[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH04357163A - Production of porous ceramic electrode - Google Patents

Production of porous ceramic electrode

Info

Publication number
JPH04357163A
JPH04357163A JP3155260A JP15526091A JPH04357163A JP H04357163 A JPH04357163 A JP H04357163A JP 3155260 A JP3155260 A JP 3155260A JP 15526091 A JP15526091 A JP 15526091A JP H04357163 A JPH04357163 A JP H04357163A
Authority
JP
Japan
Prior art keywords
porous
slurry
perovskite
layer
porous electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3155260A
Other languages
Japanese (ja)
Inventor
Masanobu Aizawa
相沢 正信
Haruo Nishiyama
治男 西山
Akira Ueno
晃 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP3155260A priority Critical patent/JPH04357163A/en
Publication of JPH04357163A publication Critical patent/JPH04357163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To form a porous electrode excellent in gas diffusibility and electrical conductivity. CONSTITUTION:A slurry 8 composed of a perovskite-type compound oxide having a particle size adjusted to a suitable value is put in a vessel 7 and a porous substrate 2 is then immersed therein for a sufficiently long time while uniformly stirring the slurry 8 by rotating a magnetic bar 9 using a stirrer 10. An uncalcined perovskite-type compound oxide layer is formed on the surface of the porous substrate 2 and film formation is carried out after sufficiently drying the resultant layer in a condition where cracking can be prevented by calcining the dried layer, thus obtaining the objective porous electrode.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は燃料電池、酸素分離素子
或いはガスセンサ等のようにガス分子をイオン化する素
子の電極製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for an element that ionizes gas molecules, such as a fuel cell, an oxygen separation element, or a gas sensor.

【0002】0002

【従来の技術】燃料電池や酸素分離素子は、水素イオン
や酸素イオンが透過可能でイオン化してない酸素ガスや
水素ガスが透過できない程度に緻密な固体電解質膜の両
面に、ガスが浸透し得る程度に粗な多孔質電極層を形成
した構造になっている。そして、斯かる多孔質電極層は
溶射法によって多孔質基材や緻密な固体電解質基材の表
面に形成されている。
[Prior Art] In fuel cells and oxygen separation elements, gas can permeate both sides of a solid electrolyte membrane that is dense enough to allow hydrogen ions and oxygen ions to pass through, but not to allow non-ionized oxygen and hydrogen gases to pass through. It has a structure in which a moderately rough porous electrode layer is formed. Such a porous electrode layer is formed on the surface of a porous base material or a dense solid electrolyte base material by a thermal spraying method.

【0003】0003

【発明が解決しようとする課題】燃料電池や酸素分離素
子の電極として要求される特性は、ガス透過性及び電気
伝導度に優れていることである。このためには平均孔径
を0.1〜10μm程度に、気孔率を10〜50vol
%程度にすることが必要である。しかしながら、従来の
ように溶射法で電極層を形成すると、電極層の構成粒子
の大きさを制御することができないので、極めて緻密な
組織となりガス透過性が低下し燃料電池や酸素分離素子
の効率が悪くなる。
Problems to be Solved by the Invention Characteristics required for electrodes of fuel cells and oxygen separation elements are excellent gas permeability and electrical conductivity. For this purpose, the average pore diameter should be set to about 0.1 to 10 μm, and the porosity should be set to 10 to 50 vol.
%. However, when an electrode layer is formed by conventional thermal spraying, it is not possible to control the size of the constituent particles of the electrode layer, resulting in an extremely dense structure that reduces gas permeability and improves the efficiency of fuel cells and oxygen separation elements. becomes worse.

【0004】0004

【課題を解決するための手段】上記課題を解決すべく本
発明は、例えば粒度分布が0.5〜20μmのペロブス
カイト型複合酸化物粉末を溶媒中にバインダとともに混
練してスラリーを調製し、このスラリー中に基材を浸漬
し引き上げて基材表面に未焼成のペロブスカイト型複合
酸化物層を付着させ、次いでこの層を乾燥した後に11
00℃〜1500℃で焼成するようにした。
[Means for Solving the Problems] In order to solve the above problems, the present invention prepares a slurry by kneading perovskite type composite oxide powder with a particle size distribution of 0.5 to 20 μm in a solvent together with a binder. The base material is immersed in the slurry and pulled up to adhere an unfired perovskite composite oxide layer to the surface of the base material, and then after drying this layer,
The firing was carried out at a temperature of 00°C to 1500°C.

【0005】[0005]

【作用】ディッピング法によって電極層を形成するため
、電極層を構成するペロブスカイト型複合酸化物の粒径
を制御することができ、焼成後の孔径及び気孔率が燃料
電池や酸素分離素子の電極として要求される特性を満た
すものとなる。
[Operation] Since the electrode layer is formed by the dipping method, the particle size of the perovskite-type composite oxide that makes up the electrode layer can be controlled, and the pore size and porosity after firing are suitable for use as electrodes for fuel cells and oxygen separation elements. It satisfies the required characteristics.

【0006】[0006]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで図1は本発明方法にて多孔質電極を形
成した酸素分離素子の斜視図、図2は同多孔質電極の粒
子構造を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a perspective view of an oxygen separation element having a porous electrode formed by the method of the present invention, and FIG. 2 is a diagram showing the particle structure of the porous electrode.

【0007】酸素分離素子1はガス透過可能な円筒状多
孔質支持体2の表面に同じくガス透過可能な多孔質電極
3を形成し、この多孔質電極3の表面に酸素イオンのみ
を透過させて分子状態の酸素ガスを透過させない緻密な
固体電解質層4を形成し、この固体電解質層4の表面に
ガス透過可能な多孔質電極5を形成している。そして多
孔質電極3,5のうち一方をアノード電極、他方をカソ
ード電極とする。
The oxygen separation element 1 has a porous electrode 3 that is also permeable to gas formed on the surface of a cylindrical porous support 2 that is permeable to gas, and allows only oxygen ions to pass through the surface of the porous electrode 3. A dense solid electrolyte layer 4 that does not allow the permeation of oxygen gas in a molecular state is formed, and a porous electrode 5 that allows gas permeation is formed on the surface of this solid electrolyte layer 4. One of the porous electrodes 3 and 5 is used as an anode electrode and the other as a cathode electrode.

【0008】而して固体電解質層4にて仕切られる低酸
素側領域S1と高酸素側領域S2を仕切り、多孔質電極
3,5間に電圧を印加することで低酸素側領域S1の酸
素をイオンとして固体電解質層4を通して高酸素側領域
S2に移動させる
[0008]The solid electrolyte layer 4 partitions the low-oxygen side region S1 and the high-oxygen side region S2, and by applying a voltage between the porous electrodes 3 and 5, the oxygen in the low-oxygen side region S1 is removed. Move as ions to the high oxygen side region S2 through the solid electrolyte layer 4

【0009】多孔質支持体2はアルミナ等のセラミック
コンパウンドを押出し成形することで未焼成成形体を得
た後、この成形体を吊り焼き等の手段で焼成して作成す
る。
The porous support 2 is produced by extruding a ceramic compound such as alumina to obtain an unfired molded body, and then firing this molded body by a method such as hanging firing.

【0010】また多孔質電極3は図2に示すように構成
粒子(図の黒い部分)同士が十分に結合するとともに、
所定の平均孔径及び気孔率を確保している。このような
多孔質電極を形成するには、図3に示すように容器6に
ペロブスカイト型複合酸化物からなるスラリー7を入れ
、スターラ8にて攪拌子9を回転せしめることで均一に
スラリー7を攪拌し、この中に多孔質支持体2を十分長
い時間浸漬することで、多孔質支持体2の表面に未焼成
のペロブスカイト型複合酸化物の層を形成し、この層を
クラックが発生しない条件で十分乾燥させた後、焼成す
ることで製膜する。
Furthermore, as shown in FIG. 2, the porous electrode 3 has constituent particles (black parts in the figure) that are sufficiently bonded to each other, and
A predetermined average pore diameter and porosity are ensured. To form such a porous electrode, as shown in FIG. 3, a slurry 7 made of a perovskite-type composite oxide is placed in a container 6, and a stirrer 9 is rotated using a stirrer 8 to uniformly distribute the slurry 7. By stirring and immersing the porous support 2 in this for a sufficiently long time, a layer of unfired perovskite-type composite oxide is formed on the surface of the porous support 2, and this layer is maintained under conditions that do not cause cracks. After sufficiently drying, the film is formed by firing.

【0011】ここで、前記したように多孔質電極3,5
は酸素ガス分子を透過し得るものでなければならず、こ
のためには焼成後の多孔質電極3,5の平均孔径は0.
1μm以上であることが好ましく、また平均孔径を大き
くし過ぎると機械的強度が低下するので10μm以下で
あることが好ましい。また気孔率についても同様の理由
から10〜50vol%であることが好ましい。
Here, as mentioned above, the porous electrodes 3 and 5
must be permeable to oxygen gas molecules, and for this purpose, the average pore diameter of the porous electrodes 3 and 5 after firing must be 0.
The average pore diameter is preferably 1 μm or more, and since mechanical strength decreases if the average pore diameter is made too large, it is preferably 10 μm or less. Also, the porosity is preferably 10 to 50 vol% for the same reason.

【0012】そして、上記の平均孔径及び気孔率にする
にはペロブスカイト型複合酸化物の粒度分布を0.5μ
m以上20μm以下(好ましくは1.0〜10μm)と
し、焼成温度を1100℃以上1500℃(好ましくは
約1300℃)以下とする。
[0012] In order to obtain the above average pore diameter and porosity, the particle size distribution of the perovskite type composite oxide must be adjusted to 0.5μ.
m or more and 20 μm or less (preferably 1.0 to 10 μm), and the firing temperature is 1100° C. or more and 1500° C. or less (preferably about 1300° C.).

【0013】ここで、ペロブスカイト型複合酸化物とし
ては例えば以下の(化1)に示されるものを用いる
[0013] Here, as the perovskite type composite oxide, for example, one shown in the following (Chemical formula 1) is used.

【0
014】
0
014]

【化1】[Chemical formula 1]

【0015】一方、固体電解質層4は溶射法や蒸着法等
によって形成し、構成材料としてはカルシア安定化ジル
コニア、イットリア安定化ジルコニア或いはこれらの混
合物を用いる。
On the other hand, the solid electrolyte layer 4 is formed by thermal spraying, vapor deposition, or the like, and its constituent material is calcia-stabilized zirconia, yttria-stabilized zirconia, or a mixture thereof.

【0016】尚、実施例にあっては固体電解質層につい
ては溶射法やCVD法によって形成するようにしたが、
ディッピング法によって形成してもよい。但し、固体電
解質層については分子状態のガスは透過させず、酸素イ
オンや水素イオンのみを透過させるものであることが必
要なので、固体電解質を構成する安定化ジルコニアの平
均粒径を小さくするとともにディッピングの回数を複数
回行う。
In the examples, the solid electrolyte layer was formed by thermal spraying or CVD.
It may also be formed by a dipping method. However, since the solid electrolyte layer must not allow gases in the molecular state to pass through, but only allow oxygen ions and hydrogen ions to pass through, the average particle size of the stabilized zirconia that makes up the solid electrolyte should be made small, and dipping Do this multiple times.

【0017】[0017]

【発明の効果】以上に説明した如く本発明によれば、デ
ィッピング法によって基材表面に塗布するペロブスカイ
ト型複合酸化物の粒径と焼成温度を制御することにより
、平均孔径が0.1〜10μmで気孔率が10〜50v
ol%の多孔質電極を形成することができる。その結果
図4及び図5に示すように十分なガス透過性(従来の2
倍)を発揮し、また多孔質電極を構成する各粒子同士は
十分に結合しているので優れた電気伝導度(従来の2倍
)をも発揮する。
As explained above, according to the present invention, by controlling the particle size and firing temperature of the perovskite-type composite oxide applied to the surface of the substrate by the dipping method, the average pore size can be reduced to 0.1 to 10 μm. and the porosity is 10~50v
ol% porous electrodes can be formed. As a result, as shown in Figures 4 and 5, sufficient gas permeability (conventional 2
Furthermore, since the particles constituting the porous electrode are sufficiently bonded to each other, it also exhibits excellent electrical conductivity (twice as much as the conventional one).

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明方法にて多孔質電極を形成した酸素分離
素子の斜視図
[Fig. 1] A perspective view of an oxygen separation element with a porous electrode formed by the method of the present invention.

【図2】同多孔質電極の粒子構造を示す図[Figure 2] Diagram showing the particle structure of the same porous electrode

【図3】ディ
ッピング装置の概略図
[Figure 3] Schematic diagram of dipping device

【図4】本発明と従来の電極とのN2ガス透過係数を比
較したグラフ
[Figure 4] Graph comparing the N2 gas permeability coefficient between the present invention and a conventional electrode

【図5】本発明と従来の電極との電気伝導度を比較した
グラフ
[Figure 5] Graph comparing electrical conductivity between the present invention and conventional electrodes

【符号の説明】[Explanation of symbols]

1…酸素分離素子、2…多孔質支持体、3,5…多孔質
電極、4…固体電解質層、6…気孔、7…容器、8…ス
ラリー、9…攪拌子、10…スターラ。
DESCRIPTION OF SYMBOLS 1... Oxygen separation element, 2... Porous support, 3, 5... Porous electrode, 4... Solid electrolyte layer, 6... Pore, 7... Container, 8... Slurry, 9... Stirrer, 10... Stirrer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  分級によって所定範囲の粒度となった
ペロブスカイト型複合酸化物粉末を溶媒中にバインダと
ともに混練してスラリーを調製し、このスラリー中に多
孔質又は緻密な基材を浸漬し、次いで基材を引き上げて
乾燥した後に焼成するようにしたことを特徴とするセラ
ミック多孔質電極の製造方法。
Claim 1: Perovskite type composite oxide powder, which has been classified to have a particle size within a predetermined range, is kneaded with a binder in a solvent to prepare a slurry, a porous or dense base material is immersed in this slurry, and then a porous or dense base material is immersed in the slurry. A method for producing a ceramic porous electrode, characterized in that the base material is pulled up, dried, and then fired.
【請求項2】  前記ペロブスカイト型複合酸化物粉末
の粒径は0.5μm以上20μm以下とし、焼成温度は
1100℃以上1500℃以下としたことを特徴とする
請求項1に記載のセラミック多孔質電極の製造方法。
2. The ceramic porous electrode according to claim 1, wherein the perovskite composite oxide powder has a particle size of 0.5 μm or more and 20 μm or less, and a firing temperature of 1100° C. or more and 1500° C. or less. manufacturing method.
JP3155260A 1991-05-31 1991-05-31 Production of porous ceramic electrode Pending JPH04357163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3155260A JPH04357163A (en) 1991-05-31 1991-05-31 Production of porous ceramic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3155260A JPH04357163A (en) 1991-05-31 1991-05-31 Production of porous ceramic electrode

Publications (1)

Publication Number Publication Date
JPH04357163A true JPH04357163A (en) 1992-12-10

Family

ID=15602030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3155260A Pending JPH04357163A (en) 1991-05-31 1991-05-31 Production of porous ceramic electrode

Country Status (1)

Country Link
JP (1) JPH04357163A (en)

Similar Documents

Publication Publication Date Title
US8894944B2 (en) Membrane with a stable nanosized microstructure and method for producing same
JP5030359B2 (en) Production of hollow ceramic membranes by electrophoretic deposition.
Peng et al. Preparation of Dense Platinum‐Yttria Stabilized Zirconia and Yttria Stabilized Zirconia Films on Porous La0. 9Sr0. 1MnO3 (LSM) Substrates
JP2000128545A (en) Production of ceramic film
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
US6613384B1 (en) Method for manufacturing a membrane
US5141825A (en) Method of making a cermet fuel electrode containing an inert additive
US5418081A (en) Method of producing electrically conductive ceramic film for interconnectors of solid oxide fuel cells
JP2008047445A (en) Method of manufacturing solid electrolytic ceramic membrane, and electrochemical device
KR20140038795A (en) Support coated composite layers of mixed conductor, and manufacturing method of support coated composite layers of mixed conductor
JPH0652863A (en) Electrode body for solid electrolytic fuel cell and manufacture thereof
JPH11297334A (en) Hollow flat substrate, its manufacture and manufacture of solid electrolyte fuel cell
JPH04357163A (en) Production of porous ceramic electrode
MOON et al. Preparation of dense thin-flm solid electrolyte on novel porous structure with parallel pore channel
JP3342610B2 (en) Solid oxide fuel cell
JPH04355059A (en) Solid electrolyte fuel cell
JPH06283179A (en) Manufacture of electrolytic film for solid electrolytic fuel cell
JPH0722056A (en) Manufacture of solid electrolyte fuel cell
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH0855625A (en) Manufacture of fuel electrode substrate
JPH06240435A (en) Production of airtight film
JPH09132459A (en) Porous ceramic sintered compact
RU2681771C2 (en) Method for producing gas-tight solid oxide tubular electrolyte for base of sofc
KR101276690B1 (en) Solid oxide fuel cell having the improved electrodes and its preparation
JP4154748B2 (en) Method for manufacturing cell for solid oxide fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010313