apparatus using probe
US5132533A (en) Method for forming probe and apparatus therefor
JP2003065935A (en) Non-contact atomic force microscope, magnetic force microscope, and static electricity microscope
JP3076467B2 (en) Surface matching method and tunnel microscope and recording / reproducing apparatus using the same
JPH04359108A (en) Inclination measuring mechanism
JP2000082244A (en) Information processor for controlling two planes in parallel, and method therefor
JP3234722B2 (en) Arc-shaped warped lever type actuator, method of driving the actuator, and information processing apparatus using information input / output probe
JP3053971B2 (en) Three-dimensional displacement element for generating tunnel current, multi-tip unit using the three-dimensional displacement element for generating tunnel current, and information processing apparatus
JP3015974B2 (en) Multi-probe unit, information processing device, scanning tunneling microscope, cantilever probe
JPH04355231A (en) Tracking method
JP3042817B2 (en) Apparatus and method for relative positioning in information recording / reproducing apparatus
JPH07110969A (en) Face alignment method, position control mechanism and information processor with the mechanism
JP2802675B2 (en) Probe forming method and apparatus
JP2934037B2 (en) Information recording and / or playback device
JP2995126B2 (en) Information processing device
JP3234952B2 (en) Probe unit, scanning tunneling microscope and information processing apparatus using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees